首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Both reactive oxygen species (ROS) and ATP depletion may be significant in hypoxia-induced damage and death, either collectively or independently, with high energy requiring, metabolically active cells being the most susceptible to damage.We investigated the kinetics and effects of ROS production in cardiac myoblasts, H9C2 cells, under 2%, 10% and 21% O2 in the presence or absence of apocynin, rotenone and carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone.H9C2 cells showed significant loss of viability within 30 min of culture at 2% oxygen which was not due to apoptosis, but was associated with an increase in protein oxidation. However, after 4 h, apoptosis induction was observed at 2% oxygen and also to a lesser extent at 10% oxygen; this was dependent on the levels of mitochondrial superoxide anion radicals determined using dihydroethidine. Hypoxia-induced ROS production and cell death could be rescued by the mitochondrial complex I inhibitor, rotenone, despite further depletion of ATP.In conclusion, a change to superoxide anion radical steady state level was not detectable after 30 min but was evident after 4 h of mild or severe hypoxia. Superoxide anion radicals from the mitochondrion and not ATP depletion is the major cause of apoptotic cell death in cardiac myoblasts under chronic, severe hypoxia.  相似文献   

2.
The bovine spleen green hemeprotein, a peroxidase which exhibits spectrophotometric properties similar to those of granulocyte myeloperoxidase, was purified using an improved method. The ligand affinity of the ferric enzyme was spectroscopically determined using chloride and cyanide as exogenous ligands. The pH dependence of the apparent dissociation constant of the enzyme-chloride complex showed the presence of a proton dissociable group with a pKa value of 4 on the enzyme; chloride binds to the enzyme when this group is protonated with a dissociation constant of 60 microM. The cyanide affinity of the enzyme is also regulated by the group with a pKa value of 4, but in this case cyanide binds to the unprotonated enzyme with a dissociation constant of 0.6 microM; only the protonated, uncharged form of cyanide reacts with the enzyme. Cyanide binding was competitively inhibited by chloride, and chloride binding was also competitively inhibited by cyanide. The EPR spectrum of the resting enzyme exhibited a rhombic high spin signal at g = 6.65, 5.28, and 1.97 with a low spin signal at g = 2.55, 2.32, and 1.82. Upon formation of the chloride complex, the spectrum was replaced with a new high spin EPR signal with g-values of 6.81, 5.04, and 1.95. The cyanide complex showed a low spin EPR signal with g-values of 2.83, 2.25, and 1.66. Examination of the enzymatic activity of the spleen green hemeprotein by following the chlorination of monochlorodimedon has indicated that the enzyme has the same chlorinating activity as myeloperoxidase; the spleen green peroxidase can catalyze the formation of hypochlorous acid from hydrogen peroxide and chloride ion. Comparison of the present data with those of myeloperoxidase has led to the conclusion that the structure of the iron center and its vicinity in spleen green hemeprotein is very similar, if not identical, to that of myeloperoxidase. The spleen enzyme can thus be used as a model to study the active center, and its environment, in myeloperoxidase.  相似文献   

3.
Silver-copper and silver-cobalt proteins have been prepared in which Ag+ resides in the native copper site of superoxide dismutase and either Cu2+ of Co2+ reside in the zinc site. The electron paramagnetic resonance (EPR) spectrum of the copper and the visible absorption spectrum of the cobalt greatly resemble those of either Cu4 of Cu2,Cu2,Co2 proteins, respectively, in which the copper of the native copper sites has been reduced. It was found that, unlike cyanide, azide anion would not perturb the EPR spectrum of Ag2,Cu2 protein. Since azide produces the same perturbation upon the EPR spectrum of native and Cu2 proteins, it must bind to the copper and not the zinc of superoxide dismutase. A model of the metal sites of the enzyme has been fitted to a 3-A electron-density map using an interactive molecular graphics display. The model shows that histidine-61, which appears to bind both copper and zinc, does not lie in the plane of the copper and its three other histidine ligands, but occupies a position intermediate between planar and axial. This feature probably accounts for the rhombicity of the EPR spectrum and the activity of the enzyme.  相似文献   

4.
The spin-labeled anion N-[4-(2,2,6,6-tetramethylpiperidin-1-oxyl)] oxamate has been synthesized and characterized. In the presence of this compound, a specific iron-transferrin-anion complex is formed, as evidenced by the development of a characteristic red color. No EPR signal was observed for the nitroxyl radical in the protein complex, presumably due to broadening of the signal by the paramagnetic metal ion. Failure to observe a signal implies that the metal to nitroxyl distance is less than or equal to 6 A. This suggests that the anion is directly attached to the metal ion in the protein. The pH dependence of iron dissociation from iron-transferrin-oxalate is also reported. This complex is more stable at low pH than iron-transferrin-carbonate.  相似文献   

5.
The distance separating the high-affinity binding sites of actin for a divalent metal ion and nucleotide was evaluated by using high-resolution proton NMR and EPR spectroscopy. Replacement of the Ca2+ or Mg2+ bound to the high-affinity divalent cation site of G-actin by trivalent lanthanide ions such as La3+, EU3+, or Gd3+ results in an increase in the mobility of the bound ATP as observed in the NMR spectra of G-actin monomers. Little difference was observed between the spectra obtained in the presence of the diamagnetic La3+ control and the paramagnetic ions Eu3+ and Gd3+ which respectively shift and broaden the proton resonances of amino acids in the vicinity of the binding site. Analysis of the NMR spectra indicates that the metal and nucleotide binding sites are separated by a distance of at least 16 A. In the past, the metal and ATP have been widely assumed to bind as a complex. Further verification that the two sites on actin are physically separated was obtained by using an ATP analogue with a nitroxide spin-label bound at the 6' position of the purine ring. An estimate of the distance was made between the site containing the ATP analogue and the paramagnetic ion, Mn2+, bound to the cation binding site. These EPR experiments were not affected by the state of polymerization of the actin. The data obtained by using this technique support the conclusion stated above, namely, that the cation and nucleotide sites on either G- or F-actin are well separated.  相似文献   

6.
The reaction of the Cu,Co derivative of bovine Cu,Zn superoxide dismutase with phenylglyoxal or butanedione, which are known to inactivate the enzyme by selectively binding to Arg 141, has been studied by 1H NMR. Several 1H NMR lines of the copper-liganding histidine residues were perturbed, reproducing an effect so far observed only in the case of binding of anions to this protein. The room temperature EPR spectrum of the modified Cu,Zn protein was altered very slightly, indicating that the geometry of the copper site was not grossly affected by the modification. NMR and EPR changes were reversed by dialysis in the case of the reversible butanedione adduct. These data show that the coordination of the copper in Cu,Zn superoxide dismutase can be destabilized by modifications occurring at a neighboring but not a metal-liganding residue. It is suggested that part of the NMR effects seen on copper ligands in the case of anion binding are produced by interaction of anions with Arg 141, rather than by direct ligand replacement.  相似文献   

7.
The EPR signal recorded in reaction medium containing L-lysine and methylglyoxal is supposed to come from the anion radical (semidione) of methylglyoxal and cation radical of methylglyoxal dialkylimine. These free radical inter-mediates might be formed as a result of electron transfer from dialkylimine to methylglyoxal. The EPR signal was observed in a nitrogen atmosphere, whereas only trace amounts of free radicals were registered under aerobic conditions. It has been established that the decay of methylglyoxal anion radical on aeration of the medium is inhibited by superoxide dismutase. Using the methods of EPR spectroscopy and lucigenin-dependent chemiluminescence, it has been shown that nonenzymatic generation of free radicals including superoxide anion radical takes place during the interaction of L-lysine with methylglyoxal — an intermediate of carbonyl stress — at different (including physiological) pH values. In the course of analogous reaction of L-lysine with malondialdehyde (the secondary product of the free radical derived oxidation of lipids), the formation of organic free radicals or superoxide radical was not observed.  相似文献   

8.
Examination of the peroxidase isolated from the inkcap Basidiomycete Coprinus cinereus shows that the 42,000-dalton enzyme contains a protoheme IX prosthetic group. Reactivity assays and the electronic absorption spectra of native Coprinus peroxidase and several of its ligand complexes indicate that this enzyme has characteristics similar to those reported for horseradish peroxidase. In this paper, we characterize the H2O2-oxidized forms of Coprinus peroxidase compounds I, II, and III by electronic absorption and magnetic resonance spectroscopies. Electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) studies of this Coprinus peroxidase indicate the presence of high-spin Fe(III) in the native protein and a number of differences between the heme site of Coprinus peroxidase and horseradish peroxidase. Carbon-13 (of the ferrous CO adduct) and nitrogen-15 (of the cyanide complex) NMR studies together with proton NMR studies of the native and cyanide-complexed Coprinus peroxidase are consistent with coordination of a proximal histidine ligand. The EPR spectrum of the ferrous NO complex is also reported. Protein reconstitution with deuterated hemin has facilitated the assignment of the heme methyl resonances in the proton NMR spectrum.  相似文献   

9.
We have used a newly developed solid-state NMR method, rotational resonance, to establish the structure of an inhibited complex formed upon reaction of D-alanyl-D-alanine ligase, ATP, and the aminoalkyl dipeptide analogue [1(S)-aminoethyl][2-carboxy-2(R)-methyl-1- ethyl]phosphinic acid (Ib). Analogue Ib was determined to be an ATP-dependent, slow-binding inhibitor of the D-Ala-D-Ala ligase from Salmonella typhimurium, with an enzyme-inhibitor half-life of 17 days at 37 degrees C. The inhibited complex shows a 31P NMR spectrum which is very different from that which would arise from a mixture of the free inhibitor and ATP. Four well-resolved lines were observed: two (at -8 and -14 ppm) are assignable as the phosphates of ADP, the third is assignable to an inhibitor resonance (at 53 ppm) that shifts by approximately 19 ppm on binding, and the fourth is assignable to a resonance (at -3 ppm) due to a polyphosphate or phosphate ester moiety. At rotational resonance the spectrum shows evidence for strong dipolar couplings between the phosphinate phosphorus and a phosphate ester species. The dipolar coupling between the phosphorus signals at 53 and -3 ppm was measured at rotational resonance by use of numerical simulations of both the line shape of the signal and the profile of magnetization transfer between the two sites. The measured coupling, 1.0 +/- 0.2 kHz, indicates that the two species are bridged in a P-O-P linkage, with a P-P through-space distance of 2.7 +/- 0.2 A. This proves that the mechanism of inactivation involves phosphorylation of the enzyme-bound inhibitor by ATP to form a phosphoryl-phosphinate adduct.  相似文献   

10.
The nonenzymatic and enzymatic formation of reactive oxygen species (ROS) from LY83583 (6-anilino-5,8-quinolinequinone) was investigated by electron paramagnetic resonance (EPR) spectroscopy. In the presence of thiol compounds such as glutathione and L-cysteine, LY83583 underwent a one-electron reduction due to low redox potential (-0.3+/-0.01 V vs. SCE), followed by formation of LY83583 semiquinone anion radical. This species was characterized by EPR spectroscopy under an argon atmosphere at neutral pH. Under an aerobic condition, this species interacts with molecular oxygen to form a superoxide anion radical. GSH-conjugated LY83583 was also identified by NMR and FAB-MS. When LY83583 was applied to PC12 cells, ROS formation was completely inhibited by both the flavoenzyme inhibitor DPI and the DT-diaphorase inhibitor dicumarol. On the other hand, ROS generation occurred independent of intracellular GSH level. These results indicate that LY83583 can generate ROS both enzymatically and nonenzymatically, although the enzymatic formation is dominant over the nonenzymatic system in PC12 cells.  相似文献   

11.
In this study, evidence is given that a number of isolated coupled plant mitochondria (from durum wheat, bread wheat, spelt, rye, barley, potato, and spinach) can take up externally added K(+) ions. This was observed by following mitochondrial swelling in isotonic KCl solutions and was confirmed by a novel method in which the membrane potential decrease due to externally added K(+) is measured fluorimetrically by using safranine. A detailed investigation of K(+) uptake by durum wheat mitochondria shows hyperbolic dependence on the ion concentration and specificity. K(+) uptake electrogenicity and the non-competitive inhibition due to either ATP or NADH are also shown. In the whole, the experimental findings reported in this paper demonstrate the existence of the mitochondrial K(+)(ATP) channel in plants (PmitoK(ATP)). Interestingly, Mg(2+) and glyburide, which can inhibit mammalian K(+) channel, have no effect on PmitoK(ATP). In the presence of the superoxide anion producing system (xanthine plus xanthine oxidase), PmitoK(ATP) activation was found. Moreover, an inverse relationship was found between channel activity and mitochondrial superoxide anion formation, as measured via epinephrine photometric assay. These findings strongly suggest that mitochondrial K(+) uptake could be involved in plant defense mechanism against oxidative stress due to reactive oxygen species generation.  相似文献   

12.
Binding of ligands to the active site Fe3+ of protocatechuate 3,4-dioxygenase is investigated using EPR-detected transferred hyperfine coupling from isotopically labeled substrates, inhibitors, and cyanide. Broadening is observed in EPR resonances from the anaerobic enzyme complex with homoprotocatechuate (3,4-dihydroxyphenylacetate), a slow substrate, enriched with 17O (I = 5/2) in either the 3-OH or the 4-OH group. This shows that this substrate binds directly to the Fe3+ and strongly suggests that an iron chelate can be formed. Cyanide is known to bind to the enzyme in at least two steps, forming first a high spin and then a low spin complex (Whittaker, J. W., and Lipscomb, J. D. (1984) J. Biol. Chem. 259, 4487-4495). Hyperfine broadening from [13C]cyanide (I = 1/2) is observed in the EPR spectra of both complexes, showing that cyanide is an Fe3+ ligand in each case. Cyanide binding is also at least biphasic in the presence of protocatechuate (PCA). The initial high spin enzyme-PCA-cyanide complex forms rapidly and exhibits a unique EPR spectrum. Broadening from PCA enriched with 17O in either the 3-OH or the 4-OH group is detected showing that PCA binds to the iron, probably as a chelate complex. In contrast, no broadening from [13C]cyanide is detected for this complex suggesting that cyanide binds at a site away from the Fe3+. Steady state kinetic measurements of cyanide inhibition of PCA turnover are consistent with two rapidly exchanging cyanide binding sites that inhibit PCA binding and which can be simultaneously occupied. Formation of the nearly irreversible, low spin enzyme-PCA-cyanide complex is competitively inhibited by PCA. Transient kinetics of the formation of this complex are second order in cyanide implying that two cyanides bind. Broadening in the EPR spectrum of this complex is detected from [13C]cyanide, but not from [17O]PCA, suggesting that PCA is displaced. This study provides the first direct evidence for chelation of the active site Fe3+ by substrates and for a small molecule binding site away from the iron in intradiol dioxygenases.  相似文献   

13.
A mononuclear (1:1) copper complex of curcumin, a phytochemical from turmeric, was synthesized and examined for its superoxide dismutase (SOD) activity. The complex was characterized by elemental analysis, IR, NMR, UV-VIS, EPR, mass spectroscopic methods and TG-DTA, from which it was found that a copper atom is coordinated through the keto-enol group of curcumin along with one acetate group and one water molecule. Cyclic voltammetric studies of the complex showed a reversible Cu(2+)/Cu(+) couple with a potential of 0.402 V vs NHE. The Cu(II)-curcumin complex is soluble in lipids and DMSO, and insoluble in water. It scavenges superoxide radicals with a rate constant of 1.97 x 10(5) M(-1) s(-1) in DMSO determined by stopped-flow spectrometer. Subsequent to the reaction with superoxide radicals, the complex was found to be regenerated completely, indicating catalytic activity in neutralizing superoxide radicals. Complete regeneration of the complex was observed, even when the stoichiometry of superoxide radicals was 10 times more than that of the complex. This was further confirmed by EPR monitoring of superoxide radicals. The SOD mimicking activity of the complex was determined by xanthine/xanthine oxidase assay, from which it has been found that 5 microg of the complex is equivalent to 1 unit of SOD. The complex inhibits radiation-induced lipid peroxidation and shows radical-scavenging ability. It reacts with DPPH radicals with rate constant 10 times less than that of curcumin. Pulse radiolysis-induced one-electron oxidation of the complex by azide radicals in TX-100 micellar solutions produced strongly absorbing ( approximately 500 nm) phenoxyl radicals, indicating that the phenolic moiety of curcumin remained intact on complexation with copper. The results confirm that the new Cu(II)-curcumin complex possesses SOD activity, free radical neutralizing ability, and antioxidant potential. Quantum chemical calculations with density functional theory have been performed to support the experimental observations.  相似文献   

14.
In the presence of cyanide and various respiratory substrates (succinate or pyruvate + malate) addition of high concentrations of lucigenin (400 microM; Luc2+) to rat liver mitochondria can induce a short-term flash of high amplitude lucigenin-dependent chemiluminescence (LDCL). Under conditions of cytochrome oxidase inhibition by cyanide the lucigenin-induced cyanide-resistant respiration (with succinate as substrate) was not inhibited by uncouplers (FCCP) and oligomycin. Increase in transmembrane potential (Deltaphi) value by stimulating F0F1-ATPase functioning (induced by addition of MgATP to the incubation medium) caused potent stimulation of the rate of cyanide-resistant respiration. At high Deltaphi values (in the presence of MgATP) cyanide resistant respiration of mitochondria in the presence of succinate or malate with pyruvate was insensitive to tenoyltrifluoroacetone (TTFA) or rotenone, respectively. However, in both cases respiration was effectively inhibited by myxothiazol or antimycin A. Mechanisms responsible for induction of LDCL and cyanide resistant mitochondrial respiration differ. In contrast to cyanide-resistant respiration, generation of LDCL signal, that was suppressed only by combined addition of Complex III inhibitors, antimycin A and myxothiazol, is a strictly potential-dependent process. It is observed only under conditions of high Deltaphi value generated by F0F1-ATPase functioning. The data suggest lucigenin-induced intensive generation of superoxide anion in mitochondria. Based on results of inhibitor analysis of cyanide-resistant respiration and LDCL, a two-stage mechanism of autooxidizable lucigenin cation-radical (Luc*+) formation in the respiratory chain is proposed. The first stage involves two-electron Luc2+ reduction by Complexes I and II. The second stage includes one-electron oxidation of reduced lucigenin (Luc(2e)). Reactions of Luc(2e) oxidation involve coenzyme Q-binding sites of Complex III. This results in formation of autooxidizable Luc*+ and superoxide anion generation. A new scheme for lucigenin-dependent electron pathways is proposed. It includes formation of fully reduced form of lucigenin and two-electron-transferring shunts of the respiratory chain. Lucigenin-induced activation of superoxide anion formation in mitochondria is accompanied by increase in ion permeability of the inner mitochondrial membrane.  相似文献   

15.
With application of EPR and 1H NMR techniques genistein interaction with liposomes formed with egg yolk lecithin and with erythrocyte membranes was assessed. The present study addressed the problem of genistein localization and its effects on lipid membrane fluidity and protein conformation. The range of microscopic techniques was employed to study genistein effects on HeLa cells and human erythrocytes. Moreover, DPPH bioassay, superoxide anion radical test and enzymatic measurements were performed in HeLa cells subjected to genistein. The gathered results from both EPR and NMR techniques indicated strong ordering effect of genistein on the motional freedom of lipids in the head group region and the adjacent hydrophobic zone in liposomal as well as in red blood cell membranes. EPR study of human ghost showed also the changes in the erythrocyte membrane protein conformation. The membrane effects of genistein were correlated with the changes in internal membranes arrangement of HeLa cells as it was noticed using transmission electron microscopic and fluorescent techniques. Scanning electron and light microscopy methods showed that one of the aftermaths of genistein incorporation into membranes was creation of echinocytic form of the red blood cells with reduced diameter. Genistein improved redox status of HeLa cells treated with H2O2 by lowering radicals' level.  相似文献   

16.
Abstract

As superoxide anion is of keen interest in biomedical research, it is highly desirable to have a technique allowing its detection sensitively and specifically in biological media. If electron paramagnetic resonance (EPR) techniques and probes have been individually described in the literature, there is actually no comparison of these techniques in the same conditions that may help guiding researchers for selecting the most appropriate approach. The aim of the present study was to compare different EPR strategies in terms of sensitivity and specificity to detect superoxide (vs. hydroxyl radical). Three main classes of EPR probes were used, including paramagnetic superoxide scavengers (such as nitroxides TEMPOL and mitoTEMPO as well as trityl CT-03), a spin trap (DIPPMPO), and diamagnetic superoxide scavengers (such as cyclic hydroxylamines CMH and mitoTEMPO-H). We analysed the reactivity of the different probes in the presence of a constant production of superoxide or hydroxyl radical in buffers and in cell lysates. We also assessed the performances of the different probes to detect superoxide produced by RAW264.7 macrophages stimulated by phorbol 12-myristate 13-acetate. In our conditions and models, we found that nitroxides were not specific for superoxide. CT-03 was specific, but the sensitivity of detection was low. Comparatively, we found that nitrone DIPPMPO and cyclic hydroxylamine CMH were good candidates to sensitively and specifically detect superoxide in complex biological media, CMH offering the best sensitivity.  相似文献   

17.
18.
Owing to the significance of inhibitory effect of vanadium ion to Na, K-ATPase, a complex formation between ATP and vanadyl ion was investigated over a wide pH range. Formations of two types of complex are observed : a blue complex formed in acidic and neutral pH regions and a green complex at higher than pH 11. On the basis of the results on potentiometric titration, optical and EPR spectra and empirical bonding coefficients calculated from the EPR parameters, two characteristic types of coordination environment are proposed for the ATP-vanadyl complex : a blue 1:1 complex is a relatively weak complex including a phosphate-vanadyl coordination mode, whereas a green 2:1 complex is much stronger complex including a vanadyl-oxygen coordination contributed from a deprotonated hydroxyl group of the ribose moiety of ATP.  相似文献   

19.
Highly purified iron superoxide dismutase was obtained from Escherichia coli B using a modification of the procedure of Yost and Jridovich (Yost, F. J., Jr., and Fridovich, I. (1973) J. Biol. Chem. 248, 4905-4908). The protein contained 1.8 +/- 0.2 atoms of iron per 38,700 g of protein. We have found that cyanide does not bind to the Fe3+ ion of iron dismutase but fluoride and azide have moderately large binding constants. Optical and electron paramagnetic resonance (EPR) measurements suggested that 2 fluoride ions could associate with each iron atom with the first having an association constant of approximately 520 M-1 and the second with an estimated value of 24 M-1. Activity measurements yielded an inhibition constant for fluoride of 30 M-1. At room temperature only one azide binds to the Fe3+ (K = 760 M-1) and this does not interfere with superoxide dismutase activity. Upon freezing solutions of iron superoxide dismutase in the presence of excess azide their color changes from yellow to pink. Combined EPR and optical titrations with azide suggest the presence of two binding sites on Fe3+ with only the first being occupied at room temperature and the second binding azide only upon freezing the solution. The results suggest that each Fe3+ ion of this superoxide dismutase has two coordination positions available for interaction with solute molecules but only one is necessary for catalysis of the superoxide dismutation reaction. The EPR, optical, and circular dichroism spectra of the native protein and the various fluoride and azide complexes are presented.  相似文献   

20.
The present study investigated the protective effects of Ginkgo biloba extract (EGb 761) on rat liver mitochondrial damage induced by in vitro anoxia/reoxygenation. Anoxia/reoxygenation was known to impair respiratory activities and mitochondrial oxidative phosphorylation efficiency. ADP/O (2.57 +/- 0.11) decreased after anoxia/reoxygenation (1.75 +/- 0.09, p < .01), as well as state 3 and uncoupled respiration (-20%, p < .01), but state 4 respiration increased (p < .01). EGb 761 (50-200 microg/ml) had no effect on mitochondrial functions before anoxia, but had a specific dose-dependent protective effect after anoxia/reoxygenation. When mitochondria were incubated with 200 microg/ml EGb 761, they showed an increase in ADP/O (2.09 +/- 0.14, p < .05) and a decrease in state 4 respiration (-22%) after anoxia/reoxygenation. In EPR spin-trapping measurement, EGb 761 decreased the EPR signal of superoxide anion produced during reoxygenation. In conclusion, EGb 761 specially protects mitochondrial ATP synthesis against anoxia/reoxygenation injury by scavenging the superoxide anion generated by mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号