首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reclamation of saline sodic soils requires sodium removal and the phytoremediation is one of the proven low-cost, low-risk technologies for reclaiming such soils. However, the role of Phragmites australis in reclaiming saline sodic soils has not been evaluated extensively. The comparative reclaiming role of P. australis and gypsum was evaluated in a column experiment on a sandy clay saline sodic soil with ECe 74.7 dS m?1, sodium adsorption ratio (SAR) 63.2, Na+ 361 g kg?1, and pH 8.46. The gypsum at 100% soil requirement, planting common reed (P. australis) alone, P. australis + gypsum at 50% soil gypsum requirements, and leaching (control without plant and gypsum) were four treatments applied. After 11 weeks of incubation, the results showed that all treatments including the control significantly reduced pH, EC, exchangeable Na+, and SAR from the initial values, the control being with least results. The gypsum and P. australis + gypsum were highly effective in salinity (ECe) reduction, while sodicity (SAR) and Na+ reductions were significantly higher in P. australis + gypsum treatment. The reclamation efficiency in terms of Na+ (83.4%) and SAR (86.8%) reduction was the highest in P. australis + gypsum. It is concluded that phytoremediation is an effective tool to reclaim saline sodic soil.  相似文献   

2.
The response of two speciality vegetable crops, New Zealandspinach (Tetragonia tetragonioides Pall.) and red orach (Atriplexhortensis L.), to salt application at three growth stages wasinvestigated. Plants were grown with a base nutrient solutionin outdoor sand cultures and salinized at 13 (early), 26 (mid),and 42 (late) d after planting (DAP). For the treatment saltconcentrations, we used a salinity composition that would occurin a typical soil in the San Joaquin Valley of California usingdrainage waters for irrigation. Salinity treatments measuringelectrical conductivities (ECi) of 3, 7, 11, 15, 19 and 23 dSm-1were achieved by adding MgSO4, Na2SO4, NaCl and CaCl2to thebase nutrient solution. These salts were added to the base nutrientsolution incrementally over a 5-d period to avoid osmotic shockto the seedlings. The base nutrient solution without added saltsserved as the non-saline control (3 dS m-1). Solution pH wasuncontrolled and ranged from 7.7 to 8.0. Both species were saltsensitive at the early seedling stage and became more salt tolerantas time to salinization increased. For New Zealand spinach,the salinity levels that gave maximal yields (Cmax) were 0,0 and 3.1 dS m-1and those resulting in a 50% reduction of biomassproduction (C50) were 9.1, 11.1 and 17.4 dS m-1for early, midand late salinization dates, respectively. Maximal yield ofred orach increased from 4.2 to 10.9 to 13.7 dS m-1as the timeof salinization increased from 13, to 26, to 42 DAP, respectively.The C50value for red orach was unaffected by time of salt imposition(25 dS m-1). Both species exhibited high Na+accumulation evenat low salinity levels. Examination of K-Na selectivity dataindicated that K+selectivity increased in both species withincreasing salinity. However, increased K-Na selectivity didnot explain the increased salt tolerance observed by later salinization.Higher Na-Ca selectivity was determined at 3 dS m-1in New Zealandspinach plants treated with early- and mid-salinization plantsrelative to those exposed to late salinization. This correspondedwith lower Cmaxand C50values for those plants. Lower Ca uptakeselectivity or lower Ca levels may have inhibited growth inyoung seedlings. This conclusion is supported by similar resultswith red orach. High Na-Ca selectivity found only in the early-salinizationplants of red orach corresponded to the lower Cmaxvalues measuredfor those plants. Copyright 2000 Annals of Botany Company New Zealand spinach, Tetragonia tetragonioides Pall., red orach, Atriplex hortensis L., salinity, stage of growth, ion accumulation, selectivity, plant nutrition  相似文献   

3.
Production of grain legumes is severely reduced in salt-affected soils because their ability to form and maintain nitrogen-fixing nodules is impaired by both salinity and sodicity (alkalinity). Genotypes of chickpea, Cicer arietinum, with high nodulation capacity under stress were identified by field screening in a sodic soil in India and subsequently evaluated quantitatively for nitrogen fixation in a glasshouse study in a saline but neutral soil in the UK. In the field, pH 8.9 was the critical upper limit for most genotypes studied but genotypes with high nodulation outperformed all others at pH 9.0-9.2. The threshold limit of soil salinity for shoot growth was at ECe 3 dS m(-1), except for the high-nodulation selection for which it was ECe 6. Nodulation was reduced in all genotypes at salinities above 3 dS m(-1) but to a lesser extent in the high-nodulation selection, which proved inherently superior under both non-saline and stress conditions. Nitrogen fixation was also much more tolerant of salinity in this selection than in the other genotypes studied. The results show that chickpea genotypes tolerant of salt-affected soil have better nodulation and support higher rates of symbiotic nitrogen fixation than sensitive genotypes.  相似文献   

4.
The possibility of remediating contaminated soils though the use of high biomass-generating, native plant species capable of removing heavy metals is receiving increased attention. The cadmium (Cd) accumulation capacities of the native Mediterranean, perennial shrubs Atriplex halimus, Phyllirea angustifolia, Rhamnus alaternus and Rosmarinus officinalis were tested by growing transplanted specimens in a pine bark compost substrate (pH 5.6) contaminated with 100 mg Cd kg(-1). After 70 days, only R. alaternus showed reduced growth. The increase in biomass seen in all the test species enhanced the phytoextraction of Cd. However, the species behaved as metal excluders, except for the halophyte A. halimus, which behaved as an indicator plant. In this species the leaf Cd concentration reached 35 mg Cd kg(-1), with the shoot responsible for some 86% of total Cd accumulation. Atriplex halimus showed the highest bioconcentration factor (BCF) (0.36) and leaf Cd transport index (1.68); consequently, this species showed the highest Cd phytoextraction capacity.  相似文献   

5.
A greenhouse experiment was carried out with the objective of evaluating the effects of the elementary sulphur inoculated with Thiobacillus, compared with gypsum, in the amendment of a alluvial sodic saline soil from the Brazilian semiarid region, irrigated with saline water and grown with the tropical legumes leucena and mimosa. The treatments consisted of levels of sulphur (0; 300 and 600 kg/ha) and gypsum (1,200 and 2,400 kg/ha), irrigation using different waters containing the salts NaHCO3, MgCl2, CaCl2, NaCl and KCl, with different electrical conductivities (ECs: 0.2. 6.1 and 8.2 dS/m at 25 degrees C). Based on the results it appears that saline water increased exchangeable Na+, K+, Ca2+, Mg2+, and soil pH. Sulphur inoculated with Thiobacillus was more efficient than gypsum in the reduction of the exchangeable sodium of the soil and promoting leaching of salts, especially sodium. Sulphur inoculated with Thiobacillus reduced the EC of the soil saturation extract to levels below that adopted in soil classification of sodic or saline sodic. Leucena was more tolerant to salinity and mimosa more resistant to acidity promoted by sulphur inoculated with Thiobacillus.  相似文献   

6.
The byproducts of flue gas desulfurization (BFGD) are a useful external source of Ca2+ for the reclamation of sodic soils because they are comparatively cheap, generally available and have high gypsum content. The ion solution composition of sodic soils also plays an important role in the reclamation process. The effect of BFGD on the soluble salts composition and chemical properties of sodic soils were studied in a soil column experiment. The experiment consisted of four treatments using two different sodic soils (sodic soil I and sodic soil II) and two BFGD rates. After the application of BFGD and leaching, the soil soluble salts were transformed from sodic salts containing Na2CO3 and NaHCO3 to neutral salts containing NaCl and Na2SO4. The sodium adsorption ratio (SAR), pH and electrical conductivity (EC) decreased at all soil depths, and more significantly in the top soil depth. At a depth of 0–40 cm in both sodic soil I and sodic soil II, the SAR, EC and pH were less than 13, 4 dS m−1 and 8.5, respectively. The changes in the chemical properties of the sodic soils reflected the changes in the ion composition of soluble salts. Leaching played a key role in the reclamation process and the reclamation effect was positively associated with the amount of leaching. The soil salts did not accumulate in the top soil layer, but there was a slight increase in the middle and bottom soil depths. The results demonstrate that the reclamation of sodic soils using BFGD is promising.  相似文献   

7.
Gypsum and sulfur have been used as amendments for application in sodic and saline sodic soils, although gypsum is not effective in soil pH reduction. In this study the combined effects of elemental sulfur inoculated with Acidithiobacillus (S*) and gypsum (G) in chemical attributes of a Brazilian solodic soil was evaluated. The treatments consisted in addition of S* and G in various levels (0, 0.8, 1.6, 2.4, and 3.2 t ha−1) and different mixing proportions (100:0, 75:25, 50:50, 25:75, and 100:0), acting during 15, 30, and 45 days. Sulfur inoculated with Acidithiobacillus (S*) markedly reduced soil pH in the leaching solution, especially when applied in the highest levels. Gypsum or sulfur applied individually was not satisfactory for soil reclamation. At 15 days of incubation Na+, Ca2+, and Mg2+ showed higher values in the leaching solution, and a marked decrease was observed in the leaching solution at 30 days. Reduction in soil electrical conductivity and in exchangeable Na+, Ca2+, and Mg2+ was observed and in a general way best results were achieved with S* : G in the ratio 50:50, using 2.4 and 3.2 t ha−1. Sulfur with Acidithiobacillus was more effective than gypsum in decreasing soil pH, and sulfur applied with gypsum in the proportion 50:50 showed the best results in relation to exchangeable sodium and electrical conductivity and showed values below those used for classification as sodic soils.  相似文献   

8.
A greenhouse experiment, growing maize for six weeks, was conducted to evaluate the ameliorative role of Zn (0 and 10 ppm Zn) under saline (ECe4, 8 and 12 mmhos/cm), Sodic (ESP 10, 20 and 30) and saline-sodic (all possible combinations of above salinity and sodicity levels), and normal soil conditions using a sandy loam (Typic Ustochrepts) soil sample.Zinc ameliorated plant growth under salt-affected soil conditions. Ameliorative effect was more under sodic than under saline or saline-sodic soil conditions. Shoot yield decreased with Salinity level of 12 mmhos/cm, and ESP 30 and adverse effects were accentuated with increasing level of ESP and Salinity, respectively.Shoot Zn increased with applied Zn. Increasing sodicity in soil under Zn deficient or low salinity conditions generally decreased shoot Zn, whereas the low level of soil salinization counteracted the adverse effect of high sodicity. Shoot Na increased but K decreased with increasing sodicity and salinity in soil. Shoot Na decreased but K increased with applied Zn. Shoot Ca increased with salinity levels of 4 and 8 mmhos/cm, but decreased with 12 mmhos/cm at 0 Zn level. Sodicity decreased shoot Ca, whereas Zn counteracted adverse effect of high sodicity. Shoot Mg generally increased with increasing salinity, but decreased with increasing sodicity. Zinc had no definite effect. Shoot Ca/Na and K/Na ratios were widened with Zn and narrowed down with high ESP.The effects of salinity, sodicity, and Zn on plant growth and its composition were generally associated with their respective roles in dry matter production, and inter-ionic relationships among Ca, Mg, K, Na and Zn in soils and plants.Contribution from the Department of Soils, Haryana Agricultural University, Hissar, 125004, Indiaformer Research Fellow, respectively.  相似文献   

9.
Plants of saline and sodic soils of the Hungarian steppe and of gypsum rock in the German Harz mountains, thus soils of high ionic strength and electric conductivity, were examined for their colonization by arbuscular mycorrhizal fungi (AMF). Roots of several plants of the saline and sodic soils such as Artemisia maritima, Aster tripolium or Plantago maritima are strongly colonized and show typical AMF structures (arbuscules, vesicles) whereas others like the members of the Chenopodiaceae, Salicornia europaea, Suaeda maritima or Camphorosma annua, are not. The vegetation of the gypsum rock is totally different, but several plants are also strongly colonized there. The number of spores in samples from the saline and sodic soils examined is rather variable, but high on average, although with an apparent low species diversity. Spore numbers in the soil adjacent to the roots of plants often, but not always, correlate with the degree of AMF colonization of the plants. As in German salt marshes [Hildebrandt et al. (2001)], the dominant AMF in the Hungarian saline and sodic soils is Glomus geosporum. All these isolates provided nearly identical restriction fragment length polymorphism (RFLP) patterns of the internal transcribed spacer (ITS) region of spore DNA amplified by polymerase chain reaction (PCR). Cloning and sequencing of several PCR products of the ITS regions indicated that ecotypes of the G. geosporum/ Glomus caledonium clade might exist at the different habitats. A phylogenetic dendrogram constructed from the ITS or 5.8S rDNA sequences was nearly identical to the one published for 18S rDNA data (Schwarzott et al. 2001). It is tempting to speculate that specific ecotypes may be particularly adapted to the peculiar saline or sodic conditions in such soils. They could have an enormous potential in conferring salt resistance to plants.  相似文献   

10.
Summary The availability of Ca from different levels of gypsum and calcium carbonate in a non-saline sodic soil has been investigated. Different levels of tagged gypsum (Ca45SO4.2H2O) and calcium carbonate (Ca45CO3) (i.e. 0, 25, 50, 75, and 100 per cent of gypsum requirement) were mixed thoroughly in 3.5 Kg of a non-saline alkali soil (ESP, 48.4; ECe, 2.68 millimhos/cm). Dhaincha (Sesbania aculeata) — a legume and barley (Hordeum vulgare L.) — a cereal were taken as test crops. Increasing levels of gypsum caused a gradual increase in the yield of dry matter, content of Ca and K in the plant tops and Ca:Na and (Ca+Mg):(Na+K) ratios in both the crops. Application of calcium carbonate caused a slight increase in the dry matter yield, content of Ca and Mg and Ca:Na and (Ca+Mg):(Na+K) ratios in barley, however, in case of dhaincha there was no such effect. Gypsum application caused a gradual decrease in the content of Na and P in both the crops. Total uptake of Ca, Mg, K, N and P per pot increased in response to gypsum application. The effect of calcium carbonate application on the total uptake of these elements was much smaller on dhaincha, but in barley there was some increasing trend.Increasing application of tagged gypsum and calcium carbonate caused a gradual increase in the concentration and per cent contribution of source Ca in both the crops, although, the rate of increase was considerably more in dhaincha. The availability of Ca from applied gypsum was considerably more than that from applied calcium carbonate. Efficiency of dhaincha to utilize Ca from applied sources was considerably more (i.e. about five times) than that of barley  相似文献   

11.
To study the effects of salinity-sodicity on bacterial population and enzyme activities, soil samples were collected from the Bay of Yellow Sea, Incheon, South Korea. In the soils nearest to the coastline, pH, electrical conductivity (ECe), sodium adsorption ratio (SAR), and exchangeable sodium percentage (ESP) were greater than the criteria of salinesodic soil, and soils collected from sites 1.5-2 km away from the coastline were not substantially affected by the intrusion and spray of seawater. Halotolerant bacteria showed similar trends, whereas non-tolerant bacteria and enzymatic activities had opposite trends. Significant positive correlations were found between EC, exchangeable Na+, and pH with SAR and ESP. In contrast, ECe, SAR, ESP, and exchangeable Na+ exhibited significant negative correlations with bacterial populations and enzyme activities. The results of this study indicate that the soil chemical variables related with salinity-sodicity are significantly related with the sampling distance from the coastline and are the key stress factors, which greatly affect microbial and biochemical properties.  相似文献   

12.
Wright  David  Rajper  Inayatullah 《Plant and Soil》2000,223(1-2):279-287
Two wheat varieties were grown in artificially created sodic soils in pots at a range of sodicity levels (exchangeable sodium percentage (ESP) 15–52), with and without an anionic polyacrylamide soil conditioner (PAM) to stabilise soil aggregates. Increasing sodicity decreased the % water stable aggregates (% WSA) in soil and survival, grain and straw yield of wheat. Plants grown at high sodicity also had higher Na+, lower K+ and Ca2+ concentrations and lower K+/Na+ ratio in flag leaf sap than plants grown in control (non-sodic) soil. Sodicity had no effect on the concentrations of Cu2+, Fe2+, Mn2+ and Zn2+ in grains and straw, but total uptake of these micronutrients was deceased due to lower dry weight of these tissues per plant. At all sodicity levels treatment of sodic soil with PAM increased the % WSA to values greater than in the non-sodic control soil, and slightly lowered ESP. Over the range ESP 15–44 the effects of PAM on wheat grain yield increased as sodicity increased, so that at ESP 44 grain yield in the treatment with PAM was only 25% lower than in the non-sodic control. However at ESP 52 the effects of PAM were smaller, and grain yield was 86% lower than in the control. At this sodicity level the decreases in grain yield due to sodicity and the increases in reponse to treatment of sodic soil with PAM were similar in the two varieties tested. At high sodicity levels (ESP 44 and 52) treatment of sodic soil with PAM decreased the concentration of Na+ and increased K+ and K+/Na+ ratio in flag leaf sap. However, at the highest sodicity level (ESP 52), flag leaf Na+ concentration remained above the level (100 mol m-3) at which it has been found to be toxic. Concentrations of Cu2+, Fe2+, Mn2+ and Zn2+ in grain and straw were unaffected by PAM. These results suggest that at ESP up to 40–50 adverse physical characteristics are the major cause of low wheat yield in sodic soils, either due to their direct effects in decreasing growth, or their indirect effects in increasing uptake of Na+ and decreasing uptake of K+. Above ESP 50, roots are less able to exclude Na+, even in the presence of improved soil physical conditions, so that at these sodicity levels, both adverse physical and adverse chemical properties contribute to the decreased yield. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
Highly soluble salts are undesirable in agriculture because they reduce yields or the quality of most cash crops and can leak to surface or sub-surface waters. In some cases salinity can be associated with unique history, rarity, or special habitats protected by environmental laws. Yet in considering the measurement of soil salinity for long-term monitoring purposes, adequate methods are required. Both saturated paste extracts, intended for agriculture, and direct surface and/or porewater salinity measurement, used in inundated wetlands, are unsuited for hypersaline wetlands that often are only occasionally inundated. For these cases, we propose the use of 1:5 soil/water (weight/weight) extracts as the standard for expressing the electrical conductivity (EC) of such soils and for further salt determinations. We also propose checking for ion-pairing with a 1:10 or more diluted extract in hypersaline soils. As an illustration, we apply the two-dilutions approach to a set of 359 soil samples from saline wetlands ranging in ECe from 2.3 dS m-1 to 183.0 dS m-1. This easy procedure will be useful in survey campaigns and in the monitoring of soil salt content.  相似文献   

14.
Wang  D.  Shannon  M. C. 《Plant and Soil》1999,214(1-2):117-124
Soybean is an important agricultural crop and has, among its genotypes, a relatively wide variation in salt tolerance. As measured by vegetative growth and yield, however, the achievement or failure of a high emergence ratio and seedling establishment in saline soils can have significant economic implications in areas where soil salinity is a potential problem for soybean. This study was conducted to determine the effects of salinity, variety and maturation rate on soybean emergence and seedling growth. Included in the study were the variety ‘Manokin’; four near-isogenic sibling lines of the variety ‘Lee’ belonging to maturity groups IV, V, VI and VII; and the variety ‘Essex’ and two of its near-isogenic related lines representing maturity groups V, VI and VII, respectively. Field plots were salinized with sodium chloride and calcium chloride salts prior to planting. The soybeans were irrigated with furrow irrigation which redistributed the salts towards the tail ends of the field plots. Elevated soil salinity near the tail ends of the field significantly reduced soybean emergence rate, shoot height and root length. No significant reduction was found for emergence or seedling growth of variety ‘Manokin’ when the electrical conductivity of soil solution extract (ECe) was less than 3 dS m−1. Soybean emergence and seedling growth was significantly reduced when soil ECe reached about 11 dS m−1. Maturity groups V and VII of variety ‘Lee’ or V and VI of ‘Essex’ appeared to be more sensitive to salinity stress than other maturity groups. Salt tolerance of different genotypes and maturity groups should be considered, among other limiting factors, in minimizing salinity effects on soybean growth. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
Suitable plant species are able to accumulate heavy metals and to produce biomass useful for non-food purposes. In this study, three endemic Mediterranean plant species, Atriplex halimus, Portulaca oleracea and Medicago lupulina were grown hydroponically to assess their potential use in phytoremediation and biomass production. The experiment was carried out in a growth chamber using half strength Hoagland's solutions separately spiked with 5 concentrations of Pb and Zn (5, 10, 25, 50, and 100 mg L?1), and 3 concentrations of Ni (1, 2 and 5 mg L?1). Shoot and root biomass were determined and analyzed for their metals contents. A. halimus and M. lupulina gave high shoot biomass with relatively low metal translocation to the above ground parts. Metals uptake was a function of both metals and plant species. It is worth noting that M. lupulina was the only tested plant able to grow in treatment Pb50 and to accumulate significant amount of metal in roots. Plant metal uptake efficiency ranked as follows: A. halimus > M. lupulina > P. oleracea . Due to its high biomass production and the relatively high roots metal contents, A. halimus and M. lupulina could be successfully used in phytoremediation, and in phytostabilization, in particular.  相似文献   

16.
Glasshouse and field studies showed that Vetiver grass can produce high biomass (>100t/tha?1 year?1) and highly tolerate extreme climatic variation such as prolonged drought, flood, submergence and temperatures (?15°–55°C), soils high in acidity and alkalinity (pH 3.3–9.5), high levels of Al (85% saturation percentage), Mn (578 mg kg?1), soil salinity (ECse 47.5 dS m?1), sodicity (ESP 48%), and a wide range of heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, Se, and Zn). Vetiver can accumulate heavy metals, particularly lead (shoot 0.4% and root 1%) and zinc (shoot and root 1%). The majority of heavy metals are accumulated in roots thus suitable for phytostabilization, and for phytoextraction with addition of chelating agents. Vetiver can also absorb and promote biodegradation of organic wastes (2,4,6-trinitroluene, phenol, ethidium bromide, benzo[a]pyrene, atrazine). Although Vetiver is not as effective as some other species in heavy metal accumulation, very few plants in the literature have a wide range of tolerance to extremely adverse conditions of climate and growing medium (soil, sand, and tailings) combined into one plant as vetiver. All these special characteristics make vetiver a choice plant for phytoremediation of heavy metals and organic wastes.  相似文献   

17.
Impacts of salinity become severe when the soil is deficient in oxygen. Oxygation (using aerated water for subsurface drip irrigation of crop) could minimize the impact of salinity on plants under oxygen-limiting soil environments. Pot experiments were conducted to evaluate the effects of oxygation (12% air volume/volume of water) on vegetable soybean (moderately salt tolerant) and cotton (salt tolerant) in a salinized vertisol at 2, 8, 14, 20 dS/m ECe. In vegetable soybean, oxygation increased above ground biomass yield and water use efficiency (WUE) by 13% and 22%, respectively, compared with the control. Higher yield with oxygation was accompanied by greater plant height and stem diameter and reduced specific leaf area and leaf Na+ and Cl-concentrations. In cotton, oxygation increased lint yield and WUE by 18% and 16%, respectively, compared with the control, and was accompanied by greater canopy light interception, plant height and stem diameter. Oxygation also led to a greater rate of photosynthesis, higher relative water content in the leaf, reduced crop water stress index and lower leaf water potential. It did not, however, affect leaf Na+ or Cl- concentration. Oxygation invariably increased, whereas salinity reduced the K+ : Na+ ratio in the leaves of both species. Oxygation improved yield and WUE performance of salt tolerant and moderately tolerant crops under saline soil environments, and this may have a significant impact for irrigated agriculture where saline soils pose constraints to crop production.  相似文献   

18.
Summary The response of lettuce (Lactuca sativa L.) to residual soil salinity as influenced by the ionic composition of two different saline waters (ECw=3.1 dS/m, referenced at 25°C) and rain water, was investigated in a greenhouse experiment with three successive plantings of lettuce in the same soil. One of the saline waters was saturated with gypsum (SO4=35 mol (−)m−3) and the other contained SO4 at 15 mol (−)m−3 and Na and Cl at 18 and 14 mol (±)m−3, respectively (mixed water). All waters were applied with a 0.3 leaching fraction. Soil water salinity and sodium adsorption ratio (SAR) increased in both cases using saline waters. The effect of mixed saline water was higher and became more marked after each planting, resulting from higher contribution of Na and Cl to soil salinity. With both saline waters, soil solution became saturated with gypsum. At first planting, gypsum saturated and mixed waters produced fresh yield increases of 15 and 24%, respectively, relative to rain water. At second planting, however, there was reduction in yield of 11 and 22%, respectively, relative to rain water; at third planting yield reduced by 22 and 76% with gypsum saturated and mixed water, respectively.  相似文献   

19.
Summary The effects of exchangeable sodium percentage (ESP) levels of 82, 72, 65 and 35 and 0, 15 and 30 days of presubmergence (submergence prior to the transplanting of rice) on yield and chemical composition of rice and availability of Fe, Mn, Zn and P in soil were studied factorially in a field experiment. Presubmergence increased rice yields at all ESP levels, the effect being more pronounced at high ESP's. Increasing ESP decreased yields and the contents of Ca, Mg, K, Fe, Mn, Zn and Cu but increased that of P and Na in the crop. Presubmergence enhanced absorption of all the above elements by the crop except P, K, Mg, Zn and Cu in the grain and decreased Na in grain and straw. Growing of rice under submerged conditions also facilitated the improvement of these soils. Effects of submergence and ESP on the availability of Fe, Mn, Zn and P in soil and their role in the nutrition of rice are discussed. The results suggest that 15 to 30 days presubmergence improved rice yields on a calcareous sodic soil of the Indo-Gangetic alluvial plain.  相似文献   

20.
Phytomanagement technology is recognized as an inexpensive and environmental friendly strategy for managing natural-occurring selenium (Se) in soils and in poor quality waters. Multi-year field and greenhouse studies were conducted with different plant species in California, USA and Punjab, India under high Se growing conditions. Some of the plant species included; canola (Brassica napus), mustard (B. juncea), broccoli (B. oleracea), spearmint (Mentha viridis), sugarcane (Saccharum officcinarum), guar (Cyamopsis tetragonoloba), wheat (Triticum aestivum), and poplar (Populus deltoides). California soils had a sodium-sulfate-dominated salinity between 6-10 dS m(-1), while Indian soils had a calcium carbonate salinity less than 1 dS m(-1). Results demonstrated that high sulfate conditions reduced plant Se accumulation more than 100 x in Californian grown plants compared to Se accumulation in Indian grown plants. Tissue concentrations generally did not exceed 10 and 200 mg kg DM(-1) in leaves of plants grown in California and India, respectively. At these plant concentrations, Se phytomanagement is more effective in Indian soils than in California soils. Successful management of Se by plants requires selecting crops or crop rotations that are tolerant of the soil condition and identifying and creating new viable Se-enriched products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号