共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
A novel microbial-screening procedure was developed for separate detection of 1,4-butanediol, ethylene glycol, and adipic acid, three commercially important oxychemicals potentially derivable from bacterial omega-oxidation of n-butanol, ethanol, and hexanoic acid, respectively. The screening method involved postproduction addition of one of several specific Pseudomonas strains which produce a soluble fluorescent pigment during growth on the product of interest. A mutation and selection procedure was developed for isolation of specific strains with phenotypes for growth and pigment production on the desired product (e.g., 1,4-butanediol), but not on its bioconversion substrate (e.g., n-butanol), common by-products (e.g., n-butyrate), or product isomers. Pigment production was growth associated and required cultivation of the screening strains under limiting Fe3+ concentrations. The pigments resembled well-characterized, iron-chelating siderophores produced by other fluorescent pseudomonads. The sensitivity of the assay for product accumulation was enhanced by (i) conducting the screening in microtiter dishes to permit examination of individual isolates of putative producers and to control product diffusion, (ii) using a wavelength cutoff filter to reduce background source light, and (iii) using adapted screening strains which grew at lower (0.3 mM) concentrations of test compounds. The potential utility of the method for detecting a variety of oxidative catabolic products is discussed. 相似文献
4.
A mixed culture with the ability to aerobically biodegrade 1,4-dioxane in the presence of tetrahydrofuran (THF) was enriched from a 1,4-dioxane contaminated aquifer. This consortium contained 3–4 morphologically different types of colonies and was grown in mineral salts media. Biodegradation of 1,4- dioxane began when THF concentrations in batch experiments became relatively low. No biodegradation of 1,4-dioxane was observed in the absence of THF and the measured cell yield was similar during degradation of 1,4-dioxane with THF or with THF alone. However, when the consortium was grown in the presence of 14C-1,4-dioxane plus THF, 2.1% of the radiolabeled 1,4-dioxane was present in the particulate fraction. The majority of the 14C (78.1%) was recovered as 14CO2, while 5.8% remained in the liquid fraction. This activity is interesting since the non-growth substrate is mineralized, yet only minimally assimilated into biomass. Using THF as the growth substrate, 1,3-dioxane, methyl t-butyl ether, ethyl t-butyl ether and t-amyl methyl ether. 相似文献
5.
6.
Effect of increasing concentrations of two of the polyols, ethylene glycol (EG) and polyethylene glycol (PEG), was studied by near and far circular dichroism (CD), fluorescence emission spectroscopy, and binding of hydrophobic dye, 1-anilino-8-naphthalene sulfonic acid (ANS). Far-UV CD spectra show the transition of acid-unfolded trypsinogen from an unordered state to an intermediate state having ordered secondary structure. Interestingly, near-UV CD spectra show some amounts of stabilizing effect on the tertiary structure of the protein also. Tryptophan fluorescence studies indicate the change in the environment of the tryptophan residues on addition of EG and PEG. Maximum ANS binding occurs in presence of 80% EG and 90% PEG (v/v), suggesting the presence of an intermediate or molten globule-like state at high concentrations of the two polyols. 相似文献
7.
8.
9.
10.
Andrew Willetts 《Biochimica et Biophysica Acta (BBA)/General Subjects》1981,677(2):194-199
Metabolism of ethylene glycol as the sole source of carbon by a species of Flavobacterium was affected by the dissolved oxygen tension of the growth medium. Under strongly aerobic conditions the diol was exclusively metabolised to glycollate by an initial oxidase, subsequently metabolised to acetyl-CoA with no net change in ATP, and then oxidised to CO2, by the tricarboxylic acid cycle yielding large amounts of reduced nicotinamide nucleotides which were used to generate a net gain in ATP by oxidative phospsorylation. Under miccroaerophilic conditions, some ethylene glycol after initial metabolism to acetyl-CoA by the oxidase-initiated pathway, was subsequently catabolised to acetyl phosphate and then acetate, yielding a net gain in ATP by substrate-level phosphorylation: additionally some diol was catabolised by an inducible diol dehydratase to acetaldehyde and subsequently reduced to ethanol as a terminal metabolite. 相似文献
11.
Reagent-grade ethylene glycol has been shown to contain substantial amounts of aldehydes, peroxides, iron, and uv-absorbing hydrocarbons. These impurities can be removed by reduction with sodium borohydride, dilution with H2O, passing through a train of four columns, and filtering through a 0.45-micron filter. The product is stable for at least several months and perhaps much longer; storage under nitrogen in acid-washed dark bottles is preferable. Ten liters of 25% (v/v) aqueous ethylene glycol can easily be purified in about 1 week using equipment commonly available in a biochemical laboratory. This purification is also applicable to aqueous glycerol. 相似文献
12.
A novel microbial-screening procedure was developed for separate detection of 1,4-butanediol, ethylene glycol, and adipic acid, three commercially important oxychemicals potentially derivable from bacterial omega-oxidation of n-butanol, ethanol, and hexanoic acid, respectively. The screening method involved postproduction addition of one of several specific Pseudomonas strains which produce a soluble fluorescent pigment during growth on the product of interest. A mutation and selection procedure was developed for isolation of specific strains with phenotypes for growth and pigment production on the desired product (e.g., 1,4-butanediol), but not on its bioconversion substrate (e.g., n-butanol), common by-products (e.g., n-butyrate), or product isomers. Pigment production was growth associated and required cultivation of the screening strains under limiting Fe3+ concentrations. The pigments resembled well-characterized, iron-chelating siderophores produced by other fluorescent pseudomonads. The sensitivity of the assay for product accumulation was enhanced by (i) conducting the screening in microtiter dishes to permit examination of individual isolates of putative producers and to control product diffusion, (ii) using a wavelength cutoff filter to reduce background source light, and (iii) using adapted screening strains which grew at lower (0.3 mM) concentrations of test compounds. The potential utility of the method for detecting a variety of oxidative catabolic products is discussed. 相似文献
13.
W Curatolo 《Biochimica et biophysica acta》1985,817(1):134-138
Aqueous dispersions of n-acyl cerebrosides are known to exhibit metastable polymorphism of the type: (Formula: see text). The involvement of hydration in this metastable polymorphism has been investigated by differential scanning calorimetric studies of aqueous palmitoylgalactocerebroside (C16:0-CER) dispersions in the presence of agents which disrupt water structure. In the presence of 50 vol% ethylene glycol or 50 vol% dimethyl sulfoxide, only a single reversible ordered----liquid-crystalline transition is observed. This single ordered----liquid-crystalline transition exhibits a smaller enthalpy and occurs at a lower temperature than the major Polymorph II----liquid-crystal transition observed for dispersions in water alone. These results indicate that metastable polymorphism in C16:0-CER is related to hydration. 相似文献
14.
Bovine oocyte vitrification: effect of ethylene glycol concentrations and meiotic stages 总被引:1,自引:0,他引:1
Magnusson V Feitosa WB Goissis MD Yamada C Tavares LM D'Avila Assumpção ME Visintin JA 《Animal reproduction science》2008,106(3-4):265-273
Success in oocyte cryopreservation is limited and several factors as cryoprotectant type or concentration and stage of oocyte meiotic maturation are involved. The aim of the present study was to evaluate the effect of maturation stage and ethylene glycol (EG) concentration on survival of bovine oocytes after vitrification. In experiment 1, kinetics of oocyte in vitro maturation (IVM) was evaluated. Germinal vesicle (GV), germinal vesicle breakdown (GVBD), metaphase I (MI), and metaphase II (MII) oocytes were found predominantly at 0, 0–10, 10–14, and 18–24 h of IVM, respectively. In experiment 2, in vitro embryo development after in vitro fertilization (IVF) of oocytes exposed to equilibrium (ES) and vitrification solution VS-1 (EG 30%), or VS-2 (EG 40%) at 0, 12 or 18 h of IVM was evaluated. Only blastocyst rate from oocytes vitrified in SV-2 after 18 h of IVM was different from control oocytes. Hatched blastocyst rates from oocytes vitrified in VS-1 after 12 and 18 h, and SV-2 after 18 h of IVM were different from unvitrified oocytes. In experiment 3, embryo development was examined after IVF of oocytes vitrified using VS-1 or VS-2 at 0, 12 or 18 h of IVM. Rates of blastocyst development after vitrification of oocytes in VS-1 at each time interval were similar. However, after vitrification in VS-2, blastocyst rates were less at 18 h than 0 h. Both cleavage rates and blastocyst rates were significantly less in all vitrification groups when compared to control group and only control oocytes hatched. In conclusion, both EG concentration and stage of meiotic maturation affect the developmental potential of oocytes after vitrification. 相似文献
15.
Grape seed extract treatment in ethylene glycol (EG) induced nephrotoxic mice improved antioxidant status and significantly decreased urinary lactate dehydrogenase (LDH) and lipid peroxidation. The extract rendered antioxidant protection against oxidative stress induced by EG and may help in protecting renal tissue against EG toxicity. 相似文献
16.
An actinomycete capable of sustained aerobic growth on 1,4-dioxane was isolated from a dioxane-contaminated sludge samples. The actinomycete, CB1190, grows on 1,4-dioxane as the sole carbon and energy source with a generation time of approximately 30 h. CB1190 degrades 1,4-dioxane at a rate of 0.33 mg of dioxane min-1 mg of protein-1 and mineralizes 59.5% of the dioxane to CO2. CB1190 also grows with other cyclic and linear ethers as the sole carbon and energy sources, including 1,3-dioxane, 2-methyl-1,3-dioxolane, tetrahydrofuran, tetrahydropyran, diethyl ether, and butyl methyl ether. CB1190 is capable of aerobic autotrophic growth on H2 and CO2. 相似文献
17.
Conformation of DNA in ethylene glycol 总被引:7,自引:0,他引:7
18.
19.
The potential on anaerobic biodegradation of 1,4-dioxane was evaluated by use of enriched Fe(III)-reducing bacterium sludge from Hangzhou municipal wastewater treatment plant. The soluble Fe(III) supplied as Fe(III)-EDTA was more available for the Fe(III)-reducing bacterium in the sludge compared to insoluble Fe(III) oxide. The addition of humic acid (HA) further stimulated the anaerobic degradation of 1,4-dioxane accompanying with apparent reduction of Fe(III) which is believed that HA could stimulate the activity of Fe(III)-reducing bacterium by acting as an electron shuttle between Fe(III)-reducing bacterium and Fe(III), especially for insoluble Fe(III) oxides. After 40-day incubation, the concentration of 1,4-dioxane dropped up to 90% in treatment of Fe(III)-EDTA+HA. Further study proved that more than 50% of the carbon from 1,4-dioxane was converted to CO2 and no organic products other than biomass accumulated in the growth medium. The results demonstrated that, under the appropriate conditions, 1,4-dioxane could be biodegraded while serving as a sole carbon substrate for the growth of Fe(III)-reducing bacterium. It might be possible to design strategies for anaerobic remediation of 1,4-dioxane in contaminated subsurface environments. 相似文献
20.
Nakamiya K Hashimoto S Ito H Edmonds JS Morita M 《Applied and environmental microbiology》2005,71(3):1254-1258
By using 1,4-dioxane as the sole source of carbon, a 1,4-dioxane-degrading microorganism was isolated from soil. The fungus, termed strain A, was able to utilize 1,4-dioxane and many kinds of cyclic ethers as the sole source of carbon and was identified as Cordyceps sinensis from its 18S rRNA gene sequence. Ethylene glycol was identified as a degradation product of 1,4-dioxane by the use of deuterated 1,4-dioxane-d8 and gas chromatography-mass spectrometry analysis. A degradation pathway involving ethylene glycol, glycolic acid, and oxalic acid was proposed, followed by incorporation of the glycolic acid and/or oxalic acid via glyoxylic acid into the tricarboxylic acid cycle. 相似文献