首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Inhibitory Ly49 receptors expressed on NK cells provide a mechanism for tolerance to normal self tissues. The immunoregulatory tyrosine-based inhibitory motifs present in some Ly49s are able to transmit an inhibitory signal upon ligation by MHC class I ligands. In our system, as well as others, mice transgenic for inhibitory Ly49 receptors express these receptors on both NK and T cells. FVB (H2(q)) mice transgenic for the B6 strain Ly49I (Ly49I(B6)) express the inhibitory Ly49 receptor on the surface of both T and NK cells. Although Ly49I functions to prevent NK-mediated rejection of H2(b) donor bone marrow cells in this transgenic mouse strain, the T cells do not appear to be affected by the expression of the Ly49I transgene. FVB.Ly49I T cells have normal proliferative capabilities both in vitro and in vivo in response to the Ly49I ligand, H2(b). In vivo functional T cell assays were also done, showing that transgenic T cells were not functionally affected. T cells in these mice also appear to undergo normal T cell development and activation. Only upon stimulation with suboptimal doses of anti-CD3 in the presence of anti-Ly49I is T cell proliferation inhibited. These data are in contrast with findings in Ly49A, and Ly49G2 receptor transgenic models. Perhaps Ly49I-H2(b) interactions are weaker or of lower avidity than Ly49A-H-2D(d) interactions, especially in T cells.  相似文献   

3.
Ly49D is a natural killer (NK) cell activation receptor that is responsible for differential mouse inbred strain-determined lysis of Chinese hamster ovary (CHO) cells. Whereas C57BL/6 NK cells kill CHO, BALB/c-derived NK cells cannot kill because they lack expression of Ly49D. Furthermore, the expression of Ly49D, as detected by monoclonal antibody 4E4, correlates well with CHO lysis by NK cells from different inbred strains. However, one discordant mouse strain was identified; C57L NK cells express the mAb 4E4 epitope but fail to lyse CHO cells. Herein we describe a Ly49 molecule isolated from C57L mice that is recognized by mAb 4E4 (anti-Ly49D). Interestingly, this molecule shares extensive similarity to Ly49D(B6) in its extracellular domain, but its cytoplasmic and transmembrane domains are identical to the inhibitory receptor Ly49A(B6), including a cytoplasmic ITIM. This molecule bears substantial overall homology to the previously cloned Ly49O molecule from 129 mice the serologic reactivity and function of which were undefined. Cytotoxicity experiments revealed that 4E4(+) LAK cells from C57L mice failed to lyse CHO cells and inhibited NK cell function in redirected inhibition assays. MHC class I tetramer staining revealed that the Ly49O(C57L)-bound H-2D(d) and lysis by 4E4(+) C57L LAK cells is inhibited by target H-2D(d). The structural basis for ligand binding was also examined in the context of the recent crystallization of a Ly49A-H-2D(d) complex. Therefore, this apparently "chimeric" Ly49 molecule serologically resembles an NK cell activation receptor but functions as an inhibitory receptor.  相似文献   

4.
Osteoclasts, multinucleated cells that resorb bone, play a key role in bone remodeling. Although immunoreceptor tyrosine-based activation motif (ITAM)-mediated signaling is critical for osteoclast differentiation, the significance of immunoreceptor tyrosine-based inhibitory motif (ITIM) has not been well understood. Here we report the function of Ly49Q, an Ly49 family member possessing an ITIM motif, in osteoclastogenesis. Ly49Q is selectively induced by receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL) stimulation in bone marrow-derived monocyte/macrophage precursor cells (BMMs) among the Ly49 family of NK receptors. The knockdown of Ly49Q resulted in a significant reduction in the RANKL-induced formation of tartrate-resistance acid phosphatase (TRAP)-positive multinucleated cells, accompanied by a decreased expression of osteoclast-specific genes such as Nfatc1, Tm7sf4, Oscar, Ctsk, and Acp5. Osteoclastogenesis was also significantly impaired in Ly49Q-deficient cells in vitro. The inhibitory effect of Ly49Q-deficiency may be explained by the finding that Ly49Q competed for the association of Src-homology domain-2 phosphatase-1 (SHP-1) with paired immunoglobulin-like receptor-B (PIR-B), an ITIM-bearing receptor which negatively regulates osteoclast differentiation. Unexpectedly, Ly49Q deficiency did not lead to impaired osteoclast formation in vivo, suggesting the existence of a compensatory mechanism. This study provides an example in which an ITIM-bearing receptor functions as a positive regulator of osteoclast differentiation.  相似文献   

5.
The Ly49 family of genes encode NK cell receptors that bind class I MHC Ags and transmit negative signals if the cytoplasmic domains have immunoregulatory tyrosine-based inhibitory motifs (ITIMs). 5E6 mAbs recognize Ly49C and Ly49I receptors and depletion of 5E6+ NK cells prevents rejection of allogeneic or parental-strain H2d bone marrow cell (BMC) grafts. To determine the function of the Ly49I gene in the rejection of BMC grafts, we transfected fertilized eggs of FVB mice with a vector containing DNA for B6 strain Ly49I (Ly49IB6). Ly49IB6 is ITIM+ and is recognized by 5E6 as well as Ly49I-specific 8H7 mAbs. Normal FVB H2q mice reject H2b but not H2d BMC allografts, and the rejection of H2b BMC was inhibited partially by anti-NK1.1 and completely by anti-asialo GM1, but not by anti-CD8, Abs. In FVB mice, NK1.1 is expressed on only 60% NK cells. FVB. Ly49IB6 hosts failed to reject H2d or H2b BMC, but did reject class I-deficient TAP-1-/- BMC, indicating that NK cells were functional. Nondepleting doses of anti-Ly49I Abs reversed the acceptance of H2b BMC by FVB.Ly49IB6 mice. FVB.Ly49IB6+/- mice were crossed and back-crossed with 129 mice-H2b, 5E6-, poor responders to H2d BMC grafts. While transgene-negative H2b/q F1 or first-generation back-crossed mice rejected H2b marrow grafts (hybrid resistance), transgene-positive mice did not. Thus B6 strain Ly49I receptors transmit inhibitory signals from H2b MHC class I molecules. Moreover, Ly49IB6 has no positive influence on the rejection of H2d allografts.  相似文献   

6.
NK cells are implicated in antiviral responses, bone marrow transplantation and tumor immunosurveillance. Their function is controlled, in part, through the Ly49 family of class I binding receptors. Inhibitory Ly49s suppress signaling, while activating Ly49s (i.e., Ly49D) activate NK cells via the DAP12 signaling chain. Activating Ly49 signaling has been studied primarily in C57BL/6 mice, however, 129 substrains are commonly used in gene-targeting experiments. In this study, we show that in contrast to C57BL/6 NK cells, cross-linking of DAP12-coupled receptors in 129/J mice induces phosphorylation of DAP12 but not calcium mobilization or cytokine production. Consistent with poor-activating Ly49 function, 129/J mice reject bone marrow less efficiently than C57BL/6 mice. Sequence analysis of receptors and DAP12 suggests no structural basis for inactivity, and both the 129/J and C57BL/6 receptors demonstrate normal function in a reconstituted receptor system. Most importantly, reconstitution of Ly49D in 129/J NK cells demonstrated that the signaling deficit is within the NK cells themselves. These unexpected findings bring into question any NK analysis of 129/J, 129Sv, or gene-targeted mice derived from these strains before complete backcrossing, and provide a possible explanation for the differences observed in the immune response of 129 mice in a variety of models.  相似文献   

7.
Activating and inhibitory NK receptors regulate the development and effector functions of NK cells via their ITAM and ITIM motifs, which recruit protein tyrosine kinases and phosphatases, respectively. In the T cell lineage, inhibitory Ly49 receptors are expressed by a subset of activated T cells and by CD1d-restricted NKT cells, but virtually no expression of activating Ly49 receptors is observed. Using mice transgenic for the activating receptor Ly49D and its associated ITAM signaling DAP12 chain, we show in this article that Ly49D-mediated ITAM signaling in immature thymocytes impairs development due to a block in maturation from the double negative (DN) to double positive (DP) stages. A large proportion of Ly49D/DAP12 transgenic thymocytes were able to bypass the pre-TCR checkpoint at the DN3 stage, leading to the appearance of unusual populations of DN4 and DP cells that lacked expression of intracellular (ic) TCRβ-chain. High levels of CD5 were expressed on ic TCRβ(-) DN and DP thymocytes from Ly49D/DAP12 transgenic mice, further suggesting that Ly49D-mediated ITAM signaling mimics physiological ITAM signaling via the pre-TCR. We also observed unusual ic TCRβ(-) single positive thymocytes with an immature CD24(high) phenotype that were not found in the periphery. Importantly, thymocyte development was completely rescued by expression of an Ly49A transgene in Ly49D/DAP12 transgenic mice, indicating that Ly49A-mediated ITIM signaling can fully counteract ITAM signaling via Ly49D/DAP12. Collectively, our data indicate that inappropriate ITAM signaling by activating NK receptors on immature thymocytes can subvert T cell development by bypassing the pre-TCR checkpoint.  相似文献   

8.
The Ly49H activating receptor on C57BL/6 (B6) NK cells plays a key role in early resistance to murine cytomegalovirus (MCMV) infection through specific recognition of the MCMV-encoded MHC class I-like molecule m157 expressed on infected cells. The m157 molecule is also recognized by the Ly49I inhibitory receptor from the 129/J mouse strain. The m157 gene is highly sequence variable among MCMV isolates, with many m157 variants unable to bind Ly49H(B6). In this study, we have sought to define if m157 variability leads to a wider spectrum of interactions with other Ly49 molecules and if this modifies host susceptibility to MCMV. We have identified novel m157-Ly49 receptor interactions, involving Ly49C inhibitory receptors from B6, BALB/c, and NZB mice, as well as the Ly49H(NZB) activation receptor. Using an MCMV recombinant virus in which m157(K181) was replaced with m157(G1F), which interacts with both Ly49H(B6) and Ly49C(B6), we show that the m157(G1F)-Ly49C interactions cause no apparent attenuating effect on viral clearance in B6 mice. Hence, when m157 can bind both inhibitory and activation NK cell receptors, the outcome is still activation. Thus, these data indicate that whereas m157 variants predominately interact with inhibitory Ly49 receptors, these interactions do not profoundly interfere with early NK cell responses.  相似文献   

9.
A novel murine NK cell-reactive mAb, AT8, was generated. AT8 recognizes Ly49G from 129/J, BALB/c, and related mouse strains, but does not bind to Ly49G(B6). Costaining with AT8 and a Ly49G(B6)-restricted Ab (Cwy-3) provides the first direct evidence that Ly49G protein is expressed from both alleles on a significant proportion of NK cells from four different types of F(1) hybrid mice. The observed level of biallelic Ly49G expression reproducibly followed the product rule in both freshly isolated and cultured NK cells. Surprisingly, the percentage of NK cells expressing both Ly49G alleles could be dramatically increased in vitro and in vivo through IL-2R- and IFN receptor-dependent signaling pathways, respectively. Unexpectedly, Ly49G(B6+) NK cells in an H-2(d), but not H-2(b), background were more likely to lyse D(d+) and Chinese hamster ovary tumor cells than Ly49G(BALB/129+) NK cells. Furthermore, Ly49G(B6+) NK cells also proliferated to a higher degree in response to poly(I:C) than NK cells expressing a non-Ly49G(B6) allele in an H-2(d), but not H-2(b), background. These results suggest that Ly49G(B6) has a lower affinity for H-2D(d) than Ly49G(BALB/129), and the genetic background calibrates the responsiveness of NK cells bearing self-specific Ly49. Other H-2D(d) receptors on the different Ly49G(+) NK cell subsets were unequally coexpressed, possibly explaining the disparate responses of Ly49G(B6+) NK cells in different hybrid mice. These data indicate that the stochastic mono- and biallelic expression of divergent Ly49G alleles increases the range of MHC affinities and the functional potential in the total NK cell population of heterozygous mice.  相似文献   

10.
MHC class I molecules strongly influence the phenotype and function of mouse NK cells. NK cell-mediated lysis is prevented through the interaction of Ly49 receptors on the effector cell with appropriate MHC class I ligands on the target cell. In addition, host MHC class I molecules have been shown to modulate the in vivo expression of Ly49 receptors. We have previously reported that H-2Dd and H-2Dp MHC class I molecules are able to protect (at the target cell level) from NK cell-mediated lysis and alter the NK cell specificity (at the host level) in a similar manner, although the mechanism behind this was not clear. In this study, we demonstrate that the expression of both H-2Dd and H-2Dp class I molecules in target cells leads to inhibition of B6 (H-2b)-derived Ly49A+ NK cells. This inhibition could in both cases be reversed by anti-Ly49A Abs. Cellular conjugate assays showed that Ly49A-expressing cells indeed bind to cells expressing H-2Dp. The expression of Ly49A and Ly49G2 receptors on NK cells was down-regulated in H-2Dp-transgenic (B6DP) mice compared with nontransgenic B6 mice. However, B6DP mice expressed significantly higher levels of Ly49A compared with H-2Dd-transgenic (D8) mice. We propose that both H-2Dd and H-2Dp MHC class I molecules can act as ligands for Ly49A.  相似文献   

11.
The murine Ly49 gene family is functionally analogous to the human killer cell Ig-like receptor (KIR) family of class I major histocompatibility complex (MHC) receptors. The number of KIR genes varies dramatically between individuals; however, the organization of the Ly49 genes has only been determined for the C57BL/6 (B6) mouse. The organization of the 129 Ly49 loci was determined from a BAC contig map by PCR and Southern blot analysis. In addition to the 10 Ly49 genes known from previous studies of the 129/J strain, 8 new genes were localized to the 129 Ly49 cluster. A gene order of Ly49q(1), e, (v, q(2)), e/c(2), l/r, s, t, e/c(1), r, u, u/i, i(1), g, p/d, (i(2), p), and o was determined. The 129 Ly49 gene cluster is predicted to span approximately 600 kb. These results indicate that Ly49 gene numbers can be significantly different between inbred mouse strains, analogous to the haplotype differences observed in the human KIR genes.  相似文献   

12.
Murine NK cells express inhibitory receptors belonging to the C-type lectin-like (Ly-49, CD94/NKG2) and Ig superfamily-related (gp49) receptors. The murine gp49B receptor displays structural homology with human killer inhibitory receptors, and was previously identified to be a receptor on mast cells and activated NK cells. The gp49B receptor is highly related to gp49A, a receptor with unknown function. In this study, using a novel mAb produced against soluble gp49B molecules that cross-reacts with gp49A, we examined the cellular distribution and function of these receptors. gp49 is constitutively expressed on cells of the myeloid lineage throughout development, as well as on mature cells. Importantly, gp49 is not expressed on spleen- and liver-derived lymphocytes, including NK cells, but its expression is induced in vitro on NK cells following IL-2 stimulation, or in vivo by infection with murine CMV. Molecular studies revealed that both the immunoreceptor tyrosine-based inhibitory motif-containing gp49B as well as immunoreceptor tyrosine-based inhibitory motif-less gp49A receptors are up-regulated on NK cells following murine CMV infection. When co-cross-linked with NK1.1, gp49B can inhibit NK1.1-mediated cytokine release by NK cells. Taken together, these studies demonstrate that the expression of gp49B on NK cells is regulated, providing the first example of an in vivo activation-induced NK cell inhibitory receptor, in contrast to the constitutively expressed Ly49 family.  相似文献   

13.
Natural Killer (NK) cells are crucial in early resistance to murine cytomegalovirus (MCMV) infection. In B6 mice, the activating Ly49H receptor recognizes the viral m157 glycoprotein on infected cells. We previously identified a mutant strain (MCMVG1F) whose variant m157 also binds the inhibitory Ly49C receptor. Here we show that simultaneous binding of m157 to the two receptors hampers Ly49H-dependent NK cell activation as Ly49C-mediated inhibition destabilizes NK cell conjugation with their targets and prevents the cytoskeleton reorganization that precedes killing. In B6 mice, as most Ly49H+ NK cells do not co-express Ly49C, the overall NK cell response remains able to control MCMVm157G1F infection. However, in B6 Ly49C transgenic mice where all NK cells express the inhibitory receptor, MCMV infection results in altered NK cell activation associated with increased viral replication. Ly49C-mediated inhibition also regulates Ly49H-independent NK cell activation. Most interestingly, MHC class I regulates Ly49C function through cis-interactions that mask the receptor and restricts m157 binding. B6 Ly49C Tg, β2m ko mice, whose Ly49C receptors are unmasked due to MHC class I deficient expression, are highly susceptible to MCMVm157G1F and are unable to control a low-dose infection. Our study provides novel insights into the mechanisms that regulate NK cell activation during viral infection.  相似文献   

14.
The Ly49 family of lectin-like receptors in rodents includes both stimulatory and inhibitory members. Although NK alloreactivity in mice is regulated primarily by inhibitory Ly49 receptors, in rats activating Ly49 receptors are equally important. Previous studies have suggested that activating rat Ly49 receptors are triggered by polymorphic ligands encoded within the nonclassical class Ib region of the rat MHC, RT1-CE/N/M, while inhibitory Ly49 receptors bind to widely expressed classical class Ia molecules encoded from the RT1-A region. To further investigate rat Ly49-mediated regulation of NK alloreactivity, we report in this study the identification and characterization of two novel paired Ly49 receptors that we have termed Ly49 inhibitory receptor 5 (Ly49i5) and Ly49 stimulatory receptor 5 (Ly49s5). Using a new mAb (mAb Fly5), we showed that Ly49i5 is an inhibitory receptor that recognizes ligands encoded within the class Ib region of the u and l haplotypes, while the structurally related Ly49s5 is an activating receptor that recognizes class Ib ligands of the u haplotype. Ly49s5 is functionally expressed in the high NK-alloresponder PVG strain, but not in the low alloresponder BN strain, in which it is a pseudogene. Ly49s5 is hence not responsible for the striking anti-u NK alloresponse previously described in BN rats (haplotype n), which results from repeated alloimmunizations with u haplotype cells. The present studies support the notion of a complex regulation of rat NK alloreactivity by activating and inhibitory Ly49 members, which may be highly homologous in the extracellular region and bind similar class Ib-encoded target ligands.  相似文献   

15.
16.
The Ly49 family of natural killer (NK) cell receptors is encoded by a polygenic genetic locus. Allelic forms have been described and their expression appears to be regulated. The best-characterized Ly49 molecule, the C57BL/6 form of Ly49A, is an NK cell inhibitory receptor that binds H2Dd. To determine whether differences between Ly49a alleles may have functional consequences, allelic variants of Ly49a were cloned from several inbred mouse strains. Stable transfectants expressing each Ly49a allelic variant were generated and tested for reactivity with a panel of monoclonal antibodies (mAbs A1, JR9.318, YE1/32, and YE1/48) that recognize the C57BL/6 form of Ly49A. Binding to H2Dd was also assessed using fluorescently labeled H2Dd tetramers. Furthermore, cytotoxicity assays were performed using anti-Ly49A mAb-separated interleukin-2-activated NK cells. We show that despite binding to fluorescently labeled H2Dd tetramers, the Ly49A+ NK cells from representative mouse strains displayed significantly different degrees of inhibition with H2Dd targets. These results can be interpreted in the light of recent structural data on the Ly49A-H2Dd complex. Thus, the Ly49 family displays functionally significant allelic polymorphism which adds to the repertoire of NK cell receptors.  相似文献   

17.
The Ly49A NK cell receptor interacts with MHC class I (MHC-I) molecules on target cells and negatively regulates NK cell-mediated target cell lysis. We have recently shown that the MHC-I ligand-binding capacity of the Ly49A NK cell receptor is controlled by the NK cells' own MHC-I. To see whether this property was unique to Ly49A, we have investigated the binding of soluble MHC-I multimers to the Ly49 family receptors expressed in MHC-I-deficient and -sufficient C57BL/6 mice. In this study, we confirm the binding of classical MHC-I to the inhibitory Ly49A, C and I receptors, and demonstrate that detectable MHC-I binding to MHC-I-deficient NK cells is exclusively mediated by these three receptors. We did not detect significant multimer binding to stably transfected or NK cell-expressed Ly49D, E, F, G, and H receptors. Yet, we identified the more distantly related Ly49B and Ly49Q, which are not expressed by NK cells, as two novel MHC-I receptors in mice. Furthermore, we show using MHC-I-sufficient mice that the NK cells' own MHC-I significantly masks the Ly49A and Ly49C, but not the Ly49I receptor. Nevertheless, Ly49I was partly masked on transfected tumor cells, suggesting that the structure of Ly49I is compatible in principal with cis binding of MHC-I. Finally, masking of Ly49Q by cis MHC-I was minor, whereas masking of Ly49B was not detected. These data significantly extend the MHC-I specificity of Ly49 family receptors and show that the accessibility of most, but not all, MHC-I-binding Ly49 receptors is modulated by the expression of MHC-I in cis.  相似文献   

18.
The BALB/c inbred mouse strain is one of the most commonly used for immunological studies and is an animal model for natural killer (NK) cell function during pathogen infection and tumorigenesis. To understand better NK cell function in this strain, the complete BALB/c Ly49 haplotype was deduced. The BALB/c haplotype spans approximately 300 kb with a gene order and content of Ly49q, e, x, i, g, l, c, and a. Functional BALB/c alleles of Ly49q and e were isolated and found to be conserved. The BALB/c cluster represents a minimal haplotype as it contains many fewer functional genes than the 129 or B6 mouse strains. The small number of BALB/c Ly49 genes is due mainly to an absent group of genes (relative to B6 and 129) between Ly49x and i, although other smaller deletions are present. These gene deletions provide a genetic basis for the lack of certain Ly49-associated NK cell functions in this mouse strain. Finally, the mapping of a third Ly49 haplotype reveals that the basic murine Ly49 repertoire is composed of three framework gene pairs (Ly49q and e, Ly49i and g, and Ly49c and a) that are interspersed with variable numbers of strain-specific Ly49.  相似文献   

19.
 Nine genes belonging to the mouse Ly49 multigene family of natural killer cell receptors have been identified to date. Two of these genes, Ly49h and i, are very closely related to the well characterized Ly49c gene in the carbohydrate recognition domain. Here we show by Southern blotting that at least two additional new sequences exist in C57BL/6 mice that are also closely related to Ly49c in the carbohydrate recognition domain. Furthermore, in contrast to Ly49a, extensive variation in the arrangement and number of Ly49c–related genes in different mouse strains was observed. To characterize and localize the new Ly49c–related genes in C57BL/6 mice, we isolated and mapped genomic P1 clones hybridizing to an Ly49C exon 7 probe. Locations and the relative order of all Ly49 genes found within the clones was determined. We also used polymerase chain reaction to sequence exons 2, 4, and 7 from all genes. In this manner, we identified five new potential Ly49 genes which have been tentatively termed Ly49j-n. Ly49j, k, and n belong to the Ly49c–related subfamily, whereas Ly49l and Ly49m are most similar to Ly49d and g, respectively. Interestingly, the members of the Ly49c–related subfamily are not clustered as a unit but are interspersed among other Ly49 genes. These results illustrate the complex nature of the Ly49 gene family and should aid in the understanding of functions, such as the mediation of hybrid resistance, in which Ly49c–related genes play a role. Received: 10 December 1997 · Revised: 28 February 1998  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号