首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Greenhouse and field trial experiments were performed to evaluate the use of Chromolaena odorata with various soil amendments for phytoextraction of Pb contaminated soil Pb mine soils contain low amount of nutrients, so the additions of organic (cow manure) and inorganic (Osmocote and NH4NO3 and KCl) fertilizers with EDTA were used to enhance plant growth and Pb accumulation. Greenhouse study showed that cow manure decreased available Pb concentrations and resulted in the highest Pb concentration in roots (4660 mg kg(-1)) and shoots (389.2 mg kg(-1)). EDTA increased Pb accumulation in shoots (17-fold) and roots (11-fold) in plants grown in soil with Osmocote with Pb uptake up to 203.5 mg plant(-1). Application of all fertilizers had no significant effects on relative growth rates of C. odorata. Field trial study showed that C. odorata grown in soil with 99545 mg kg(-1) total Pb accumulated up to 3730.2 and 6698.2 mg kg(-1) in shoots and roots, respectively, with the highest phytoextraction coefficient (1.25) and translocation factor (1.18). These results indicated that C. odorata could be used for phytoextraction of Pb contaminated soil. In addition, more effective Pb accumulation could be enhanced by Osmocote fertilizer. However, the use of EDTA in the field should be concerned with their leaching problems.  相似文献   

2.
通过野外调查和温室营养液砂培试验,发现并鉴定出钻叶紫菀(Aster subulatus Michx.)是一种新的镉(Cd)超积累植物。调查结果发现,钻叶紫菀对土壤中高含量的Cd有很强的忍耐、吸收和积累能力,其地上部茎、叶Cd含量分别为90.0-150.7mg/kg和119.8-172.6mg/kg,平均值分别为132.8mg/kg和139.2mg/kg。砂基营养液培养试验证明,钻叶紫菀对生长介质中的Cd有很强的忍耐能力,当生长介质中Cd浓度高达150mg/L时,植株仍生长正常,其株高与对照相比无显著差异;地上部Cd含量及其积累量均随生长介质中Cd浓度的增加而增加,当生长介质中Cd浓度为120mg/L时,地上部茎Cd含量和积累量达到最高值,分别为5672.50mg/kg、4.93mg/株。结果表明,钻叶紫菀是一种新的Cd超积累植物,为今后探明植物超积累Cd的机理和Cd污染土壤的植物修复提供一种新的种质资源。  相似文献   

3.
以露地盆栽的苏丹草、向日葵、芥菜、萝卜4种植物为对象,研究它们对土壤中不同浓度(0、2.5、5.0、10.0、20.0、40.0mg/kg)133Cs、88Sr的吸收积累状况,并比较它们对133Cs、88Sr污染土壤的修复效率。结果显示:(1)4种植物单株生物量在各浓度处理下均表现为向日葵>萝卜>芥菜>苏丹草,但它们对133Cs的吸收能力为萝卜>苏丹草>向日葵>芥菜,单株133Cs累积量为向日葵>萝卜>苏丹草>芥菜,单株88Sr累积量表现为萝卜、向日葵>苏丹草>芥菜,而且4种植物对88Sr的吸收能力均强于133Cs。(2)萝卜在除10.0mg/kg133Cs外的各处理中富集系数均大于1,对土壤中133Cs的吸收能力较强;苏丹草在除5.0mg/kg133Cs处理外的转运系数均大于1,其余3种植物在各处理中的转运系数均低于1;88Sr在萝卜体内从根系向上转运到地上部分的能力明显高于其它3种植物,芥菜、向日葵次之。(3)4种植物对88Sr在体内向上的迁移转运能力均大于133Cs。研究表明,向日葵单株对133Cs、88Sr污染土壤的修复效率最高,萝卜次之,且向日葵和萝卜分别因其生物量和吸收能力优势而对被污染土壤中的133Cs和88Sr具有更强的提取能力。  相似文献   

4.
A pot experiment was conducted for three vegetation periods on a sandy soil (pH 7.5) to study the uptake and distribution of Cd in plant tissues of Calamagrostis epigejos (L.) Roth. Cadmium was applied as CdCl2 (a total of 11 solution of 0, 20. 100, and 200 mg Cd l(-1)). HNO3- and water-extractable concentrations of Cd in 2- and 20-cm soil depths were correlated with the applied Cd showing that Cd was very mobile in the soil. The uptake of Cd from soil by Calamagrostis epigejos was directly related to the total soil Cd content and to the water-soluble pool of Cd. The concentrations of Cd in plant tissues (roots, rhizomes, leaves) and litter increased with increased applied Cd. Most of the Cd that was taken up was accumulated in roots (range from 1.88+/-0.42 to 40.96+/-16.71 mg kg(-1) dry mass), followed by rhizomes (0.52+/-0.13 to 25.70+/-6.35 mg kg(-1)) and leaves (0.30+/-0.06 to 9.20+/-1.93 mg kg(-1)). Cd concentrations of the litter were about twofold greater than the concentrations in the leaves (0.67+/-0.07 to 18.98+/-7.00 mg kg(-1)). The bioaccumulation factor (leaf/soil concentration ratio) increased significantly from 0.70+/-0.10 (control) to 1.1+/-0.17 (100 mg Cd l(-1)), but decreased again at the highest Cd level (200 mg Cd l(-1)) toward 0.74+/-0.34, which was not significantly different from the control. The low transfer of Cd from soil to above-ground organs at higher soil Cd concentrations indicates an exclusion mechanism. The leaf/root Cd concentration ratio (translocation factor) shows no significant relationship to increasing soil contamination. Only 4-7% of the total plant Cd was accumulated in the above-ground tissues. The phytoextraction potential (total Cd removed from soil) within three growing seasons ranged from 0.11 to 0.25% of the total soil Cd. Total output in above-ground living and dead plant material of C. epigejos would be approximately 20 g ha(-1) a(-1) for the lowest contamination level (+20 mg Cd per pot) and approximately 275 g ha(-1) a(-1) for the highest contamination level (+200 mg Cd per pot). This is within the range where an application for phytoextraction of Cd has been suggested by other authors. However, we conclude that the practical use of C. epigejos for phytoremediation is not mainly in the field of phytoextraction, but phytostabilization. C. epigejos has the capability to structurally stabilize the soil and reduce Cd contamination spread due to erosion. The uptake of the available Cd pool and accumulation in below-ground biomass may further prevent leaching into ground water.  相似文献   

5.
This study assessed the distribution and availability of plant uptake of Zn, Pb, and Cd present in an abandoned mine at Ingurtosu, Sardinia (Italy). Geological matrix samples (sediments, tailings, and soil from a nearby pasture site) and samples of the predominant plant species growing on sediments and tailings were collected. Mean values of total Zn, Pb and Cd were respectively (mg kg(-1)) 7400, 1800, and 56 in tailings, 31000, 2900, and 100 in sediments, and 400, 200, and 8 in the pasture soil. The metal concentration values were high even in the mobile fractions evaluated by simplified sequential extraction (Zn 7485-103, Pb 1015-101, Cd 47-4 mg kg(-1)). Predominant native species were identified and analyzed for heavy metal content in various tissues. Among the plant species investigated Inula viscosa, Euphorbia dendroides, and Poa annua showed the highest metal concentration in aboveground biomass (mean average of Zn: 1680, 1020, 1400; Pb: 420, 240, 80; Cd: 28, 7, 19 mg kg(-1), respectively). The above mentioned species and A. donax could be good candidates for a phytoextraction procedure. Cistus salvifolius and Helichrysum italicus generally showed behavior more suitable for a phytostabilizer.  相似文献   

6.
Composition of native vegetation on a polychlorinated biphenyls (PCB)-contaminated soil dumpsite at Lhenice, South Bohemia (Czech Republic), was determined and species variability in the accumulation of PCBs in plant biomass was investigated. Soil stripping contaminated by PCBs originated at a factory producing electrical transformers that mostly used the commercial PCB mixture Delor 103 and 106. The PCB content of soil in the most contaminated part of the dumpsite reached 153 mg kg(-1) dry soil. Low diversity of plant species was found on the dumpsite. Results showed three grass species, Festuca arundinacea Schreb., Phalaroides arundinacea (L.) Rauschert., and Calamagrostis epigeios (L.) Roth., to be the major components of the vegetation and confirmed their high tolerance toward PCB contamination. The highest content of PCB in plant biomass--813.2 microg kg(-1) dry biomass--was determined in Festuca aboveground biomass. For phytoextraction purposes especially, Festuca can be recommended due to its high biomass yield, but its bioconcentration factor was very low (0.006). Tripleurospermum maritimum (L.) Sch. Bip. and Cirsium arvense (L.) Scop. grew mainly at the margins of the most contaminated part of the dumpsite. The PCB content determined in their aboveground biomass-278.7 and 289.5 microg kg(-1) dry biomass, respectively--was nonsignificantly lower compared to grass species Phalaroides and Calamagrostis. Salix (Salix viminalis L. and Salix caprea L.) was monitored among plant species composition at this site as a representative of woody species.  相似文献   

7.
A site in central Taiwan with an area of 1.3 ha and contaminated with Cr, Cu, Ni, and Zn was selected to examine the feasibility of phytoextraction. Based on the results of a preexperiment at this site, a total of approximately 20,000 plants of 12 species were selected from plants of 33 tested species to be used in a large-area phytoextraction experiment at this site. A comparison with the initial metal concentration of 12 plant species before planting demonstrated that most species accumulated significant amounts of Cr, Cu, Ni, and Zn in their shoots after growing in this contaminated site for 31 d. Among the 12 plant species, the following accumulated higher concentrations of metals in their shoots; Garden canna and Garden verbena (45-60 mg Cr kg(-1)), Chinese ixora and Kalanchoe (30 mg Cu kg(-1)), Rainbow pink and Sunflower (30 mg Ni kg(-1)), French marigold and Sunflower (300-470 mg Zn kg(-1)). The roots of the plants of most of the 12 plant species can accumulate higher concentrations of metals than the shoots and extending the growth period promotes accumulation in the shoots. Large-area experiments demonstrated that phytoextraction is a feasible method to enable metal-contaminated soil in central Taiwan to be reused.  相似文献   

8.
A pot experiment and afield trial were conducted to study the remediation of an aged field soil contaminated with cadmium, copper and polychlorinated biphenyls (PCBs) (7.67 +/- 0.51 mg kg(-1) Cd, 369 +/- 1 mg kg(-1) Cu in pot experiment; 8.46 +/- 0.31 mg kg(-1) Cd, 468 +/- 7 mg kg(-1) Cu, 323 +/- 12 microg kg(-1) PCBs for field experiment) under different cropping patterns. In the pot experiment Sedum plumbizincicola showed pronounced Cd phytoextraction. After two periods (14 months) of cropping the Cd removal rates in these two treatments were 52.2 +/- 12.0 and 56.1 +/- 9.1%, respectively. Total soil PCBs in unplanted control pots decreased from 323 +/- 11 to 49.3 +/- 6.6 microg kg(-1), but with no significant difference between treatments. The field microcosm experiment intercropping of three plant species reduced the yield of S. plumbizincicola, with a consequent decrease in soil Cd removal. S. plumbizincicola intercropped with E. splendens had the highest shoot Cd uptake (18.5 +/- 1.8 mg pot(-1)) after 6 months planting followed by intercropping with M. sativa (15.9 +/- 1.9 mg pot(-1)). Liming with S. plumbizincicola intercropped with M. sativa significantly promoted soil PCB degradation by 25.2%. Thus, adjustment of soil pH to 5.56 combined with intercropping with S. plumbizincicola and M. sativagave high removal rates of Cd, Cu, and PCBs.  相似文献   

9.
In a greenhouse pot experiment, we assessed the phytoextraction potential for Cd of three amaranth cultivars (Amaranthus hypochondriacus L. Cvs. K112, R104, and K472) and the effect of application of N, NP, and NPK fertilizer on Cd uptake of the three cultivars from soil contaminated with 5 mg kg(-1) Cd. All three amaranth cultivars had high levels of Cd concentration in their tissues, which ranged from 95.1 to 179.1 mg kg(-1) in leaves, 58.9 to 95.4 mg kg(-1) in stems, and 62.4 to 107.2 mg kg(-1) in roots, resulting in average bioaccumulation factors ranging from 17.7 to 29.7. Application of N, NP, or NPK fertilizers usually increased Cd content in leaves but decreased Cd content in stem and root. Fertilizers of N or NP combined did not substantially increase dry biomass of the 3 cultivars, leading to a limited increment of Cd accumulation. NPK fertilizer greatly increased dry biomass, by a factor of 2.7-3.8, resulting in a large increment of Cd accumulation. Amaranth cultivars (K112, R104, and K472) have great potential in phytoextraction of Cd contaminated soil. They have the merits of high Cd content in tissues, high biomass, easy cultivation and little effect on Cd uptake by fertilization.  相似文献   

10.
The main limiting factor for cleaning-up contaminated soils with hyperaccumulator plants is the low production of aerial biomass and the number of successive crops needed to reach the objective of remediation. The aim of this study was to contribute to the determination of a fertilisation strategy to optimise soil metal phytoextraction by Thlaspi caerulescens. A pot experiment was conducted on an agricultural soil and on a contaminated soil from the vicinity of a former Pb/Zn smelter. The nitrogen (N) treatment consisted of 4 levels (0, 11, 21.5 and 31 mg N kg(-1) dry soil (DS)) added as NH4NO3. The highest N treatment was combined with 4 levels of phosphorus (P) (0, 20, 40 and 80 mg P kg(-1) DS as KH2PO4) and sulfur (S) additions (0, 10, 20 and 30 mg S kg(-1) DS as MgSO4). The highest N fertilisation contributed significantly to enhance biomass production of T. caerulescens and to decrease the concentration of Cd and Zn in the biomass. At constant N addition, P supply did not affect metal extraction by T. caerulescens but negatively affected plant health. Sulfur supply slightly increased phytoextraction of Cd. Our results show that N and S fertilisation might interact but further investigations on the effect of such interaction on Cd extraction efficiency are needed.  相似文献   

11.
The effect of endophyte infection on plant growth, cadmium (Cd) uptake, and Cd translocation was investigated using tall fescue (Lolium arundinaceum) grown in greenhouses in contaminated solution. Endophyte infection significantly increased tiller number and biomass of the host grass under both control and Cd-stress conditions. Endophyte infection not only enhanced Cd accumulation in tall fescue, but also improved Cd transport from the root to the shoot. Under 20 mg L(-1) Cd stress, the phytoextraction efficiency of endophyte-infected (EI) tall fescue was 2.41-fold higher than endophyte-free plants. Although the total Cd accumulation in EI tall fescue was insufficient for practical phytoextraction applications, the observed high biomass production and tolerance of stress from abiotic factors including heavy metals, gives endophyte/plant associations the potential to be a model for endophyte-assisted phytoremediation of metal-polluted soils.  相似文献   

12.
Many studies have been conducted on phytoextraction; however, non-native hyperaccumulator species are not suitable for the natural environment of Taiwan in many cases. Drawing upon previous results, the growth and heavy metal accumulation in artificially cadmium-contaminated soils were compared for five local garden flower species. The treatments included a control (CK), 9.73 +/- 0.05 mg kg(-1) (Cd-10), and 17.6 +/- 0.8 mg kg(-1) (Cd-20). All plants were harvested at 35 days after transplanting and analyzed for Cd content. Cd accumulation in the shoot of French marigold (Tagetes patula L.) and Impatiens (Impatiens walleriana Hook. f.) grown in Cd-20 treatment were 66.3 +/- 6.5 and 100 +/- 11 mg kg(-1), which equated to a removal of 0.80 +/- 0.11 and 0.60 +/- 0.37 mg Cd plant(-1), respectively. The maximum Cd accumulation of Impatiens reached the threshold value (100 mg kg(-1)) characteristic of a Cd hyperaccumulator and its bioconcentration factor (BCF) and translocation factor (TF) were greater than one. Impatiens therefore has the potential to hyperaccumulate Cd from Cd-contaminated soils. With the exception of Garden verbena, significant relationships were found between Cd concentrations in soil extracted by 0.05 M EDTA, 0.005 M DTPA, and 0.01 M CaCl2 and the concentration of Cd in the shoots of the tested garden flowers.  相似文献   

13.
Soils from the alluvial flats of the Turia River, Valencia, Spain, which were highly contaminated by decades of industrial activity, were surveyed for native plant species that could be candidates useful in phytoremediation. Concentrations of heavy metals and arsenic (As) in soils reached 25,000 mg Kg(-1) Pb, 12,000 mg Kg(-1) Zn, 70 mg Kg(-1) Cd, and 13500 mg Kg(-1) As. The predominant vegetation was collected and species identified. Soil samples and the corresponding plant shoots were analyzed to determine the amount of As accumulated by the various plant species. Several were able to tolerate more than 1000 mg Kg(-1) As in the soil. Bassia scoparia (Chenopodiaceae) survive in soil with 8375 mg Kg(-1) As. Arsenic accumulation in shoots of the various plant species investigated ranged from 0.1 to 107 mg Kg(-1) dw. Bassia scoparia (Chenopodiaceae), Inula viscosa (Asteraceae), Solanum nigrum (Solanaceae), and Hirschfeldia incana (Brassicaceae) had the highest values for As accumulation.  相似文献   

14.
The effectiveness of heavy metal uptake from contaminated nutrient solution by four aquatic macrophytes (Pistia stratiotes L., Salvinia auriculata AubL, Salvinia minima Baker, and Azolla filiculoides Lam) was estimated in this study. The influence of cadmium (3.5 mg L(-1) and 10.5 mg L(-1)) and lead (25 mg L(-1) and 125 mg L(-1)) on the stress symptoms was observed through the determination of chlorophyll content and transpiration rate over 14 days of the experiment. The results of the present study showed extreme reductions in Cd and Pb concentrations in solution during the first 4 days. The accumulation of Pb in plant tissues was the highest during the first 4 days and was more than 10 times higher in the roots (42,862 mg kg(-1)) than in the leaves (3867 mg kg(-1)). The accumulation of Cd slowly increased and was the highest at the end of the experiment. Concentrations in roots (3923 mg kg(-1)) were roughly 6 times higher than in the leaves (624 mg kg(-1)). Results showed significant decrease in the transpiration rate at Pb treatment and a significant increase at Cd treatment during 48 hours of exposition.  相似文献   

15.
Among the technologies used to recuperate cadmium (Cd) contaminated soils, phytoextraction are particularly important, where the selection of suitable plants is critical to the success of the soil remediation. Thus, the objectives of this study were to evaluate the responses of jack-bean and sorghum to Cd supply and to quantify Cd accumulation by these species grown in hydroponic culture. The plants were subjected to 0, 15, 30, or 60 μmol Cd L?1 in the nutrient solution, and gas exchange, plant growth and Cd accumulation were measured at 25 days after starting Cd treatments. The Cd supply severely reduced growth of shoots and roots in both species. In jack-bean, Cd decreased photosynthesis by 56–86%, stomatal conductance by 59–85% and transpiration by 48–80%. The concentrations and amounts of Cd accumulated in the plant tissues were proportional to the metal supply in the nutrient solution. Sorghum was more tolerant than jack-bean to Cd toxicity, but the latter showed a greater metal concentration and accumulation in the shoot. Therefore, jack-bean would be more suitable than sorghum for use in Cd phytoremediation programs based on phytoextraction.  相似文献   

16.
Three Cd and Zn hyperaccumulating plant species Noccaea caerulescens Noccaea praecox and Arabidopsis halleri (Brassicacceae) were cultivated in seven subsequent vegetation seasons in both pot and field conditions in soil highly contaminated with Cd, Pb, and Zn. The results confirmed the hyperaccumulation ability of both plant species, although A. halleri showed lower Cd uptake compared to N. caerulescens. Conversely, Pb phytoextraction was negligible for both species in this case. Because of the high variability in plant yield and element contents in the aboveground biomass of plants, great variation in Cd and Zn accumulation was observed during the experiment. The extraction ability in field conditions varied in the case of Cd from 0.2 to 2.9 kg ha?1 (N. caerulescens) and up to 0.15 kg ha?1 (A. halleri), and in the case of Zn from 0.2 to 6.4 kg ha?1 (N. caerulescens) and up to 13.8 kg.ha?1 (A. halleri). Taking into account the 20 cm root zone of the soil, the plants were able to extract up to 4.1% Cd and 0.2% Zn in one season. However, cropping measures should be optimized to improve and stabilize the long-term phytoextraction potential of these plants.  相似文献   

17.
The remediation of heavy metal-contaminated sites using plants presents a promising alternative to current methodologies. In this study, the potential accumulation of Convolvulus arvensis L. for Cd(II), Cr(VI), and Cu(II) was determined using an agar-based medium. The shoots of C. arvensis plants exposed to 20 mgl(-1) of these heavy metals, demonstrated capability to accumulate more than 3800 mg of Cr, 1500 mg of Cd, and 560 mg of Cu per kg of dry tissue. The outcome of this study and the field data previously reported corroborate that C. arvensis is a suitable candidate for the phytoremediation of Cd(II), Cr(VI), and Cu(II) contaminated soils. Furthermore, the concentration of Cr determined in the dry leaf tissue (2100 mgkg(-1)) indicates that C. arvensis could be considered as a potential Cr-hyperaccumulator plant species.  相似文献   

18.
Abstract

A sand hydroponic experiment with different concentrations of 0, 5, 10, 20, 40?mg L?1 Cd was used to study the growth and physiological response of Hylotelephium spectabile (Boreau) H. Ohba. and its phytoextraction potential for Cd. The results showed that total plant biomass under 5?mg L?1 Cd treatment was slightly affected. The content of malondialdehyde (MDA) in leaf exposed to Cd was higher, and the POD and CAT activity exhibited a positive response to the low level of Cd addition (5?mg·L?1). The photosynthesis pigments were slightly inhibited, and the ultrastructure of chloroplast remained intact after treatment with 10?mg L?1 Cd. The maximum leaf Cd content (603?mg·kg?1) was found in 5?mg L?1 Cd treatment, then decreased with the Cd level increased. The maximum Cd content in the shoots far exceeds the threshold level (100?mg kg?1) for a Cd-hyperaccumulator plant with the value of translocation factor (TFshoot/root) for Cd reaching up to 5.62. In conclusion, H. spectabile showed normal growth and physiological response and high shoot Cd accumulation under 5?mg L?1 Cd stress, which made it to be a good candidate for phytoextraction of low-level Cd polluted environment.  相似文献   

19.
Phytoextraction is a green technique for the removal of soil contaminants by plants uptake with the subsequent elimination of the generated biomass. The halophytic plant Suaeda vera Forssk. ex J.F.Gmel. is an native Mediterranean species able to tolerate and accumulate salts and heavy metals in their tissues. The objective of this study was to explore the potential use of S. vera for soil metal phytoextraction and to assess the impact of different chelating agents such as natural organic acids (oxalic acid [OA], citric acid [CA]), amino acids (AA) and Pseudomonas fluorescens bacteria (PFB) on the metal uptake and translocation. After 12 months, the highest accumulation of Cu was observed in the root/stem of PFB plots (17.62/8.19 mg/kg), in the root/stem of CA plots for Zn (31.16/23.52 mg/kg) and in the root of OA plots for Cr (10.53 mg/kg). The highest accumulation of metals occurred in the roots (27.33–50.76 mg/kg). Zn was the metal that accumulated at the highest rates in most cases. The phytoextraction percentages were higher for Cu and Zn (~2%) with respect to Cr (~1%). The percentages of metal removal from soil indicate the need to monitor soil properties, to recognize the influence of each treatment and to increase the concentration of bioavailable metals by the use of agricultural management practices aimed at promoting plant growth.  相似文献   

20.
Synthetic chelators play an important role in boosting the microbial biomass carbon (MBC), dissolved organic carbon (DOC), and heavy metal solubility in a contaminated soil toward a sustainability of environment for agricultural crops. Castor plant was grown under different levels of Cd contaminated soil (?Cd and +Cd) following adding three chelating agents, ethylenediaminetetraacetic acid (H4EDTA), nitriloacetic acid (H3 NTA), and NH4 citrate (ammonium citrate) to the soil at rates of 10, 15, and 25 mmol in 5 kg of soil per pot. The highest bioavailable Cd concentrations in soil and castor plant were obtained from NH4 citrate and H4EDTA treatments in the contaminated soil. Fourier transform infrared (FTIR) analysis showed that NH4 citrate was the most effective chelator in Cd-contaminated soil. MBC and DOC contents were significantly increased and reached at 81.98–80.37 and 1.96–1.90 mg kg?1 respectively, in the (H3 NTA) and NH4 citrate treatments in Cd-contaminated soil. Further research is needed to investigate the use of chelators in the phytoextraction of Cd-contaminated soils under field conditions and whether it may be beneficial in accelerating the phytoextraction of Cd through hyperaccumulating plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号