首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Plague is a rodent disease transmissible to humans by infected flea bites, and Madagascar is one of the countries with the highest plague incidence in the world. This study reports the susceptibility of the main plague vector Xenopsylla cheopis to 12 different insecticides belonging to 4 insecticide families (carbamates, organophosphates, pyrethroids and organochlorines). Eight populations from different geographical regions of Madagascar previously resistant to deltamethrin were tested with a World Health Organization standard bioassay. Insecticide susceptibility varied amongst populations, but all of them were resistant to six insecticides belonging to pyrethroid and carbamate insecticides (alphacypermethrin, lambdacyhalothrin, etofenprox, deltamethrin, bendiocarb and propoxur). Only one insecticide (dieldrin) was an efficient pulicide for all flea populations. Cross resistances were suspected. This study proposes at least three alternative insecticides (malathion, fenitrothion and cyfluthrin) to replace deltamethrin during plague epidemic responses, but the most efficient insecticide may be different for each population studied. We highlight the importance of continuous insecticide susceptibility surveillance in the areas of high plague risk in Madagascar.  相似文献   

2.
The development of insecticide resistance is a threat to the control of malaria in Africa. We report the findings of a national survey carried out in Tanzania in 2011 to monitor the susceptibility of malaria vectors to pyrethroid, organophosphate, carbamate and DDT insecticides, and compare these findings with those identified in 2004 and 2010. Standard World Health Organization (WHO) methods were used to detect knock‐down and mortality rates in wild female Anopheles gambiae s.l. (Diptera: Culicidae) collected from 14 sentinel districts. Diagnostic doses of the pyrethroids deltamethrin, lambdacyhalothrin and permethrin, the carbamate propoxur, the organophosphate fenitrothion and the organochlorine DDT were used. Anopheles gambiae s.l. was resistant to permethrin in Muleba, where a mortality rate of 11% [95% confidence interval (CI) 6–19%] was recorded, Muheza (mortality rate of 75%, 95% CI 66–83%), Moshi and Arumeru (mortality rates of 74% in both). Similarly, resistance was reported to lambdacyhalothrin in Muleba, Muheza, Moshi and Arumeru (mortality rates of 31–82%), and to deltamethrin in Muleba, Moshi and Muheza (mortality rates of 28–75%). Resistance to DDT was reported in Muleba. No resistance to the carbamate propoxur or the organophosphate fenitrothion was observed. Anopheles gambiae s.l. is becoming resistant to pyrethoids and DDT in several parts of Tanzania. This has coincided with the scaling up of vector control measures. Resistance may impair the effectiveness of these interventions and therefore demands close monitoring and the adoption of a resistance management strategy.  相似文献   

3.
Toxicity of bendiocarb, chlorpyrifos, cyfluthrin, cypermethrin, fenvalerate, hydramethylnon, malathion, propetamphos, propoxur, and pyrethrins against the adult German cockroaches, Blattella germanica (L.), was investigated. At LD50, cyfluthrin was the most toxic insecticide to adult males (0.53 microgram/g), adult females (1.2 micrograms/g), and gravid females (0.85 microgram/g). Malathion was the least toxic insecticide to adult males (464.83 micrograms/g), adult females (335.83 micrograms/g), and gravid females (275.90 micrograms/g). Males and gravid females were generally more sensitive than nongravid females to the insecticides that we tested. In tests with malathion, however, males were more tolerant. The order of toxicity of the insecticide classes varied among the stages of adult German cockroaches. The order of toxicity for males and nongravid females was pyrethroids greater than pyrethrins = organophosphates (except malathion) greater than carbamates = amidinohydrazone. The order of toxicity for gravid females was pyrethroids greater than pyrethrins = organophosphates (except malathion) greater than carbamates greater than amidinohydrazone. These differences in toxicity suggest that sex differences should be considered when determining insecticide toxicity for German cockroaches.  相似文献   

4.
Cytochrome P450 monooxygenases are involved in insecticide resistance in insects. We previously observed an increase in CYP6P7 and CYP6AA3 mRNA expression in Anopheles minimus mosquitoes during the selection for deltamethrin resistance in the laboratory. CYP6AA3 has been shown to metabolize deltamethrin, while no information is known for CYP6P7. In this study, CYP6P7 was heterologously expressed in the Spodoptera frugiperda (Sf9) insect cells via baculovirus‐mediated expression system. The expressed CYP6P7 protein was used for exploitation of its enzymatic activity against insecticides after reconstitution with the An. minimus NADPH‐cytochrome P450 reductase enzyme in vitro. The ability of CYP6P7 to metabolize pyrethroids and insecticides in the organophosphate and carbamate groups was compared with CYP6AA3. The results revealed that both CYP6P7 and CYP6AA3 proteins could metabolize permethrin, cypermethrin, and deltamethrin pyrethroid insecticides, but showed the absence of activity against bioallethrin (pyrethroid), chlorpyrifos (organophosphate), and propoxur (carbamate). CYP6P7 had limited capacity in metabolizing λ‐cyhalothrin (pyrethroid), while CYP6AA3 displayed activity toward λ‐cyhalothrin. Kinetic properties suggested that CYP6AA3 had higher efficiency in metabolizing type I than type II pyrethroids, while catalytic efficiency of CYP6P7 toward both types was not significantly different. Their kinetic parameters in insecticide metabolism and preliminary inhibition studies by test compounds in the flavonoid, furanocoumarin, and methylenedioxyphenyl groups elucidated that CYP6P7 had different enzyme properties compared with CYP6AA3. © 2011 Wiley Periodicals, Inc.  相似文献   

5.
Formulations used for control of German cockroaches, Blattella germanica (L.), were investigated. The insecticides tested on gravid females were bendiocarb, chlorpyrifos, cyfluthrin, cypermethrin, fenvalerate, hydramethylnon, malathion, propetamphos, propoxur, and pyrethrins. Exposure to each insecticide increased the frequency of oothecal drop and reduced the percentage oothecal hatch. The percentage of oothecae that were dropped increased as a curvilinear function of insecticide concentration. An LD50 of propoxur to female German cockroaches resulted in the greatest oothecal drop (83.50%); fenvalerate caused the least drop (22.60%). LD50's of cypermethrin, propetamphos, and propoxur resulted in 29.60, 31.807, and 37.30% hatch from dropped oothecae, respectively. The smallest percentage hatch from retained oothecae was caused by LD50's of propoxur (1.5%) and cyfluthrin (7.70%). Retained oothecae from females treated with an LD50 of fenvalerate (68.70%) or pyrethrins (68.70%) had the greatest percentage hatch. Total percentage hatch (dropped and retained oothecae) declined exponentially as the insecticide concentration increased. An LD50 of cypermethrin limited total oothecal hatch to 24.50%, whereas LD50's of fenvalerate, malathion, and pyrethrins resulted in 53.60, 52.20, and 58.90% hatch, respectively. Mean time to oothecal hatch increased linearly with increasing insecticide concentration for all insecticides tested.  相似文献   

6.
The susceptibility of members of the Anopheles sinensis Group in Korea to insecticides was evaluated under laboratory conditions using 15 insecticides currently used by local public health centers in Korea. The insecticides included eight pyrethroids, six organophosphates and a pyrazol analogue. Based on their LC50 values, the order of susceptibility of An. sinensis larvae to the insecticides was bifenthrin, chlorfenapyr, α-cypermethrin and λ-cyhalothrin, with values of 0.009, 0.04, 0.06 and 0.08 p.p.m., respectively. The least susceptibility was obtained with fenitrothion, with an LC50 of 7.7 p.p.m. In the comparative resistance test, the resistance ratios (RR) of 14 insecticides were compared to each other using two strains of members of the An. sinensis Group collected in the locality in 2001 and 2008. Anopheles spp. demonstrated higher RR to organophosphates such as fenthion, and low RR for the pyrethroids. Among the organophosphates, fenthion had the highest RR of 33.3 and 270.0 fold differences for LC50 and LC90 values, respectively. Among the pyrethroids, permethrin was observed to have the highest RR of 3.8 and 1.8 fold differences for LC50 and LC90 values, respectively. However, there were no significant differences in susceptibility to chlorfenapyr, chlorpyrifos, deltamethrin and fenitrothion. An. sinensis s. l. was more susceptible to the six insecticides bifenthrin, λ-cyhalothrin, α-cypermethrin, cypermethrin, cyfluthrin and pyridafenthion, showing 0.03, 0.06, 0.3, 0.3, 0.4 and 0.4 fold differences in resistance rates (RR LC50), respectively.  相似文献   

7.
Forty-five field-collected strains of German cockroaches, Blattella germanica were tested for resistance to 12 different insecticides by the time-mortality response method in comparison with a known susceptible strain. Only low to moderate resistance to diazinon, chlorpyrifos, and acephate was detected. Resistance to malathion was widespread; about half of the strains tested showed high resistance. High resistance to the carbamates propoxur and bendiocarb also occurred. High resistance was uncommon with propoxur, but about 35 strains were highly resistant to bendiocarb. High resistance to pyrethrins was observed in about of the strains tested. Resistance to the pyrethroids allethrin, permethrin, phenothrin, fenvalerate, and cyfluthrin was detected in some of the strains examined. All of the strains tested were susceptible to one or more of the insecticides used. These results indicate that, although resistance is a serious problem in this species, satisfactory control should be possible by selection of an appropriate insecticide.  相似文献   

8.
Oriental fruit flies, Bactrocera dorsalis (Hendel), were treated with 10 insecticides, including six organophosphates (naled, trichlorfon, fenitrothion, fenthion, formothion, and malathion), one carbamate (methomyl), and three pyrethroids (cyfluthrin, cypermethrin, and fenvalerate), by a topical application assay under laboratory conditions. Subparental lines of each generation treated with the same insecticide were selected for 30 generations and were designated as x-r lines (x, insecticide; r, resistant). The parent colony was maintained as the susceptible colony. The line treated with naled exhibited the lowest increase in resistance (4.7-fold), whereas the line treated with formothion exhibited the highest increase in resistance (up to 594-fold) compared with the susceptible colony. Synergism bioassays also were carried out. Based on this, S,S,S-tributyl phosphorotrithioate displayed a synergistic effect for naled, trichlorfon, and malathion resistance, whereas piperonyl butoxide displayed a synergistic effect for pyrethroid resistance. All 10 resistant lines also exhibited some cross-resistance to other insecticides, not only to the same chemical class of insecticides but also to other classes. However, none of the organophosphate-resistant or the methomyl-resistant lines exhibited cross-resistance to two of the pyrethroids (cypermethrin and fenvalerate). Overall, the laboratory resistance and cross-resistance data developed here should provide useful tools and information for designing an insecticide management strategy for controlling this fruit fly in the field.  相似文献   

9.
Insecticide bioassays and biochemical microtitre assays were compared for detection of resistance to the organophosphate insecticides malathion and fenitrothion, using inbred laboratory strains of malaria vectors Anopheles albimanus Wiedemann, An.arabiensis Patton and An.stephensi Liston. With susceptible mosquitoes, the LT100 values determined from bioassays corresponded closely with times taken to abolish the activity of acetylcholinesterase activity in biochemical assays: approximately 2 h for malathion and 3 h for fenitrothion. Resistant strains of all three anophelines showed longer survival correlated with prolonged acetylcholinesterase activity. An.albimanus strains with insensitive acetylcholinesterase survived bioassays with discriminating doses of 1 h exposure to 5% malathion or 1% fenitrothion and were judged as resistant. It is concluded that enzyme-specific microassays provide a reliable means of detecting resistant individuals, with practical advantages over bioassays which do not reveal the resistance mechanism and require large numbers of healthy mosquitoes.  相似文献   

10.
The susceptibility of representative pyrethroid (cypermethrin, deltamethrin, lambdacyhalothrin, bifenthrin), organophosphate (chlorpyriphos, triazophos, profenophos) and new chemistry insecticides (spinosad, indoxacarb and emamectin) was investigated for 18 field populations of Plutella xylostella (Linnaeus) from three different zones in Pakistan. The LC(50) (mg ml(-1); 48 h) values of pyrethroids for various populations ranged from 0.19-1.88 for cypermethrin, 0.31-2.64 for deltamethrin, 0.08-1.16 for lambdacyhalothrin and 0.07-0.88 for bifenthrin. The LC(50) (mg ml(-1); 48 h) of organophosphates ranged from 0.52-5.67 for chlorpyriphos, 0.37-4.14 for triazophos and 0.03-2.65 for profenophos. The most probable reason for low toxicity of organophosphates and pyrethroids is the evolution of multiple resistance mechanisms; however, further studies are required to establish these mechanisms. When these same products were tested against a susceptible laboratory population (Lab-Pak), the new chemistry compounds were significantly more toxic than pyrethroids and organophosphates. The results are discussed in relation to integrated pest management and insecticide resistance management strategies for P. xylostella.  相似文献   

11.
The toxicity of the most commonly used insecticides of organochlorine, organophosphate, pyrethroid, and carbamate groups were investigated against Spodoptera litura (F.) (Lepidoptera: Noctuidae) populations collected for three consecutive years (2004-2006). For a chlorocyclodiene and pyrethroids tested, the resistance ratios compared with Lab-PK were in the range of 10- to 92-fold for endosulfan, 5- to 111-fold for cypermethrin, 2- to 98-fold for deltamethrin, and 7- to 86-fold for beta-cyfluthrin. For organophosphates and carbamates, resistance ratios were in the range of 3- to 169-fold for profenofos, 18- to 421-fold for chlorpyrifos, 3- to 160-fold for quinalphos, 6- to 126-fold for phoxim, 7- to 463-fold for triazophos, and 10- to 389-fold for methomyl and 16- to 200-fold for thiodicarb. Resistance ratios were generally low to medium for deltamethrin and beta-cyfluthrin and high to very high for endosulfan, cypermethrin, profenofos, chlorpyrifos, quinalphos, phoxim, triazophos, methomyl, or thiodicarb. Pairwise comparisons of the log LC50 values of insecticides tested for all the populations showed correlations among several insecticides, suggesting a cross-resistance mechanism. Integration of timely judgment of pest problem, delimiting growing of alternate crops such as arum, rotation of insecticides with new chemicals, and insect growth regulators in relation to integrated pest management could help in manageable control of this important pest.  相似文献   

12.
As pyrethroids are presently the favored group of insecticides to control triatomines, we performed a series of bioassays to determine the intrinsic activity of some of the main compounds used in the control campaigns, against five of the main species of triatomines to be controlled. Comparing the insecticides it can be seen that lambdacyhalothrin is more effective than the other three pyrethroids, both considering the LD50 and 99 for all the three species with comparable results. On Triatoma infestans the LD50 of lambdacyhalothrin was followed by that of alfacypermethrin, cyfluthrin and deltamethrin. On Rhodnius prolixus the sequence, in decreasing order of activity, was lambdacyhalothrin, alfacypermethrin, deltamethrin and cyfluthrin. Some modifications can be seen when we compare the LD99, that has more to see to what happens in the field. T. brasiliensis showed to be as sensible to lambdacyhalothrin as T. infestans, the most susceptible for this product. By the other side T. sordida is the least susceptible considering the LD99 of this insecticide.  相似文献   

13.
Samples of the cotton aphid, Aphis gossypii Glover, populations collected from the vicinity of Multan in central Pakistan from 1997 to 2000 were evaluated for pyrethroid resistance in comparison with a susceptible laboratory colony using a leaf-dip bioassay. Resistance to seven pyrethroid insecticides viz. cypermethrin, alphacypermethrin, zetacypermethrin, cyfluthrin, fenpropathrin, bifenthrin, and lambdacyhalothrin was generally very high. However, A. gossypii consistently showed lower resistance to deltamethrin than to other pyrethroids. The lower deltamethrin resistance implies that deltamethrin might be less affected by the resistance mechanism(s) present, a feature that could potentially be exploited in strategies for managing A. gossypii. The influence of insecticide use on cotton on the extent and dynamics of resistance in A. gossypii is discussed.  相似文献   

14.
A survey of farms in northern New South Wales and southeastern, central, western and northern Queensland was conducted to determine levels of insecticide resistance in populations of buffalo fly Haematobia irritans exigua. A field bioassay using discriminating concentrations of 10 insecticides commonly used for buffalo fly control was used. Resistance to all synthetic pyrethroids tested (cypermethrin, deltamethrin, cyhalothrin, flumethrin and cyfluthrin) was common and widespread in coastal zones, but was lower in inland zones. In contrast, there was no resistance to the organophosphate diazinon and only low levels of resistance to ethion and chlorfenvinfos. Synergism between piperonyl butoxide and cypermethrin was demonstrated.  相似文献   

15.
Standard WHO insecticide bioassay tests were carried out in Gorgora, northern Ethiopia to evaluate the susceptibility status of Anopheles pharoensis Theobald for the insecticides DDT, malathion, permethrin and deltamethrin. The mortality and when appropriate knockdown effect of the insecticides were observed. The results indicated that this species was resistant to DDT. A high mortality was obtained after exposure to permethrin and deltamethrin but below 97 % which is the limit for susceptibility according to WHO. A prolonged knockdown time was noted for DDT and the two pyrethroids. An. phoaroensis was found to be susceptible to malathion.  相似文献   

16.
Helicoverpa armigera (Hübner) populations from West Africa recently developed resistance to pyrethroid insecticides through enhanced metabolism by mixed-function oxidases. The combination index method was used to study the synergism of pyrethroids by organophosphorus insecticides. Several mixtures of insecticides currently registered to control cotton pest complex in West Africa were tested, including: cypermethrin/ethion, cypermethrin/profenofos, deltamethrin/ triazophos, deltamethrin/chlorpyriphos, cyfluthrin/chlorpyriphos, and betacyfluthrin/chlorpyriphos. In the resistant strain, the organophosphorus insecticides significantly increased the toxicity of pyrethroids suppressing the resistance effect, either by additive or synergistic effects. Significant synergism was shown for the following mixtures: cypermethrin/ethion, deltamethrin/triazophos, and deltamethrin/chlorpyriphos. The use of synergism from these insecticide mixtures should prove to be an additional tool in the overall resistance management strategy because the pyrethroid resistance in H. armigera from West Africa is not yet stable, decreasing between cotton seasons and increasing with treatments. In absence of selection, the susceptibility of H. armigera to insecticides should be restored.  相似文献   

17.
To investigate insecticide resistance and dynamic changes of carboxylesterase polymorphism in mosquitoes with time in the Culex pipiens complex (Diptera: Culicidae), nine field mosquito populations were collected in China. The resistance levels of fourth-instar larvae to organophosphate (dichlorvos, parathion, and chlorpyrifos), carbamate (fenobucarb and propoxur), and pyrethroid (permethrin, deltamethrin and tetramethrin) insecticides were determined by bioassay. Larvae had more resistance to organophosphate insecticides than to carbamate insecticides. A low but significant resistance was observed for carbamate insecticides. The resistance to pyrethroid insecticides varied from sensitive to high. Starch gel electrophoresis revealed the presence of the overproduced esterases B1, A2B2, A8B8, A9B9, B10 and A11B11. The frequency of each overproduced esterases varied depending on its regional localities. Compared with published surveys, the C. pipiens complex, which exhibited a high polymorphism of applied esterase alleles in China, showed dynamic evolution over time under local specific insecticide selection. The results are discussed in the context of recent alterations to insecticide campaigns, and in the evolution of resistance genes in Chinese C. pipiens populations.  相似文献   

18.
In this study, we assessed the potential for the development of resistance to the insecticide spinosad in a laboratory colony of the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). Resistance was selected by using topical applications of spinosad. After eight generations of selection, the LD50 of the selected line was 408 times greater compared with that of the untreated parental colony. This spinosad-resistant line did not exhibit cross-resistance to 10 other insecticides tested, including six organophosphates (naled, trichlorfon, fenitrothion. fenthion, formothion, and malathion) one carbamate (methomyl), and three pyrethroids (cyfluthrin, cypermethrin, and fenvalerate). However, using lines previously selected for resistance to these same insecticides, two of the 10 lines tested (naled- and malathion-resistant) did show some cross-resistance to spinosad. Also, oriental fruit flies from different field collections where naled and malathion have been used for control purposes displayed some resistance to spinosad. In addition, the effects of direct ingestion of spinosad through dietary supplementation also were tested. Overall, the laboratory resistance and cross-resistance data developed in this study provide new information that will be useful for managing the development of resistance when spinosad is used to control B. dorsalis in the field.  相似文献   

19.
Adult brown, Euschistus servus (Say); green, Acrosternum hilare (Say); and southern green, Nezara viridula (L.), stink bugs were collected from soybean, Glycine max (L.) Merr., in fall 2001 and 2002 near Stoneville, MS, and Eudora, AR. A glass-vial bioassay was used to determine LC50 values for the three species of stink bugs for the pyrethroids bifenthrin, cypermethrin, cyfluthrin, lambda-cyhalothrin, and permethrin, and the organophosphates acephate, dicrotophos, malathion, and methyl parathion. Results confirmed findings of other researchers that the brown stink bug was less susceptible to pyrethroid and organophosphate insecticides than were green and southern green stink bugs. The susceptibility of all three stink bug species to the insecticides tested was very similar at both test locations. The study established baseline insecticide mortality data from two locations in the mid-South for three stink bug species that are pests of soybean and cotton, Gossypium spp. Data from the tests are valuable for future use in studies on resistance and in resistance monitoring programs.  相似文献   

20.
亚洲小车蝗痘病毒(Oedaleus asiaticus entomopoxvirus, OaEPV)作为一种增效剂,分别与马拉硫磷、毒死蜱、高效氯氰菊酯、氟氯氰菊酯 、溴氰菊酯化学杀虫剂混合饲喂亚洲小车蝗若虫,统计致死中浓度 LC50 和其混合使用后的增效比;测定虫体内与抗性有关的两种重要酶——羧酸酯酶(CarE)和谷胱甘肽 S-转移酶(GSTs)的比活力。结果表明:OaEPV 与化学杀虫剂混合饲喂亚洲小车蝗,OaEPV 与毒死蜱 、高效氯氰菊酯、氟氯氰菊酯、溴氰菊酯混用对亚洲小车蝗无明显的增效作用,OaEPV 与马拉硫磷混用,具有一定的增效作用,增效比为 1.42 倍。混剂感染亚洲小车蝗,除与溴氰菊酯混用外,虫体的中肠部位 CarE 的比活力都受到了明显的抑制作用,其中 OaEPV 与马拉硫磷混用下降了 4.21 倍,抑制作用最大。当 OaEPV 与氟氯氰菊酯、溴氰菊酯化学杀虫剂混用后,中肠部位 GSTs 受到了明显的抑制作用,而其脂肪体部位 CarE 和 GSTs 的变化无一定的规律性。结果提示痘病毒与农药混合处理时,病毒主要通过抑制中肠部位 CarE 比活力而增加了农药的杀虫效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号