首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Class II DNA-dependent RNA polymerases were purified from soybean tissues of different physiological states: (1) from seed embryo tissue, representative of a quiescent, low metabolic state and (2) from auxin-treated hypocotyl tissue, representative of a highly proliferative and metabolically active state. Dodecyl sulfate, polyacrylamide gel electrophoresis indicates that RNA polymerase II from embryonic tissue consists largely (90-95%) of the form IIA enzyme, the largest subunit having a molecular weight of 215 000. RNA polymerase II from hypocotyl tissue is exclusively a form IIB enzyme, the largest subunit having a molecular weight of 180 000. Polypeptides common to RNA polymerases IIA and IIB have the following molecular weights: 138 000; 42 000; 27 000; 22 000; 19 000; 17 600; 17 000; 16 200; 16 100; and 14 000. Peptide mapping in the presence of dodecyl sulfate suggests that the 215 000 and 180 000 subunits possess similar peptide fragments. Plant embryo tissues do not contain protease activity capable of cleaving the 215 000 subunit to the 180 000 subunit, but proliferating plant tissues do contain such an activity. Mixing experiments indicate that appreciable amounts of RNA polymerase IIB are not being artifactually produced during protein purification.  相似文献   

2.
Two-dimensional tryptic mapping of 125I-labeled polypeptides has been employed to compare the large subunits of type II DNA-dependent RNA polymerases from maize, parsley (Petroselinum sativum), and wheat. Maps of the 220 kilodalton (kd) and 140 kd subunits from wheat RNA polymerase II differ from those of the corresponding subunits from parsley enzyme II. The 180 kd subunits from maize and parsley type II enzymes also yield dissimilar tryptic maps. Thus, despite similarities in molecular mass, the large subunits of wheat, parsley, and maize type II RNA polymerases are unique to each individual plant species.  相似文献   

3.
H G Hodo  S P Blatti 《Biochemistry》1977,16(11):2334-2343
DNA-dependent RNA polymerase II from calf thymus has been successfully purified using polythylenimine precipitation. Thus, 5-6 mg of nearly homogeneous homogeneous trna polymerase II (greater than 96% pure) can be prepared from 1 kg of calf thymus with three chromatography steps following extraction and precipitation of the enzyme from the polyethylenimine pellet. This procedure eliminates the high salt extraction of chromatin previously used in purification of this enzyme and makes possible the large scale preparation of mammalian RNA polymerase II. Calf thymus polymerase II prepared by this method is greater than 90% form IIb and consists of ten different subunits having the following molecular weights: 180 000; 145 000; 36 000; 25 000; 20 000; 18 500; 16 000; 15 000; 12 000; 11 500. The homologous enzyme isolated from wheat germ is greater than 90% form IIa and contains subunits of the following molecular weights: 206 000; 145 000; 44 000-47 000; 24 500; 21 000; 19 000; 17 000; 14 000; 13 500. The wheat germ and calf thymus enzymes exhibit similar subunits structures, but the molecular weights of individual subunits are clearly different between the enzymes. Wheat germ RNA polymerase II is 50% inhibited by 0.271 microng/mL of alpha-amanitin, a level 30-fold higher than that found for calf thymus RNA polymerase II. These enzymes are further distinguished by the absence of antigenic cross reactivity.  相似文献   

4.
A procedure for the simultaneous purification of RNA polymerases I, II, and III from Saccharomyces cerevisiae is described. High yields of each enzyme activity are obtained, allowing the preparation of approximately 10 mg of polymerase I, 25 mg of polymerase II, and 12 mg of polymerase III from 1.2 kg of cells (wet weight). Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate indicates RNA polymerase I contains polypeptides with molecular weights 185 000, 137 000, 41 000, 35 000, 28 000, 24 000, 20 000, 16 000, 14 500, and 12 300; RNA polymerase II contains subunits with molecular weights 170 000, 145 000, 41 000, 33 500, 28 000, 24 000, 18 000, 14 500, and 12 500; and RNA polymerase III contains polypeptides with molecular weights 160 000, 128 000, 82 000, 53 000, 41 000, 37 000, 34 000, 28 000, 24 000, 20 000, 14 500, and 10 700.  相似文献   

5.
DNA-dependent RNA polymerase II was purified from the mouse plasmacytoma, MOPC 315. Soluble enzyme was obtained from a nucleoplasmic fraction and subjected to chromatography on phosphocellulose, DEAE-cellulose, and DEAE-Sephadex ion exchange resins and was subjected to sedimentation in sucrose density gradients. A chromatographically homogeneous enzyme was obtained which was purified about 25,000-fold relative to whole cell extracts and which had a specific activity (on native DNA) similar to those reported for other purified eukaryotic class II RNA polymerase preparations. Analysis of purified RNA polymerase II by polyacrylamide gel electrophoresis under nondenaturing conditions revealed three protein bands, designated II-O, II-A, and II-B in order of electrophoretic mobility. The subunit compositions of these nondenatured bands were subsequently analyzed by electrophoresis under denaturing conditions. Each enzyme II form contained subunits with molecular weights of 140,000 (II-c), 41,000 (II-d), 30,000 (II-e), 25,000 (II-f), 22,000 (II-g), 20,000 (II-h), and 16,000 (II-i). Molar ratios were unity for all subunits except subunit II-h which had a molar ratio of 2. Each enzyme form was distinguished by its highest molecular weight subunit. II-O contained subunit II-o (molecular weight 240,000), II-A contained subunit II-a (molecular weight 205,000), and II-B contained subunit II-b (molecular weight 170,000). Total molecular weights for II-O, II-A, and II-B were calculated as 554,000, 519,000, and 484,000, respectively. In addition, the number of RNA polymerase II molecules per MOPC 315 tumor cell was calculated to be about 5 times 10-4.  相似文献   

6.
A rapid and simple, large-scale method for the purification of DNA-dependent RNA polymerase III (EC 2.7.7.6) from wheat germ is presented. The method involves enzyme extraction at low ionic strength, polyethyleneimine fractionation, (NH4)2SO4 precipitation, and chromatography on DEAE-Sepharose CL-6B, DEAE-cellulose, and heparin agarose. Milligram quantities of highly purified enzyme can be obtained from kilogram quantities of starting material in 2 to 3 days. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicates that RNA polymerase III contains 14 subunits with molecular weights of: 150,000; 130,000; 94,000; 55,000; 38,000; 30,000; 28,000; 25,000; 24,500; 20,500; 20,000; 19,500; 17,800; and 17,000. Subunit structure comparison of wheat germ RNA polymerases I, II, and III indicates that all three enzymes may contain common subunits with molecular weights 20,000, 17,800, and 17,000. In addition, RNA polymerases II and III may contain a common subunit with a molecular weight of 25,000, and RNA polymerases I and III may contain a common subunit with a molecular weight of 38,000.  相似文献   

7.
Summary A purification procedure to obtain RNA polymerases I (or A) and II (or B) from Dictyostelium discoideum amoeba has been developed. The enzymes were solubilized from purified nuclei and separated by DEAF-Sephadex chromatography. RNA polymerases I and II were further purified by a second chromatography on DEAE-Sephadex followed by chromatographies on phosphocellulose and heparin-sepharose. The specific activities of purified RNA polymerases I and II are 92 units/ mg protein and 70 units/ mg protein, respectively. The subunit structure of both RNA polymerases were analyzed by polyacrylamide gel electrophoresis under denaturing conditions after glycerol gradient centrifugation of the enzymes. The putative subunits of RNA polymerase I have molecular weights of 180 000,125 000,43 000,40 000,34 000, 31 000, 25 000,19 000, 17 000 and 14 000. The putative subunits of RNA polymerase II have molecular weights of 200 000 (170 000), 130 000, 33 000, 25 000, 19 000, 17 000, 15 000, 13 000. There are three polypeptides with common molecular weight in Dictyostelium RNA polymerases I and 11. The subunit of 25 000 daltons of both enzymes has common immunological determinants with RNA polymerase II from crustacean Artemia.Abbreviations TLCK tosyl-lysine-chloromethyl-ketone - DPT diazophenylthioether  相似文献   

8.
DNA-dependent RNA polymerase II (EC 2.7.7.6) from pea seedlings (Pisum sativum var. Alaska) has been purified to homogeneity, as judged by native polyacrylamide electrophoresis. The procedure includes polyethyleneimine precipitation and elution, ammonium sulfate precipitation, DEAE-Sephadex chromatography, phosphocellulose chromatography, and heparin-Sepharose chromatography. The enzyme purified almost to homogeneity has a specific activity of 200 nmol/mg per 15 min at 30 degrees C with denatured calf thymus DNA as template. The enzyme activity is 50% inhibited in the presence of 0.05 migrograms/ml of alpha-amanitin. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate indicates that pea RNA polymerase II is composed of eight subunits with molecular weights and molar ratios (in parentheses) of 170 000 (0.9), 140 000 (1.0), 43 000 (1.5), 26 000 (2.0), 22 500 (1.2), 21 500 (0.6), 18 500 (1.6) and 17 500 (2.3). The structure is closely similar to that of cauliflower RNA polymerase II.  相似文献   

9.
RNA polymerase II from larvae of the brine shrimp, Artemia salina, was highly purified by two cycles of DEAE-cellulose chromatography followed by centrifugation through discontinuous sucrose gradients. Gradient fractions were subjected to elctrophoresis is polyacrylamide gels containing sodium dodecyl sulfate. The subunit structure of RNA polymerase II was determined by quantitative comparison of the polypeptides and enzyme activity present in each gradient fraction. The enzyme contains one copy of each of four subunits with estimated molecular weights of 170,000, 130,000, 36,000 and 24,000. The total molecular weight agrees well with the molecular weight estimated for the native enzyme by density gradient centrifugation.  相似文献   

10.
We describe a rapid procedure for obtaining highly purified RNA polymerase II from the nematode Caenorhabditis elegans. The structure of the enzyme was examined by denaturing gel electrophoresis and found to consist of three large polypeptides (molecular weights 200,000, 175,000, and 135,000) and eight smaller polypeptides (molecular weights 29,500, 20,000, 16,000, 15,000, 13,000, 11,500, 10,500, and 9,500). As observed for the analogous enzyme from other organisms, the 175,000 polypeptide (II175) appeared to be a degraded form of the 200,000 polypeptide (II200). The structure of nematode RNA polymerase II closely resembles that of the corresponding enzyme from other animals. Four of its larger subunits shared antigenicity with Drosophila RNA polymerase II. Antibody raised against purified RNA polymerase II reacted with several enzyme subunits in "Western" blots of purified polymerase and impure enzyme fractions. Immunofluorescence staining was used to visualize RNA polymerase II in the nuclei of a nematode squash preparation and the nucleoplasm of cultured mammalian cells.  相似文献   

11.
Summary It had been shown earlier, that RNA polymerase 13 S particles contain the large components with a molecular weight of about 3–105 and small subunits with a molecular weight of 4·104-1·105. These polymerase components easily dissociate and reassociate with restoration of the enzyme activity.Both temperature-sensitive (tsX) and rifamycin-resistant (rif-r-I) mutations proved to affect the large polymerase component without changing the small subunits. These mutations were mapped at different, though closely linked, loci of metB-thi region of E. coli K12 chromosome. These results as well as certain literature data allow to conclude that the large RNA polymerase component consists of at least two polypeptides, one being altered by ts mutation, and the other—by rif-r mutation.The large polymerase component when separated from the small subunits retain the ability to bind to T2 phage DNA while the separate small subunits lack this property. Rifamycin does not affect RNA polymerase-T2 DNA binding while ts mutation leads to inability of the enzyme to form stable complexes with DNA. Therefore, it is likely that the polypeptide affected by ts mutation is responsible for the attachment of RNA polymerase to specific sites of DNA template. On the other hand, the small subunits as well as polypeptide of the large component, which determines RNA polymerase sensitivity to rifamycin, seem not to participate in the enzyme binding to DNA template. It is suggested, that the catalytic site of RNA polymerase is located in the large component and formed by rifamycin-binding polypeptide. The small subunits are supposed to have regulatory function and activate the large components.  相似文献   

12.
DNA-dependent RNA polymerase from Micrococcus luteus can be isolated from cell extracts after removal of an excess of nucleic acids by fractionation with ammonium sulfate, followed by two consecutive gel filtrations through agarose and chromatography on cellulose phospate. Either homogeneous holoenzyme or a mixture of core and holoenzyme is obtained in this way, as is indicated by electrophoresis in polyacrylamide gels in the absence of detergent, where core enzyme migrates ahead of holoenzyme. Homogeneous core enzyme can be isolated from holoenzyme by chromatography on DEAE-cellulose. Core enzyme contains the subunits alpha, beta and beta' previously described [U.I. Lill et al., (1975) Eur. J. Biochem. 52, 411-420] in a molar ratio of 2:1:1. Holoenzyme contains an additional subunit sigma of 80 000 molecular weight (molar subunit composition alpha2 betabeta' sigma) and two relatively small polypeptides (molecular weight 14 000 and 25 000, respectively). Subunit sigma may be isolated from holoenzyme by chromatography on DEAE-cellulose at pH 6.9 in the presence of low concentrations of glycerol. The behaviour of holoenzyme during sedimentation in a glycerol gradient at low ionic strength indicates its occurrence as a dimer of the alpha2betabeta'sigma-protomer, whereas the monomeric form is preferred by core enzyme. Holoenzyme is much more active than core enzyme in RNA synthesis on bacteriophage T4DNA as template. The activity of the latter is stimulated by isolated sigma. M. luteus sigma as well as holoenzyme enhances also the activity of core enzyme fro- Escherichia coli. The formation of a hybrid between micrococcal sigma and E. coli core polymerase is also suggested by the influence of sigma on the oligomerisation of the enzyme from E. coli.  相似文献   

13.
Two high molecular weight DNA polymerases, which we have designated delta I and delta II, have been purified from calf thymus tissue. Using Bio Rex-70, DEAE-Sephadex A-25, and DNA affinity resin chromatography followed by sucrose gradient sedimentation, we purified DNA polymerase delta I 1400-fold to a specific activity of 10 000 nmol of nucleotide incorporated h-1 mg-1, and DNA polymerase delta II was purified 4100-fold to a final specific activity of 30 000 nmol of nucleotide incorporated h-1 mg-1. The native molecular weights of DNA polymerase delta I and DNA polymerase delta II are 240 000 and 290 000, respectively. Both enzymes have similarities to other purified delta-polymerases previously reported in their ability to degrade single-stranded DNA in a 3' to 5' direction, affinity for an AMP-hexane-agarose matrix, high activity on poly(dA) X oligo(dT) template, and relative resistance to the polymerase alpha inhibitors N2-(p-n-butylphenyl)dATP and N2-(p-n-butylphenyl)dGTP. These two forms of DNA polymerase delta also share several common features with alpha-type DNA polymerases. Both calf DNA polymerase delta I and DNA polymerase delta II are similar to calf DNA polymerase alpha in molecular weight, are inhibited by the alpha-polymerase inhibitors N-ethylmaleimide and aphidicolin, contain an active DNA-dependent RNA polymerase or primase activity, display a similar extent of processive DNA synthesis, and are stimulated by millimolar concentrations of ATP. We propose that calf DNA polymerase delta I, which also has a template specificity essentially identical with that of calf DNA polymerase alpha, could be an exonuclease-containing form of a DNA replicative enzyme.  相似文献   

14.
Summary Rabbit antibodies against Artemia RNA polymerase II have been raised and utilized to study the immunological relationships between the subunits from RNA polymerases I, II and III from this organism and RNA polymerase II from other eukaryotes. We describe here for the first time the subunit structure of Artemia RNA polymerases I and III. These enzymes have 9 and 13 subunits respectively. The anti-RNA polymerase II antibodies recognize two subunits of 19.4 and 18 kDa common to the three enzymes, and another subunit of 25.6 kDa common to RNA polymerases II and III. The antibodies against Artemia RNA polymerase II also react with the subunits of high molecular weight and with subunits of around 25 and 33 kDa of RNA polymerase II from other eukaryotes (Drosophila melanogaster, Chironomus thummi, triticum (wheat) and Rattus (rat)). This interspecies relatedness is a common feature of eukaryotic RNA polymerases.Abbreviations RNAp RNA polymerase - DPT diazophenylthioether - SDS sodium dodecylsulfate  相似文献   

15.
M E Dahmus  J Natzle 《Biochemistry》1977,16(9):1901-1908
A protein kinase, designed KII, has been purified 5000-fold from Novikoff ascites tumor cells. The purification procedure also allows for the purification of a second major protein kinase, designated KI, as well as RNA polymerase I and II. Purified KII has a sedimentation constant of 7.6 S and a Stokes radius of 39 A, suggesting a molecular weight of about 122000. Polyacrylamide gel electrophoresis of the enzyme in the presence of sodium dodecyl sulfate suggests the enzyme is composed of subunits of molecular weights 44 000, 40 000, and 26 000 present in a molar ratio of 1:1:2. Incubation of the enzyme alone in the presence of [gamma-32P]ATP results in the phosphorylation of the 26 000-dalton subunit. Protein kinase II actively phosphorylates phosvitin, casein, and nonhistone chromosomal proteins but does not phosphorylate basic proteins such as histones or protamine to an appreciable extent. Km values of 3.6 micron for ATP and 6.5 micronM for GTP were determined in the presence of 4mM Mg2+. The enzyme is neither stimulated by cyclic adenosine 3',5'-monophosphate or cyclic guanosine 3', 5'-monophosphate nor inhibited by the regulatory subunit of rabbit muscle protein kinase. Its activity is stimulated by KCl at concentrations below 0.2 M and inhibited by higher concentrations.  相似文献   

16.
The molecular weight of the extracellular hemoglobin of Tubifex tubifex determined by equilibrium sedimentation is 3.0 +/- 0.2 . 10(6). Polyacrylamide gel electrophoresis in sodium dodecyl sulfate showed that the hemoglobin dissociated into four subunits: 13 000 (subunit 1), 21 000 (subunit 2), 23 000 (subunit 3) and 47 000 (subunit 4); in the presence of mercaptoethanol two subunits were observed, 13 000 +/- 1000 (subunit I) accounting for 70--80% of the whole molecule, and 26 000 (subunit II). Electrophoresis of the subunits obtained in the absence of mercaptoethanol showed that subunit I originated from subunits 1 and 4, while subunit II originated from subunits 2 and 3. These relationships were supported by N-terminal group determinations. Gel filtration in 6 M guanidine hydrochloride showed that the molecular weight of subunit I is 17 500 and that of subunit II, 36 000. Tubifex hemoglobin appears to consist of at least seven polypeptide chains.  相似文献   

17.
18.
RNA polymerase I was purified from chromatin isolated from auxin-treated soybean hypocotyl. Purification was achieved by using Agarose A-1.5m gel filtration, DEAE-cellulose, CM-sephadex, and phosphocellulose chromatography, and sucrose density gradient centrifugation. With denatured calf thymus DNA as template, the enzyme has a high specific activity (200-300 nmol/mg/30 min at 28 degrees C) which is comparable to other RNA polymerase I enzymes purified from animals and yeast. While the gel profiles indicate that purification to homogeneity (greater than 90%) may not have been achieved, the enzyme appears to be composed of possibly 7 subunits, several of which are similar to the subunits of yeast RNA polymerase I. The putative subunits and molar ratios are 183 000 (1), 136 000 (1), 50 000 (0.5), 46 000 (0.5), 40 000 (0.5), 33 000 (0.2), and 28 000 (2). The purified enzyme strongly prefers a completely denatured template such as poly(dC).  相似文献   

19.
Evidence is presented that isoproterenol treatment of rat C6 glioma cells, under conditions that increase glioma cell cAMP levels, causes the phosphorylative modification of several RNA polymerase II subunits. RNA polymerase II in control and isoproterenol-stimulated 32Pi-labeled confluent glioma cells was immunoprecipitated from ribonuclease-treated nuclear extracts with hen anti-calf RNA polymerase II antiserum conjugated to Sepharose. The immunoprecipitated RNA polymerase II was analyzed for 32P-labeled subunits by electrophoresis on sodium dodecyl sulfate-polyacrylamide gels. Using this technique, we have shown that isoproterenol causes a time-dependent increase of phosphate incorporation into RNA polymerase II subunits of 214,000, 180,000, 140,000, 35,000, 28,000, and 16,500 daltons. Phosphate incorporation occurred exclusively on serine in all of the six subunits. About 0.5-2 mol of phosphate/mol of RNA polymerase II subunit were incorporated. Dibutyryl cAMP (10(-3)M) mimics the stimulatory action of isoproterenol and mediates increased phosphate incorporation into the six subunits. (RS)-propranolol (10(-4)M) prevents the isoproterenol-mediated phosphorylative changes. These data indicate that isoproterenol, via cAMP, mediates a transient structural modification of RNA polymerase II subunits in rat C6 glioma cells which may possibly lead to a modulation of RNA polymerase II function(s).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号