首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
普通小球藻对养殖污水脱氮除磷的效果研究   总被引:1,自引:0,他引:1  
随着我国养殖业的不断发展,养殖污水排放量的日益增加,养殖污水的高氮、磷含量导致水体富营养化问题日趋严重。小球藻是光能自养生物,能有效同化氮、磷,使污水中的氮、磷减少。本研究通过在实验室模拟不同氮、磷含量的养殖污水环境,分析小球藻对氮、磷的去除效果;在此基础上,用小球藻处理某养殖场污水;并联合膨润土与小球藻,探究两者脱氮除磷的协同作用能力及膨润土对小球藻细胞沉降的效果。结果表明,小球藻对模拟污水的氨氮去除率可达80%,对磷酸根的最高去除率接近100%;对养殖污水中的氮、磷也有一定的去除效果;但养殖污水成分复杂,小球藻的生长被抑制。膨润土与小球藻的结合,能够提高污水中的氮磷去除率并帮助藻细胞快速沉降,为污水处理后藻细胞的收集处理提供了有效方法。  相似文献   

2.
利用普通小球藻Chlorella vugaris C9-JN2010处理蓝藻-猪粪沼液废水,以实现废水无害化利用。实验考察了氮磷比和沼液浓度对小球藻生长及处理废水效果的影响,结果表明:在氮磷比(20:1)和沼液浓度(5%)条件下培养小球藻,藻细胞生长和废水处理效果最佳,最高细胞干重及生产强度分别为900.1 mg·L~(-1)和85.1 mg·L~(-1)·d~(-1),废水中总氮、总磷、氨氮的去除率分别为84.6%、95.9%和90.5%,对应去除强度分别为5.43 mg·L~(-1)·d~(-1)、0.30 mg·L~(-1)·d~(-1)和4.75 mg·L~(-1)·d~(-1)。利用小球藻可较彻底的去除蓝藻-猪粪沼液废水中氮、磷等营养,达到污水处理效果。  相似文献   

3.
The feasibility of using a microalga Chlorella vulgaris YSW-04 was investigated for removal of nutrients from piggery wastewater effluent. The consequent lipid production by the microalga was also identified and quantitatively determined. The wastewater effluent was diluted to different concentrations ranging from 20 to 80 % of the original using either synthetic media or distilled water. The dilution effect on both lipid production and nutrient removal was evaluated, and growth rate of C. vulgaris was also monitored. Dilution of the wastewater effluent improved microalgal growth, lipid productivity, and nutrient removal. The growth rate of C. vulgaris was increased with decreased concentration of piggery wastewater in the culture media regardless of the diluent type. Lipid production was relatively higher when using synthetic media than using distilled water for dilution of wastewater. The composition of fatty acids accumulated in microalgal biomass was dependent upon both dilution ratio and diluent type. The microalga grown on a 20 % concentration of wastewater effluent diluted with distilled water was more promising for generating high-efficient biodiesel compared to the other culture conditions. The highest removal of inorganic nutrients was also achieved at the same dilution condition. Our results revealed the optimal pretreatment condition for the biodegradation of piggery wastewater with microalgae for subsequent production of high-efficient biodiesel.  相似文献   

4.
The main objective of this laboratory scale experiment was to study the effect of l-glutamic acid on the growth in media and removal of ammonium from ammonium solution and natural wastewater by Chlorella vulgaris NTM06. It was observed that higher levels (1.0% and 1.5%) of l-glutamic acid compared to control (0% l-glutamic acid) negatively affected growth of C. vulgaris NTM06 and enhanced removal of ammonium from ammonium solution as well as natural wastewater. After 24h of incubation, 99% of 169.3mg NH(4)(+)-N/l was removed from ammonium solution by 1.5% l-glutamic acid treated C. vulgairs NTM06 cultures; removal in case of control was 70%. In case of natural wastewaters with initial ammonium concentrations of 1550, 775, 310 and 155 mg NH(4)(+)-N/l, removal after 48 h of incubation were 60%, 88%, 61% and 55% respectively. Ammonium removals from ammonium solutions of pH 4.0-8.0 were similar, whereas adsorption of ammonium ions on to the surface of dead C. vulgaris NTM06 cells was around 11%. Compared to dark, cultures incubated under the light showed higher initial removal of ammonium, however, after 24h, differences were not significant. Further research on the role of l-glutamic acid in micro-algal treatment of wastewater and its combination with other approaches such as co-immobilization of micro-algae with other organisms, starvation of micro-algal cells and the use of polymers is recommended.  相似文献   

5.
Batch experiments were performed to study biomass growth rate, nutrient removal and carbon dioxide bio-fixation of the marine microalgae Chlorella stigmatophora. Four different cultures at different salinities were tested: wastewater (WW), synthetic wastewater (SWW), seawater (SW) and diluted seawater (DSW). Experimental results showed that Chlorella stigmatophora grew satisfactorily in all culture media, except in SWW where inhibition occurred. In all cases, biomass experimental data were fitted to the Verlhust Logistic model (R2 > 0.982, p < or = 0.05). Maximum biomass productivity (P(bmax)) and CO2 biofixation (P(vCO2)) were reached in the WW medium, 1.146g SSL(-1)day(-1) and 2.324g CO2L(-1)day(-1) respectively. The order of maximum specific growth rates (micro max) was WW >DSW>SW. In order to compare nitrogen and phosphorous removal kinetics, an estimation of the time required to reach the most restrictive concentration of total N and P in effluents as defined in the Directive 98/1565/CE (10 mg sigmaNL(-1) (T10(N)) and 1 mg sigmaPL(-1) (T1(p)) was performed. In the WW test T10(N) and T1(p) needed were of 45.15 and 32.27 hours respectively and at the end of the experimental the removal was in both 100%.  相似文献   

6.
7.
Microalgal biodiesel is an alternative bioenergy for the future. Nitrogen deprivation is usually used to increase lipid content in microalgae, however, it also lowers biomass production, resulting in not much increase of lipid productivity. Our previous study found that phosphorus played an important role in enhancing biodiesel productivity of C. vulgaris FACHB-1072 under nitrogen deficient condition. The aim of this study was to optimize two significant parameters of CO2 concentration (0.03, 4, 6, 12 %) and light intensity (40, 120, 200 μmol photons m-2 s-1) with respect to biodiesel productivity and P uptake rate of C. vulgaris FACHB-1072. It was found that the optimized conditions were 4 % CO2 concentration and 200 μmol photons m-2 s-1 light intensity. The maximum biodiesel productivity was 34.56 mg L-1 day-1; 2.7 times higher than the control (nutrient sufficient condition). Phosphorus was accumulated as polyphosphate and its maximum uptake rate was 2.08 mg L-1 day-1; twice that of the control. After optimization, the performances under nitrogen deficiency were significantly better compared with those under nitrogen sufficiency, which were rarely reported in literature. Our findings suggest a great potential to combine phosphorus removal from wastewater with biodiesel production via microalgae.  相似文献   

8.
An anaerobic-anoxic sequencing batch reactor (A2 SBR) coupled with a fixed-bed nitrification reactor for simultaneous carbon, nitrogen and phosphorus removal was evaluated using slaughterhouse wastewater. Whereas the treatment could not be successfully carried out on the raw wastewater, the process showed very good nutrient removal performances after prefermentation. The removals of COD, N-NH4 and P-PO4 achieved were 99%, 85% and 99%, respectively. The increase in volatile fatty acid (VFA) and phosphate concentrations in the effluent after prefermentation may explain the high levels of biological carbon, nitrogen and phosphorus removal observed. A simple prefermentation is, therefore, necessary but sufficient to ensure good performances of the denitrifying enhanced biological phosphorus removal (EBPR) process.  相似文献   

9.
In synthetic wastewater, growth and phosphorus absorption by two species of microalgae, Chlorella sorokiniana and Chlorella vulgaris, and in domestic wastewater by C. sorokiniana significantly enhanced after a starvation period of 3 days in saline solution, combined with co-immobilization with the microalgae growth-promoting bacterium (MGPB) Azospirillum brasilense Cd in alginate beads. Starvation of 5 days negatively affected the subsequent growth of C. vulgaris, but not of C. sorokiniana in fresh wastewater. Starvation of immobilized cultures of microalgae separately or microalgae with bacteria, followed by returning the immobilized cultures to the same wastewater did not enhance phosphorus absorption. However, a starvation period followed by subsequent submersion of the cultures in fresh wastewater allowed the continuation of phosphorus absorption. The best phosphorus removal treatment from a batch of synthetic or domestic wastewater was with tandem treatments of wastewater treatment with pre-starved, co-immobilized microalgae and replacement of this culture, after one cycle of phosphorus removal, with a new, similarly starved culture. This combination treatment with two cultures was capable of removing up to 72% of phosphorus from the wastewater. There was a direct correlation between the initial load of phosphorus in the domestic wastewater and the efficiency level of removal, being highest at higher phosphorus loads in co-immobilized cultures. This occurred for both immobilized and co-immobilized cultures. Further, the results showed that negative effects of starving the microalgae were mitigated by the application of the MGPB A. brasilense Cd. This is the first report of this capacity in Azospirillum sp. on a single-cell plant. This study showed that starvation periods, combined with co-immobilization with MGPB, have synergistic effects on absorption of phosphorus from wastewater and merits consideration in designing future biological treatments of wastewater.  相似文献   

10.
Yan  Guoan  Yu  Jingyi  Wang  Yuanxiang 《Biotechnology letters》1996,18(8):893-896
Summary When Chlorella vulgaris was immobilized in calcium alginate beads, it removed more than 90% phosphate (10mg P/L) added to artificial wastewater at pH 3 to 9 and from 10 to 30°C. Free cells, however, only removed 40–60% of added phosphate at low pH (3–5) and at 10°C. Immobilized C. vulgaris is shown to have great potentialities for removing phosphate from low pH wastewater and at low temperature.  相似文献   

11.
By using a hydroponic culture system, the terrestrial fiber crop ramie can growth optimally in aquatic environment and enhance exponentially quantities of high quality seedlings for subsequent field cultivation. In this study, the survival rate of ramie seedling was more than 97% when cultured using the novel hydroponic method. Further physiological analysis of the hydroponic ramie to different concentration of livestock wastewater demonstrated that all of these ramies can survival in livestock wastewater, but the 4 times diluted livestock wastewater (total N: 100.9 mg L?1, total P: 2.69 mg L?1) was more appropriate for ramie growth. The nutrients N and P in livestock wastewater were significantly decreased by the growth of ramie, and the removal efficiency of total N and total P in the 4 times diluted livestock wastewater achieved 78.1% and 43.1% respectively within 5 weeks. In conclusion, our studies highlight that the combination of ramie and the hydroponic technology resulted to be effective in the phytoremediation of livestock wastewater.  相似文献   

12.
Wang B  Lan CQ 《Bioresource technology》2011,102(10):5639-5644
Biomass productivity of 350 mg DCW L−1 day−1 with a final biomass concentration of 3.15 g DCW L−1 was obtained with Neochloris oleoabundans grown in artificial wastewater at sodium nitrate and phosphate concentrations of 140 and 47 mg L−1, respectively, with undetectable levels of residual N and P in effluents. In secondary municipal wastewater effluents enriched with 70 mg N L−1, the alga achieved a final biomass concentration of 2.1 g DCW L−1 and a biomass productivity of 233.3 mg DCW L−1 day−1. While N removal was very sensitive to N:P ratio, P removal was independent of N:P ratio in the tested range. These results indicate that N. oleoabundans could potentially be employed for combined biofuel production and wastewater treatment.  相似文献   

13.
Various progenies of Eucalyptus grandis and E. amplifolia, and clones of Populus deltoides, were evaluated for plant removal of nitrogen (N) and phosphorus (P) for 26 months at a municipal waste spray field in north Florida. Tertiary treated wastewater containing 2.73 mg L(-1) nitrate N and 0.30 mg L(-1) total P was applied using sprinkler irrigation (93.8 m3 ha(-1) d(-1)) to fast growing trees utilized for bioenergy. Eucalyptus amplifolia and E. grandis survived and grew very poorly as the result of severe winter injury in two successive years and were not evaluated for nutrient removal. Survival and growth of P. deltoides demonstrated suitability for phytoremediation, and selected clones were evaluated for biomass and nutrient content. Removals of total N (TN) and total P (TP) were greatest for main stem (36% and 44%, respectively) and foliage (44% and 36%, respectively). Low biomass producing clones generally had higher nutrient concentrations, but high biomass producing clones removed more TN and TP. Approximately 789 kg ha(-1) TN and 103 kg ha(-1) TP were removed by the highest biomass producing P. deltoides clone, representing 215% of N and 615% of P inputs.  相似文献   

14.
It has been shown previously that added ammonium salts cause a cessation of nitrate utilization in some Chlorella species. It has also been shown that Chlorella vulgaris can form an inactivated nitrate reductase which is an HCN complex. In the present study, a comparison has been made of the rate of nitrate utilization and the rate of nitrate reductase inactivation in Chlorella vulgaris in response to the addition of ammonium salts and light-dark changes. The rate of formation of HCN-inactivated enzyme is too slow to account for the prompt inhibition of nitrate utilization caused by adding ammonium. In contrast, when nitrate utilization is inhibited by addition of ferricyanide to intact cells, the HCN-inactivated enzyme is promptly formed in vivo, and might account for the inhibition of nitrate utilization, though inhibition of nitrate uptake can not be excluded.  相似文献   

15.
A bench-scale anaerobic–anoxic–oxic (A2O) bioreactor with steady denitrifying phosphorus removal performance was tested to determine the influence of influent C/N ratio (SCOD/TN) and C/P ratio (SCOD/TP) on biological nutrient removal for treating synthetic brewage wastewater; meanwhile, the spatial profiles of DO, pH and ORP sensors in such systems were investigated. The results showed that influent C/N ratio had significant effect on the TN, TP removal efficiencies and the ratio of anoxic to aerobic P uptake amount. The maximal TN and TP removal efficiencies could be achieved when influent C/N ratio was kept at about 7.1 and 5, respectively. Besides, the ratio of anoxic to aerobic P uptake amount was found to be linearly dependent on the influent C/N ratio with coefficient R 2 of 0.685 when total recirculation ratio was constant at 3.5. Influent C/P ratio had an important effect on the TP removal efficiency, while it hardly affected TN removal efficiency. In addition, the TP removal efficiency reached the maximum for influent C/P ratio of 42. On the other hand, it was also found that the typical profiles of DO, pH and ORP sensors could be observed, and they have similar trends at the different influent C/N ratio and C/P ratio. It was suggested that the operational state could be well known according to the changes of simple on-line sensors.  相似文献   

16.
This study examined the use of Chlorella vulgaris for the simultaneous bioremediation of municipal wastewater and production of biodiesel. We tested the effect of wastewater dilution on C. vulgaris growth in filtered and sterilized wastewater, sterilized wastewater, and untreated wastewater. Growth was the greatest in untreated wastewater, suggesting that certain wastewater components, such as bacteria, may promote microalgal growth. We confirmed the presence of beneficial bacteria by denaturing gradient gel electrophoresis analysis and inoculation of wastewater bacteria into microalgal cultures in artificial medium. Furthermore, we employed a semi-continuous cultivation process that successfully combined the advantages of indigenous bacteria with a high level of inoculum. Finally, cells grown in wastewater contained high levels of useful fatty acids. Collectively, our data suggest that it may be feasible to use wastewater-grown C. vulgaris biomass for simultaneous bioremediation and biodiesel production.  相似文献   

17.
通过设施大棚内容积为1.5m3的人工模拟池试验,研究了浮床黑麦草对模拟城市生活污水氮循环细菌繁衍和脱氮效果的影响。通过研究,阐明浮床植物去除污染水体氮素的可能途径。研究结果表明:浮床黑麦草对模拟城市生活污水总氮和氨氮的去除效果分别达到了31.6%和43.0%;浮床黑麦草根际和根系正下方是各类氮循环细菌生长的最佳区域;浮床黑麦草处理有效地提高了系统氮循环细菌的数量,16d的试验结束时细菌总数(A,单位为CFU.mL-1)达到最大值,其lg(A/(CFU.mL-1))增加至8.82,各类氮循环细菌比对照高3-5个数量级;同时,浮床黑麦草处理显著提高了氮循环细菌的群落多样性,系统内氨化菌、硝化菌、亚硝化菌和反硝化菌共存;明确了浮床黑麦草的吸收同化和氮循环细菌的生物脱氮是浮床黑麦草净化水质的两个重要途径。  相似文献   

18.
污水地下渗滤系统脱氮效果及动力学过程   总被引:2,自引:0,他引:2  
李海波  李英华  孙铁珩  王鑫 《生态学报》2011,31(24):7351-7356
建立了模拟污水地下渗滤过程的中试系统,重点考察了水力负荷对系统脱氮效率的影响情况,建立了描述地下渗滤系统微生物脱氮过程的动力学模型.结果表明:地下渗滤系统脱氮效果好,抗水力负荷冲击能力强,处理最佳水力负荷0.125m3· m-2· d-1,出水中氮浓度低于《城市污水再生利用——景观环境用水水质》标准( GB/T 18921-2002).地下渗滤系统硝化过程符合一级动力学模型NE=Noe-0.4812t,温度是影响硝化速率的主要因素,两者的关系是KT=0.2218×1.035(T-20);出水硝态氮浓度与水力停留时间之间呈负指数关系,可描述为C=16.3475e-0.2548t,碳源是引起反硝化速率变化的主要因子.在基质层垂直深度65 cm处二次补加生活污水,反硝化速率常数由0.0355提高到0.0488.强调地下渗滤系统的污水净化功能而忽视其生态服务功能,是系统运行中普遍存在的认识误区,过高的水力负荷不利于硝化-反硝化反应的顺利进行.地下渗滤系统运行应采取适宜的水力负荷方式,促进硝化-反硝化作用.  相似文献   

19.
Experimental work was carried out on nitrogen and phosphorus removal from real wastewater using a bench-scale SBR process. The phosphorus removal was stable and the phosphorus concentration remaining in the reactor was maintained within 1.5 ppm, regard-less of the addition of an external carbon source. In the case of nitrogen, an external carbon source was necessary for denitrification. The effect on denitrification with the addition of various carbon sources, such as glucose, methanol, acetate, and propionate, was also investigated. Acetate was found to be the most effective among those tested in this study. When 100 ppm (theoretical oxygen demand) of sodium acetate was added, the average rate of denitrifiaction was 2.73 mg NO3-N (g MLSS)−1 h−1, which wasca. 4 times higher than that with the addition of 200 ppm of methanol. The phosphorus and nitrogen concentrations were both maintained within 1.5 ppm by the addition of an appropriate amount of a carbon source during a long-term operation of the SBR. The mathematical modeling was performed using Monod kinetics, other microbial kinetics, mass balances, and stoichiometry. The modeling was found to be useful for predicting the SBR operation and optimizing the HRT.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号