首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Brassicaceous seed meals are the residual materials remaining after the extraction of oil from seeds; these seed meals contain glucosinolates that potentially degrade to nematotoxic compounds upon incorporation into soil. This study compared the nematode-suppressive ability of four seed meals obtained from Brassica juncea 'Pacific Gold', B. napus 'Dwarf Essex' and 'Sunrise', and Sinapis alba 'IdaGold', against mixed stages of Pratylenchus penetrans and Meloidogyne incognita second-stage juveniles (J2). The brassicaceous seed meals were applied to soil in laboratory assays at rates ranging from 0.5 to 10.0% dry w/w with a nonamended control included. Nematode mortality was assessed after 3 days of exposure and calculated as percentage reduction compared to a nonamended control. Across seed meals, M. incognita J2 were more sensitive to the brassicaceous seed meals compared to mixed stages of P. penetrans. Brassica juncea was the most nematode-suppressive seed meal with rates as low as 0.06% resulting in > 90% suppression of both plant-parasitic nematodes. In general B. napus 'Sunrise' was the least nematode-suppressive seed meal. Intermediate were the seed meals of S. alba and B. napus 'Dwarf Essex'; 90% suppression was achieved at 1.0% and 5.0% S. alba and 0.25% and 2.5% B. napus 'Dwarf Essex', for M. incognita and P. penetrans, respectively. For B. juncea, seed meal glucosinolate-degradation products appeared to be responsible for nematode suppression; deactivated seed meal (wetted and heated at 70 °C for 48 hr) did not result in similar P. penetrans suppression compared to active seed meal. Sinapis alba seed meal particle size also played a role in nematode suppression with ground meal resulting in 93% suppression of P. penetrans compared with 37 to 46% suppression by pelletized S. alba seed meal. This study demonstrates that all seed meals are not equally suppressive to nematodes and that care should be taken when selecting a source of brassicaceous seed meal for plant-parasitic nematode management.  相似文献   

2.
A field trial was conducted to examine whether strip-tilled cover cropping followed by living mulch practice could suppress root-knot nematode (Meloidogyne incognita) and enhance beneficial nematodes and other soil mesofauna, while suppressing weeds throughout two vegetable cropping seasons. Sunn hemp (SH), Crotalaria juncea, and French marigold (MG), Tagetes patula, were grown for three months, strip-tilled, and bitter melon (Momordica charantia) seedlings were transplanted into the tilled strips; the experiment was conducted twice (Season I and II). Strip-tilled cover cropping with SH prolonged M. incognita suppression in Season I but not in Season II where suppression was counteracted with enhanced crop growth. Sunn hemp also consistently enhanced bacterivorous and fungivorous nematode population densities prior to cash crop planting, prolonged enhancement of the Enrichment Index towards the end of both cash crop cycles, and increased numbers of soil mesoarthropods. Strip-tilled cover cropping of SH followed by clipping of the living mulch as surface mulch also reduced broadleaf weed populations up to 3 to 4 weeks after cash crop planting. However, SH failed to reduce soil disturbance as indicated by the Structure Index. Marigold suppressed M. incognita efficiently when planted immediately following a M. incognita-susceptible crop, but did not enhance beneficial soil mesofauna including free-living nematodes and soil mesoarthropods. Strip-tilled cover cropping of MG reduced broadleaf weed populations prior to cash crop planting in Season II, but this weed suppression did not last beyond the initial cash crop cycle.  相似文献   

3.
Four pepper genotypes classified as resistant and four pepper genotypes classified as susceptible to several avirulent populations of M. incognita were compared for their reactions against a population of Meloidogyne incognita (Chitwood) Kofoid and White which had been shown to be virulent to resistant bell pepper (Capsicum annuum) in preliminary tests. The virulent population of M. incognita originated from a commercial bell pepper field in California. The resistant pepper genotypes used in all experiments were the Capsicum annuum cultivars Charleston Belle, Carolina Wonder, and Carolina Cayenne, and the C. chinense cultigen PA-426. The susceptible pepper genotypes used in the experiments were the C. annuum cultivars Keystone Resistant Giant, Yolo Wonder B, California Wonder, and the C. chinense cultigen PA-350. Root gall indices (GI) were ≥ 3.0 for all genotypes in both tests except for PA-426 (GI=2.57) in test 1 and 'Carolina Cayenne' (GI=2.83) in test 2. Numbers of eggs per gram fresh root weight ranged from 20,635 to 141,319 and reproductive indices ranged from 1.20 to 27.2 for the pepper genotypes in both tests, indicating that all eight pepper genotypes tested were susceptible to the M. incognita population used in these tests. The M. incognita population used in these studies overcame resistance conferred by the N gene in all resistant genotypes of both C. annuum and C. chinense.  相似文献   

4.
In a repeated greenhouse experiment, organic soil amendments were screened for effects on population density of soybean cyst nematode (SCN), Heterodera glycines, and soybean growth. Ten amendments at various rates were tested: fresh plant material of field pennycress, marigold, spring camelina, and Cuphea; condensed distiller’s solubles (CDS), ash of combusted CDS, ash of combusted turkey manure (TMA), marigold powder, canola meal, and pennycress seed powder. Soybeans were grown for 70 d in field soil with amendments and SCN eggs incorporated at planting. At 40 d after planting (DAP), many amendments reduced SCN egg population density, but some also reduced plant height. Cuphea plant at application rate of 2.9% (amendment:soil, w:w, same below), marigold plant at 2.9%, pennycress seed powder at 0.5%, canola meal at 1%, and CDS at 4.3% were effective against SCN with population reductions of 35.2%, 46.6%, 46.7%, 73.2%, and 73.3% compared with control, respectively. For Experiment 1 at 70 DAP, canola meal at 1% and pennycress seed powder at 0.5% reduced SCN population density 70% and 54%, respectively. CDS at 4.3%, ash of CDS at 0.2%, and TMA at 1% increased dry plant mass whereas CDS at 4.3% and pennycress seed powder at 0.1% reduced plant height. For Experiment 2 at 70 DAP, amendments did not affect SCN population nor plant growth. In summary, some amendments were effective for SCN management, but phytoxicity was a concern.  相似文献   

5.
The effects of combinations of organic amendments, phytochemicals, and plant-growth promoting rhizobacteria on tomato (Lycopersicon esculentum) germination, transplant growth, and infectivity of Meloidogyne incognita were evaluated. Two phytochemicals (citral and benzaldehyde), three organic amendments (pine bark, chitin, and hemicellulose), and three bacteria (Serratia marcescens, Brevibacterium iodinum, and Pseudomonas fluorescens) were assessed. Increasing rates of benzaldehyde and citral reduced nematode egg viability in vitro. Benzaldehyde was 100% efficacious as a nematicide against juveniles, whereas citral reduced juvenile viability to less than 20% at all rates tested. Benzaldehyde increased tomato seed germination and root weight, whereas citral decreased both. High rates of pine bark or chitin reduced plant growth but not seed germination, whereas low rates of chitin increased shoot length, shoot weight, and root weight; improved root condition; and reduced galling. The combination of chitin and benzaldehyde significantly improved tomato transplant growth and reduced galling. While each of the bacterial isolates contributed to increased plant growth in combination treatments, only Brevibacterium iodinum applied alone significantly improved plant growth.  相似文献   

6.
The antibiotic 2,4-diacetylphloroglucinol (DAPG), produced by some strains of Pseudomonas spp., is involved in suppression of several fungal root pathogens as well as plant-parasitic nematodes. The primary objective of this study was to determine whether Wood1R, a D-genotype strain of DAPG-producing P. fluorescens, suppresses numbers of both sedentary and migratory plant-parasitic nematodes. An experiment was conducted in steam-heated soil and included two seed treatments (with Wood1R and a control without the bacterium) and six plant-nematode combinations which were Meloidogyne incognita on cotton, corn, and soybean; M. arenaria on peanut; Heterodera glycines on soybean; and Paratrichodorus minor on corn. Wood 1R had no effect on final numbers of M. arenaria, P. minor, or H. glycines; however, final numbers of M. incognita were lower when seeds were treated with Wood1R than left untreated, and this reduction was consistent among host plants. Population densities of Wood1R were greater on the roots of corn than on the other crops, and the bacterium was most effective in suppressing M. incognita on corn, with an average reduction of 41%. Despite high population densities of Wood1R on corn, the bacterium was not able to suppress numbers of P. minor. When comparing the suppression of M. incognita on corn in natural and steam-heated soil, egg production by the nematode was suppressed in natural compared to steamed soil, but the presence of Wood1R did not result in additional suppression of the nematodes in the natural soil. These data indicate that P. fluorescens strain Wood1R has the capacity to inhibit some populations of plant-parasitic nematodes. However, consistent suppression of nematodes in natural soils seems unlikely.  相似文献   

7.
Tall fescue grass cultivars with or without endophytes were evaluated for their susceptibility to Meloidogyne incognita in the greenhouse. Tall fescue cultivars evaluated included, i) wild-type Jesup (E+, ergot-producing endophyte present), ii) endophyte-free Jesup (E-, no endophyte present), iii) Jesup (Max-Q, non-ergot producing endophyte) and iv) Georgia 5 (E+). Peach was included as the control. Peach supported greater (P ≤ 0.05) reproduction of M. incognita than all tall fescue cultivars. Differences in reproduction were not detected among the tall fescue cultivars and all cultivars were rated as either poor or nonhosts for M. incognita. Suppression of M. incognita reproduction was not influenced by endophyte status. In two other greenhouse experiments, host susceptibility of tall fescue grasses to two M. incognita isolates (BY-peach isolate and GA-peach isolate) did not appear to be related to fungal endophyte strain [i.e., Jesup (Max-Q; nontoxic endophyte strain) vs. Bulldog 51 (toxic endophyte strain)]. Host status of tall fescue varied with species of root-knot nematode. Jesup (Max-Q) was rated as a nonhost for M. incognita (BY-peach isolate and GA-peach isolate) and M. hapla, a poor host for M. javanica and a good host for M. arenaria. Bulldog 51 tall fescue was also a good host for M. arenaria and M. javanica, but not M. incognita. Jesup (Max-Q) tall fescue may have potential as a preplant control strategy for M. incognita and M. hapla in southeastern and northeastern United States, respectively.  相似文献   

8.

Background and Aims

Seed persistence in the soil under field conditions is an important issue for the maintenance of local plant populations and the restoration of plant communities, increasingly so in the light of rapidly changing land use and climate change. Whereas processes important for dispersal in space are well known, knowledge of processes governing dispersal in time is still limited. Data for morphological seed traits such as size have given contradictory results for prediction of soil seed persistence or cover only a few species. There have been few experimental studies on the role of germination traits in determining soil seed persistence, while none has studied their predictive value consistently across species. Delayed germination, as well as light requirements for germination, have been suggested to contribute to the formation of persistent seed banks. Moreover, diurnally fluctuating temperatures can influence the timing of germination and are therefore linked to seed bank persistence.

Methods

The role of germination speed measured by T50 (days to germination of 50 % of all germinated seeds), light requirement and reaction to diurnally fluctuating temperatures in determining seed persistence in the soil was evaluated using an experimental comparative data set of 25 annual cereal weed species.

Key Results

It is shown that light requirements and slow germination are important features to maintain seeds ungerminated just after entering the soil, and hence influence survival of seeds in the soil. However, the detection of low diurnally fluctuating temperatures enhances soil seed bank persistence by limiting germination. Our data further suggest that the effect of diurnally fluctuating temperatures, as measured on seeds after dispersal and dry storage, is increasingly important to prevent fatal germination after longer burial periods.

Conclusions

These results underline the functional role of delayed germination and light for survival of seeds in the soil and hence their importance for shaping the first part of the seed decay curve. Our analyses highlight the detection of diurnally fluctuating temperatures as a third mechanism to achieve higher soil seed persistence after burial which interacts strongly with season. We therefore advocate focusing future research on mechanisms that favour soil seed persistence after longer burial times and moving from studies of morphological features to exploration of germination traits such as reaction to diurnally fluctuating temperatures.  相似文献   

9.
Broccoli (Brassica oleracea), carrot (Daucus carota), marigold (Tagetes patula), nematode-resistant tomato (Solanum lycopersicum), and strawberry (Fragaria ananassa) were grown for three years during the winter in a root-knot nematode (Meloidogyne incognita) infested field in Southern California. Each year in the spring, the tops of all crops were shredded and incorporated in the soil. Amendment with poultry litter was included as a sub-treatment. The soil was then covered with clear plastic for six weeks and M. incognita-susceptible tomato was grown during the summer season. Plastic tarping raised the average soil temperature at 13 cm depth by 7°C.The different winter-grown crops or the poultry litter did not affect M. incognita soil population levels. However, root galling on summer tomato was reduced by 36%, and tomato yields increased by 19% after incorporating broccoli compared to the fallow control. This crop also produced the highest amount of biomass of the five winter-grown crops. Over the three-year trial period, poultry litter increased tomato yields, but did not affect root galling caused by M. incognita. We conclude that cultivation followed by soil incorporation of broccoli reduced M. incognita damage to tomato. This effect is possibly due to delaying or preventing a portion of the nematodes to reach the host roots. We also observed that M. incognita populations did not increase under a host crop during the cool season when soil temperatures remained low (< 18°C).  相似文献   

10.
The entomogenous nematode Steinernema feltiae was encapsulated in an alginate matrix containing a tomato seed. When these capsules were placed on 0.8% agar for 7 days, the seed germinated and ca. 20% of the nematodes escaped from the capsules, whereas only 0.1% escaped from capsules without seeds. When capsules containing nematodes and a seed were planted into sterilized or nonsterilized soil, nematodes escaped to infect Galleria mellonella larvae. When seed in capsules containing ca. 274 nematodes per capsule were planted in nonsterilized soil, Galleria mortality was 90% 1 week later. Galleria mortality declined to 27%, 23%, and 0% in weeks 2, 4, and 8 postplant, respectively. In sterilized soil, Galleria mortality was 96% and did not differ significantly from the nonsterilized soil in week 1, but was significantly higher in sterilized soil over nonsterilized soil for week 2 (81%) and week 4 (51%). When capsules containing nematodes only were used, Galleria mortality was 71% in sterilized soil 1 week after planting and 58%, 33%, and 12% in weeks 2, 4, and 8 postplant, respectively. In nonsterilized soil, Galleria mortality was 8%, 30%, 21%, and 28% after 1, 2, 4, and 8 weeks, respectively, using only encapsulated nematodes. When the number of nematodes per capsule was increased to ca. 817, Galleria mortality was 92 % or higher in sterilized soil from week 1 to week 4.  相似文献   

11.

Background and Aims

Plant growth regulators play an important role in seed germination. However, much of the current knowledge about their function during seed germination was obtained using orthodox seeds as model systems, and there is a paucity of information about the role of plant growth regulators during germination of recalcitrant seeds. In the present work, two endangered woody species with recalcitrant seeds, Araucaria angustifolia (Gymnosperm) and Ocotea odorifera (Angiosperm), native to the Atlantic Rain Forest, Brazil, were used to study the mobilization of polyamines (PAs), indole-acetic acid (IAA) and abscisic acid (ABA) during seed germination.

Methods

Data were sampled from embryos of O. odorifera and embryos and megagametophytes of A. angustifolia throughout the germination process. Biochemical analyses were carried out in HPLC.

Key Results

During seed germination, an increase in the (Spd + Spm) : Put ratio was recorded in embryos in both species. An increase in IAA and PA levels was also observed during seed germination in both embryos, while ABA levels showed a decrease in O. odorifera and an increase in A. angustifolia embryos throughout the period studied.

Conclusions

The (Spd + Spm) : Put ratio could be used as a marker for germination completion. The increase in IAA levels, prior to germination, could be associated with variations in PA content. The ABA mobilization observed in the embryos could represent a greater resistance to this hormone in recalcitrant seeds, in comparison to orthodox seeds, opening a new perspective for studies on the effects of this regulator in recalcitrant seeds. The gymnosperm seed, though without a connective tissue between megagametophyte and embryo, seems to be able to maintain communication between the tissues, based on the likely transport of plant growth regulators.  相似文献   

12.
The susceptibility of 22 plant species to Meloidogyne marylandi and M. incognita was examined in three greenhouse experiments. Inoculum of M. marylandi was eggs from cultures maintained on Zoysia matrella "Cavalier" or Cynodon dactylon x C. trasvaalensis "Tifdwarf". Inoculum of M. incognita was eggs from cultures maintained on Solanum lycopersicum 'Rutgers'. In each host test the inoculum density was 2,000 nematode eggs/pot. None of the three dicot species tested (Gossypium hirsutum, Arachis hypogaea, and S. lycopersicum) were hosts for M. marylandi but, as expected, M. incognita had high levels of reproduction on G. hirsutum and S. lycopersicum. Meloidogyne marylandi reproduced on all of the 19 grass species (Poaceae) tested but reproduction varied greatly (P = 0.05) among these hosts. The following grasses were identified for the first time as hosts for M. marylandi: Buchloe dactyloides (buffalograss), Echinochloa colona (jungle rice), Eragostis curvula (weeping lovegrass), Paspalum dilatatum (dallisgrass), P. notatum (bahiagrass), Sorghastrum, nutans (indiangrass), Tripsacum dactyloides (eastern gamagrass), and Zoysia matrella (zoysiagrass). No reproduction of M. incognita was observed on B. dactyloides, Cyndon dactylon (common bermudagrass), E. curvula, P. vaginatum (seashore paspalum), S. nutans, T. dactyloides, Z. matrella or Z. japonica. Reproduction of M. incognita was less than reproduction of M. marylandi on the other grass species, except for the Zea mays inbred line B73 on which M. incognita had greater reproduction than did M. marylandi (P = 0.05) and Stenotaphrum secundatum (St. Augustinegrass) on which M. incognita and M. marylandi had similar levels of reproduction.  相似文献   

13.
氧化铈纳米颗粒(CeO2NPS),因具有较强的自由基清除能力和抗氧化酶特性,已被证明可提高植物的耐盐性,但其对辣椒种子引发作用和机制尚不明确。为揭示CeO2NPS种子引发处理辣椒对盐胁迫下的萌发及幼苗生长的影响,以辣椒品种(Capsicum annuum)茂蔬360为试验材料,设置了7个CeO2NPS浓度(0、0.05、0.1、0.2、0.3、0.4、0.5 mmol·L-1),以未引发处理组为对照,研究不同浓度CeO2NPS种子引发处理后对盐胁迫下辣椒种子萌发、幼苗生物量和生理生化指标的影响。结果表明:(1)0.5 mmol·L-1 CeO2NPS种子引发处理后的种子,其可溶性蛋白质、脯氨酸含量和过氧化氢酶(CAT)活性、抗坏血酸(AsA)含量和AsA/DHA比值显著提高,超氧阴离子(O2-)含量显著降低; 盐胁迫下,该处理种子的发芽率、发芽势、发芽指数、活力指数最大。(2)0.4 mmol·L-1 CeO2NPS种子引发处理的幼苗在盐胁迫下的鲜重、干重和根长最大,幼苗的可溶性蛋白质、AsA含量和AsA/DHA比值均显著提高。综上认为,CeO2NPS引发处理不仅可通过降低种子水势、促进贮藏物质代谢和提高抗氧化能力提高种子在盐胁迫下的发芽率,还可在苗期通过增强蛋白合成和抗坏血酸-谷胱甘肽循环(AsA-GSH)促进盐胁迫下幼苗的生长。  相似文献   

14.
The effect of inoculating peanut, Arachis hypogaea cv. Sellie, with Ditylenchus destructor at timed intervals after planting and with different initial nematode population densities (Pi) was tested in greenhouse experiments. Final nematode population densities (Pf) in hulls and seeds were greater (Pf < 0.001) in plants inoculated at or before 9 weeks after planting. Pod disease symptoms correlated positively with the Pf in the pods. The seedgrade of peanuts inoculated at or before 9 weeks after planting was reduced, whereas grade of peanuts from plants inoculated at 15 weeks or later was not reduced. Peanut plants inoculated 12 weeks after planting with a Pi of 10-100 had a lower Pf (P < 0.05) than plants with a Pi of 250 to 8,000. Seed of plants with a Pi of 250 or less could be marketed as choice edible seed, whereas those with a Pi of 500 or more were of reduced seedgrade. These results suggest that as few as 500 nematodes per plant at 12 weeks after planting can build up to injurious levels before harvest. A nematicide should therefore be active for longer than 12 weeks after planting to sufficiently suppress the population.  相似文献   

15.

Background and Aims

Recent phylogenetic analysis has placed the aquatic family Hydatellaceae as an early-divergent angiosperm. Understanding seed dormancy, germination and desiccation tolerance of Hydatellaceae will facilitate ex situ conservation and advance hypotheses regarding angiosperm evolution.

Methods

Seed germination experiments were completed on three species of south-west Australian Hydatellaceae, Trithuria austinensis, T. bibracteata and T. submersa, to test the effects of temperature, light, germination stimulant and storage. Seeds were sectioned to examine embryo growth during germination in T. austinensis and T. submersa.

Key Results

Some embryo growth and cell division in T. austinensis and T. submersa occurred prior to the emergence of an undifferentiated embryo from the seed coat (‘germination’). Embryo differentiation occurred later, following further growth and a 3- to 4-fold increase in the number of cells. The time taken to achieve 50 % of maximum germination for seeds on water agar was 50, 35 and 37 d for T. austinensis, T bibracteata and T. submersa, respectively.

Conclusions

Seeds of Hydatellaceae have a new kind of specialized morphophysiological dormancy in which neither root nor shoot differentiates until after the embryo emerges from the seed coat. Seed biology is discussed in relation to early angiosperm evolution, together with ex situ conservation of this phylogenetically significant group.  相似文献   

16.
Sunn hemp (SH), Crotolaria juncea, is known to suppress Rotylenchulus reniformis and weeds while enhancing free-living nematodes involved in nutrient cycling. Field trials were conducted in 2009 (Trial I) and 2010 (Trial II) to examine if SH cover cropping could suppress R. reniformis and weeds while enhancing free-living nematodes if integrated with soil solarization (SOL). Cover cropping of SH, soil solarization, and SH followed by SOL (SHSOL) were compared to weedy fallow control (C). Rotylenchulus reniformis population was suppressed by SHSOL at the end of cover cropping or solarization period (Pi) in Trial I, but not in Trial II. However, SOL and SHSOL did not suppress R. reniformis compared to SH in either trial. SH enhanced abundance of bacterivores and suppressed the % herbivores only at Pi in Trial II. At termination of the experiment, SH resulted in a higher enrichment index indicating greater soil nutrient availability, and a higher structure index indicating a less disturbed nematode community compared to C. SOL suppressed bacterivores and fungivores only in Trial II but not in Trial I. On the other hand, SHSOL enhanced bacterivores and fungivores only at Pi in Trial I. Weeds were suppressed by SH, SOL and SHSOL throughout the experiment. SHSOL suppressed R. reniformis and enhanced free-living nematodes better than SOL, and suppressed weeds better than SH.  相似文献   

17.
Selenium (Se) is an essential micronutrient for many organisms, but is also a toxin and environmental pollutant at elevated levels. Due to its chemical similarity to sulphur, most plants readily take up and assimilate Se. Se accumulators such as Brassica juncea can accumulate Se between 0.01% and 0.1% of dry weight (DW), and Se hyperaccumulators such as Stanleya pinnata (Brassicaeae) contain between 0.1% and 1.5% DW of Se. While Se accumulation offers the plant a variety of ecological benefits, particularly protection from herbivory, its potential costs are still unexplored. This study examines the effects of plant Se levels on reproductive functions. In B. juncea, Se concentrations >0.05-0.1% caused decreases in biomass, pollen germination, individual seed and total seed weight, number of seeds produced, and seed germination. In S. pinnata there was no negative effect of increased Se concentration on pollen germination. In cross-pollination of B. juncea plants with different Se levels, both the maternal and paternal Se level affected reproduction, but the maternal Se concentration had the most pronounced effect. Interestingly, high-Se maternal plants were most efficiently pollinated by Se-treated paternal plants. These data provide novel insights into the potential reproductive costs of Se accumulation, interactive effects of Se in pollen grains and in the pistil, and the apparent evolution of physiological tolerance mechanisms in hyperaccumulators to avoid reproductive repercussions.  相似文献   

18.
Meloidogyne incognita-infected and noninfected tubers of yellow nutsedge (Cyperus esculentus) and purple nutsedge (Cyperus rotundus) were treated with 56 L/ha 1,3-dichloropropene (1,3-D) in microplots and subsequently examined for tuber and nematode viability in the greenhouse using a chile pepper (Capsicum annuum) bioassay system. The study was conducted three times. Nutsedge tuber viability and M. incognita harbored in both yellow and purple nutsedge tubers were unaffected by 1,3-D treatment. Nematode reproduction on nutsedges and associated chile pepper plants varied among years, possibly due to differing levels of tuber infection or soil temperature, but was not affected by fumigation. The presence of M. incognita resulted in greater yellow nutsedge tuber germination and reproduction. The efficacy of 1,3-D for management of M. incognita in chile pepper production is likely to be reduced when nutsedges are present in high numbers, reinforcing the importance of managing these weeds and nematodes simultaneously.  相似文献   

19.
A microplot study under field conditions was carried out during 2 consecutive years to assess the effect of root-knot nematode infection (2,000 Meloidogyne incognita eggs/kg soil) on three winter ornamental plants: hollyhock (Althea rosea), petunia (Petunia hybrida), and poppy (Papaver rhoeas). Effects of root-dip treatment with the biocontrol agents Pochonia chlamydosporia, Bacillus subtilis, and Pseudomonas fluorescens and the nematicide fenamiphos were tested. The three ornamental species were highly susceptible to M. incognita, developing 397 and 285 (hollyhock), 191 and 149 (petunia), and 155 and 131 (poppy) galls and egg masses per root system, respectively, and exhibited 37% (petunia), 29% (poppy), and 23% (hollyhock) (P = 0.05) decrease in the flower production. Application of fenamiphos, P. chlamydosporia, P. fluorescens, and B. subtilis suppressed nematode pathogenesis (galls + egg masses) by 64%, 37%, 27%, and 24%, respectively, leading to 14% to 29%, 7% to 15%, 14% to 36%, and 7% to 33% increase in the flower production of the ornamental plants, respectively. Treatment with P. fluorescens also increased the flowering of uninfected plants by 11% to 19%. Soil population of M. incognita was decreased (P = 0.05) due to various treatments from 2 months onward, being greatest with fenamiphos, followed by P. chlamydosporia, B. subtilis, and P. fluorescens. Frequency of colonization of eggs, egg masses, and females by the bioagents was greatest by P. chlamydosporia, i.e., 25% to 29%, 47% to 60%, and 36% to 41%, respectively. Colonization of egg masses by B. subtilis and P. fluorescens was 28% to 31% and 11% to 13%, respectively, but the frequency was 0.3% to 1.3% in eggs. Rhizosphere population of the bioagents was increased (P = 0.05) over time, being usually greater in the presence of nematode.  相似文献   

20.
The relationship between population densities of race 1 of Meloidogyne incognita and yield of eggplant was studied. Microplots were infested with finely chopped nematode-infected pepper roots to give population densities of 0, 0.062, 0.125, 0.25, 0.50, 1, 2, 4, 8, 16, 32, 64, and 128 eggs and juveniles/cm³ soil. Both plant growth and yield were suppressed by the nematode. A tolerance limit of 0.054 eggs and juveniles/cm³ soil and a minimum relative yield of 0.05 at four or more eggs and juveniles/cm³ soil were derived by fitting the data with the equation y = m + (1 - m)zP⁻T. Maximum nematode reproduction rate was 12,300. Hatch of eggs from egg masses in water or from sodium hypochlorite dissolved egg masses was similar (41% and 39%), but egg viability was significantly greater from egg masses in water (58%) than from sodium hypochlorite dissolved egg masses (12%) after 4 weeks. Greater numbers of nematodes were collected from roots of tomatoes from soil infested with entire egg masses than from tomato roots from soil infested with egg masses dissolved by sodium hypochlorite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号