首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The revegetation of soils affected by historic depositions of an industrial complex in Central Chile was studied. The plant re-colonization from the existing soil seed bank and changes in the physico-chemical properties of the soil were evaluated in field plots amended with lime and/or compost. We found that the application of lime and/or compost decreased the Cu2+ ion activity in the soil solution and the exchangeable Cu in the soil, showing an effective Cu immobilization in the topsoil. Whereas lime application had no effect on plant productivity in comparison with the unamended control, the application of compost and lime+compost increased the plant cover and aboveground biomass due to the higher nutrient availability and water-holding capacity of the compost-amended soils. Although the Cu2+ activity and the exchangeable Cu were markedly lower in the amended soils than in the unamended control, the shoot Cu concentrations of Lolium spp. and Eschscholzia californica did not differ between the treatments.  相似文献   

2.
Cu contamination soil (547 mg kg–1) was mixed separately with the surface-modified nano-scale carbon black (MCB) and placed in the ratios (w/w) of 0, 1%, 3%, and 5% in pots, together with 0.33 g KH2PO4and 0.35 g urea/pot. Each pot contained 20 ryegrass seedlings (Lolium multiflorum). Greenhouse cultivation experiments were conducted to examine the effect of the MCB on Cu and Zn fractionations in soil, accumulation in shoot and growth of ryegrass. The results showed that the biomass of ryegrass shoot and root increased with the increasing of MCB adding amount (p < 0.05). The Cu and Zn accumulation in ryegrass shoot and the concentrations of DTPA extractable Cu and Zn in soil were significantly decreased with the increasing of MCB adding amount (p < 0.05). The metal contents of exchangeable and bound to carbonates (EC-Cu or EC-Zn) in the treatments with MCB were generally lower than those without MCB, and decreased with the increasing of MCB adding amount (p < 0.05). There was a positive linear correlation between the Cu and Zn accumulation in ryegrass shoot and the EC-Cu and EC-Zn in soil. The present results indicated the MCB could be applied for the remediation the soils polluted by Cu and Zn.  相似文献   

3.
Plant species, spatial variability in plant diversity and vegetation cover were recorded at a French timber treatment site with Cu-contaminated soils (65–2600 mg/kg). Shoot biomass, shoot Cu concentration and accumulation were determined for each plant species found on 168 quadrats with increasing total Cu in soil and soil solution. A total of 91 species occurred on the site including four considered as invasive (Cyperus eragrostis, Phytolacca americana, Senecio inaequidens, and Sporobolus indicus). Species richness, Shannon index, vegetation cover and plant biomass decreased as soil Cu increased. At low soil Cu, members of the Poaceae were most frequent followed by Fabaceae, Rosaceae, and Asteraceae. At high soil Cu, Poaceae were again most frequent. Species known to form Cu-tolerant populations, i.e. Agrostis capillaris, A. stolonifera and Rumex acetosella were present. Shoot Cu concentration and accumulation were higher in plants growing in the most contaminated soils. At 2142 mg Cu/kg soil, shoot Cu accumulation peaked at 6 mg Cu/m² in A. capillaris, and its shoot Cu concentration (364 mg Cu/kg dry weight) exceeded the fodder Cu threshold for domestic livestock. In less Cu-contaminated soils some candidates were identified for sustainable phytoremediation with a potential financial return.  相似文献   

4.
Revegetation with metal tolerant plants for management of fly ash deposits is an important environmental perspective nowadays. Growth performance, photosynthesis, and antioxidant defense of lemongrass (Cymbopogon citratus (D.C.) Stapf.) were evaluated under various combination of fly ash amended with garden soil in order to assess its fly ash tolerance potential. Under low level of fly ash (25%) amended soil, the plant growth parameters such as shoot, root, and total plant biomass as well as metal tolerance index were increased compared to the control plants grown on garden soil, followed by decline under higher concentration of fly ash (50%, 75% and 100%). In addition, leaf photosynthetic rate, stomatal conductance, and photosystem (PS) II activity were not significantly changed under low level of fly ash (25%) amended soil compared to the garden soil but these parameters were significantly decreased further with increase of fly ash concentrations. Furthermore, increase of activities of some antioxidant enzymes such as superoxide dismutase, ascorbate peroxidase, and guaiacol peroxidase over control were noticed in lemongrass under all fly ash treatments. Taken together, the study suggests that lemongrass can be used for phytoremediation of fly ash at 25% amended soil.  相似文献   

5.
A pot experiment and a field experiment were conducted to investigate Cu-enriched composts made from Elsholtzia splendens plants as basal fertilizers to correct Cu deficiency in winter wheat (Triticum aestivum L.) grown in Cu-deficient soils. An application of the compost significantly increased plant height, biomass, grain yield, and 1000-grain weight. In the pot experiment, plant height and shoot biomass in the 2% Cu-rich compost treatment increased 0.8- and 5.2-fold compared with the chemical fertilizer treatment at the mature stage. Compared to chemical fertilizer control, the 2% Cu-enriched compost addition increased grain yield per pot by about 9.5-fold and 1000-grain weight by about 50%. In the field study, the compost also showed stimulatory effects on plant growth and grain yield. The results indicate that composting E. splendens plants grown in a Cu-contaminated soil and then applying the compost to a Cu-deficient soil may be an effective technique for the remediation of contaminated soils and redistribution of the copper as a plant nutrient for copper-deficient soils.  相似文献   

6.
蚯蚓-秸秆及其交互作用对黑麦草修复Cu污染土壤的影响   总被引:3,自引:1,他引:3  
王丹丹  李辉信  胡锋  王霞 《生态学报》2007,27(4):1292-1299
以高沙土为供试土壤,加入Cu^2+以模拟成:0,100,200,400mg/kgCu^2+的Cu污染土壤,设置接种蚯蚓(E)、表施秸秆(M),同时加入蚯蚓和秸秆(ME)及不加蚯蚓和秸秆的对照(CK)4个处理,并种植黑麦草。研究蚯蚓、秸秆相互作用对黑麦草吸收、富集铜的影响。结果表明:加入秸秆显著提高了蚯蚓的生物量,一定程度上缓解了重金属对蚯蚓的毒害,同时蚯蚓显著提高了秸秆的分解率,较无蚯蚓对照提高了58.11%~77.32%。接种蚯蚓(E,ME)还提高了土壤有效态重金属(DTPA-Cu)含量,秸秆处理(M)则降低了土壤有效态重金属含量。研究还发现,E处理促进了黑麦草地上部生长,而M和ME处理均显著提高了黑麦草地下部的生物量。E和ME处理同时提高了植物地上部和地下部的Cu浓度及Cu吸收量,M处理则只对植物的地下部Cu浓度和Cu吸收量有显著促进作用。总体来看,E处理、M处理及ME处理分别使黑麦草地上部Cu富集系数提高了31.22%~121.07%.2.12%~61.28%和25.56%~132.64%。  相似文献   

7.
Wang D D  Li H X  Hu F  Wang X 《农业工程》2007,27(4):1292-1298
It is well known that the earthworm's activities can increase the availability of soil nutrients, improve soil structure, and enhance the biomass of plants in uncontaminated soil. Recently, many researchers found that some metal-tolerant earthworms can survive and even change the fractional distribution of heavy metals in contaminated soil. Furthermore, it has been revealed that earthworms are able to increase metal availability, and therefore, accumulate more metals in plants through their burrowing and casting activity. It is clear that the influence of soil animals is an important factor for phyto-remedation that must be taken into account. ~In this article, the authors studied some effects of addition of earthworms (Metaphire guillelmi), corn straw, and in combinations of earthworms and corn straw on the growth and Cu uptake by ryegrass in Cu contaminated pot soils. The experiment consisted of four levels of Cu addition (0, 100, 200, 400 mg·kg?1) and four treatments. The treatments were 1. control (CK); 2.straw mulching only (M); 3. earthworm additions to soil only (E); and 4.straw mulching plus earthworm additions (ME). Each treatment had three replicates. 10 seeds of ryegrass (Lolium multiflorum) were sowed in each pot and harvested after 30 days. After 30 days of incubation, all earthworms were found to be alive and the pot soils were burrowed through by earthworms. Results showed that the biomass of earthworm declined with the increase of the dosage of Cu additions. The biomass of earthworm increased significantly in treatment 4 (ME) as compared with treatment 3 (E). Not only the earthworms could get more food from the straw, but also could counteract some negative effects of Cu on the earthworms. The rates of straw decomposition in ME treatment increased by about 58.11% ?77.32%. The earthworm activities increased root biomass of ryegrass significantly, but did not show the effect on plant root growth. On the contrary, straw enhanced roots biomass significantly instead of shoots biomass. It was also found that the concentration of Cu in the plant shoot and the plant root, as well as plant Cu uptake were enhanced by earthworm's activities and straw mulching. The increased amount by straw mulching was lower than that of earthworms (E). The treatment of the earthworm–straw mulching combinations enhanced plant Cu concentration, and the amount increased by it was lower than that of the earthworm treatment (E) but higher than that of straw mulching treatment (M). The accumulation factors of copper in the shoots of ryegrass were increased by 31.22% ?121.07%, 2.12% ?61.28% and 25.56% ?132.64%, respectively, in treatment 3(E), 2(M), and 4(ME), respectively. In conclusion, the earthworm activities, straw-mulching and their interactions may have potential roles in elevating phyto-extraction efficiency in low to medium level Cu contaminated soil.  相似文献   

8.
Two soils, contaminated by sludge application or by smelter activities, have been amended with : lime (CaO), lime + Al-pillared smectites (CaO + Sm), phosphate basic slags (SCO), manganese oxide (HMO), iron oxide (HFO) and steel shot (GA). Four single soil extractions (water, 0.1 M Ca(NO3)2 0.05 M ED TA-NH4 and acetic acid (0.43 M HAc)) and the two plant cultures (tobacco and ryegrass) were used to evaluate the effect of these inorganic additives on the mobility and plant-availability of cadmium in the soils. The Cd extracted by the different solutions was compared to the concentration of Cd in the shoots of ryegrass and tobacco. The effect of treatments on Cd mobility in soil was easily discriminated by the use of either water or Ca(NO3)2. The addition of HMO and GA reduced both the mobility and the phyto-availability of Cd in the two soils. Conversely, the alkaline additives and HFO decreased the Cd mobility, but not the Cd plant availability. Single soil extractions using either water or Ca(NO3)2 are a useful tool for estimating Cd immobilization, but not sufficient for assessing Cd plant availability ; a validation by plant tests must be conducted.  相似文献   

9.
A pot experiment was conducted to evaluate the bioaccumulation of heavy metals and growth response of rice plants after exposure to single and combined contamination by Cu, Cd and Pb. The results showed that the biomass production was not significantly affected by either single or combined treatment of Cu, Cd and Pb. Adding Cu (Cd, or Pb) separately all increased concentrations of the respective element in root and shoot (p < 0.001). In the combined contamination, Pb promoted both root and shoot absorption of Cu and Cd (p < 0.001), and Cu affected Cd and Pb absorption in the root, but Pb concentrations in both root and shoot were not affected by Cd application. The formation of iron plaques varied obviously with soil types. Heavy metal accumulation in iron plaques was induced by the three elements (p < 0.001). Furthermore, the three heavy metals exhibited an interactive relationship as measured by the Cu, Cd, Pb and Fe concentrations in root surface iron plaques. The iron plaques partially inhibited transfer of Pb to root and shoot, but no such effect was observed for Cu and Cd. This research indicates that the interaction among different heavy metal elements is very complex. It is very important to have a clear understanding on the associated mechanism and the consequential impact on plant growth.  相似文献   

10.
Huang Y Z  Hu Y  Liu Y X 《农业工程》2009,29(6):320-326
A pot experiment was conducted to evaluate the bioaccumulation of heavy metals and growth response of rice plants after exposure to single and combined contamination by Cu, Cd and Pb. The results showed that the biomass production was not significantly affected by either single or combined treatment of Cu, Cd and Pb. Adding Cu (Cd, or Pb) separately all increased concentrations of the respective element in root and shoot (p < 0.001). In the combined contamination, Pb promoted both root and shoot absorption of Cu and Cd (p < 0.001), and Cu affected Cd and Pb absorption in the root, but Pb concentrations in both root and shoot were not affected by Cd application. The formation of iron plaques varied obviously with soil types. Heavy metal accumulation in iron plaques was induced by the three elements (p < 0.001). Furthermore, the three heavy metals exhibited an interactive relationship as measured by the Cu, Cd, Pb and Fe concentrations in root surface iron plaques. The iron plaques partially inhibited transfer of Pb to root and shoot, but no such effect was observed for Cu and Cd. This research indicates that the interaction among different heavy metal elements is very complex. It is very important to have a clear understanding on the associated mechanism and the consequential impact on plant growth.  相似文献   

11.
Characteristics of boron accumulation by fly ash application in paddy soil   总被引:1,自引:0,他引:1  
Lee SB  Lee YB  Lee CH  Hong CO  Kim PJ  Yu C 《Bioresource technology》2008,99(13):5928-5932
Fly ash has a high content of plant available silicate which is strongly needed for rice cultivation in Korea. One concern for plants grown on soils amended with fly ash is boron (B) toxicity because most of the fresh fly ash contains considerable B. This study was conducted in paddy soil to determine B uptake by rice and characteristics of B accumulation in soil after fly ash application (0, 40, 80, and 120 Mg fly ash ha−1). In all fly ash treatments, B content in rice leaves and available B in soil at all growing stage were higher than those of control, but were not exceeded a toxicity levels. Boron occluded in amorphous Fe and Al oxides comprised ca. 20–39% of total B and was not affected by fly ash application. Most of the B was accumulated by fly ash application as a residual B which is plant-unavailable form, comprised >60% of the total B in soil. Thus, fly ash can be a good soil amendment for rice production without B toxicity.  相似文献   

12.
渗滤液溶解性有机物对土壤Cd、Pb有效性的影响   总被引:1,自引:0,他引:1  
在Cd、Pb污染土壤中,通过生物盆栽试验,研究了2种不同填埋年龄的垃圾渗滤液溶解性有机物(DOM)对黑麦草生长的影响及其对重金属Cd、Pb吸收的影响.鲜样、水阁样分别为填埋年龄0和12年的垃圾渗滤液.结果表明,垃圾渗滤液DOM施入土壤,残留在土壤中的DOM平均浓度为对照的1.39倍(鲜样)和1.47倍(水阁样).2种垃圾渗滤液DOM处理的土壤水溶态Cd、Pb和交换态Cd、Pb均在前期呈波动变化,到后期则上升.在Cd污染土壤中,鲜样和水阁样垃圾渗滤液DOM处理土壤水溶态Cd、交换态Cd分别高出对照37.44%、4.81%,48.97%、14.94%;在Pb污染土壤中,鲜样和水阁样垃圾渗滤液DOM处理土壤水溶态Pb、交换态Pb分别高出对照8.56%、7.22%,18.99%、11.47%.鲜样和水阁样垃圾渗滤液DOM处理黑麦草总Cd浓度分别高于对照19.59%和104.4%,总Pb浓度分别高36.03%和44.66%;但两处理的黑麦草总生物量下降14.03%~52.24%.因此,垃圾渗滤液DOM进入污染土壤后,有利于土壤重金属生物有效性的提高和植物体内重金属的累积,却抑制植物的生长, 尤以填埋年龄长的垃圾渗滤液DOM影响更大.  相似文献   

13.
Liu YM  Zhang XC  Wang DD 《应用生态学报》2011,22(10):2604-2608
采用盆栽试验,研究了安塞黄绵土不同容重、不同固化剂(路邦EN-1固化剂)掺量对黑麦草生长和根系活力的影响.结果表明:黄绵土容重在1.2~1.4 9·cm-3范围内,随土壤容重的增加,黑麦草叶绿素含量、根系活力、根冠比、根生物量和植株生物量均降低;各土壤容重条件下,黑麦草叶绿素含量、根系活力、根冠比、根生物量和植株生物量均高于对照,且随着固化剂掺量的增加均呈先增加后降低的趋势.土壤容重和固化剂掺量交互作用对根生物量和总生物量的影响均显著(P<0.05).总体来看,土壤容重1.3 g·cm-3、固化剂掺量0.15%处理下,各指标值均最高.  相似文献   

14.
两种典型土壤胶体对镉的生物有效性的影响   总被引:1,自引:0,他引:1  
李朝丽  周立祥 《生态学报》2009,29(4):1814-1822
采用黑麦草盆栽试验,研究了人工Cd污染(10.91mg·kg-1)黄棕壤和红壤(简称原土)及其胶体组分(简称胶体)和去胶后组分(简称去胶)Cd的生物有效性,并研究了EDTA对Cd解吸和生物有效性的影响.结果表明:(1)各处理黑麦草株高、地上部干重、根干重、总生物量都表现为胶体>原土>去胶,胶体上总生物量分别是原土和去胶处理的(1.31±0.02)倍和(1.82±0 21)倍.(2)黑麦草体内Cd浓度、及其对Cd的富集系数都表现为胶体<原土<去胶,表明胶体中Cd的生物有效性<原土<去胶.(3)黄棕壤各组分Cd的解吸率分别表现为胶体和原土约为0,去胶组分为(10.5±3.5)%,红壤各组分平均为(20.8±1 9)%,但加入EDTA则明显增加了Cd的解吸,导致黑麦草体内Cd浓度显著增加,黑麦草地上部干重、根干重、总生物量降低.EDTA对Cd的活化作用表现为去胶>原土>胶体,黄棕壤>红壤,EDTA对各处理植株Cd总量的影响与此吻合.这说明,土壤镉的生物有效性受土壤胶体及其pH等的强烈影响.  相似文献   

15.
The limits for loading soils with Tunisian urban compost for cultivating Medicago sativa were determined in a 6-month experiment in a greenhouse. Mature municipal solid waste compost (MSWC) from Tunis city was applied to clay and sandy soils from cultivated fields at rates equivalent to 40, 80, 120tha(-1). In the absence of MSWC, the shoot biomass (dry weight) cumulated over four cuts was 2-2.5 lower in sandy soil than in clay soil. It was 20-25% augmented upon MSWC addition in clay soil, independently of MSWC dose. The opposite trend was observed in sandy soil, the shoot yields being diminished by MSWC in a dose dependent manner. In MSWC-amended clay soil but not in sandy soil, Cd, Cu, Zn, and Pb concentrations in shoots remained below or close to the tolerated values according to EEC norms. The MSWC might be used as conditioner for clay soil, but not for sandy soil.  相似文献   

16.
Soil properties and turf growth on a sandy soil amended with fly ash   总被引:6,自引:0,他引:6  
Pathan  S.M.  Aylmore  L. A. G.  Colmer  T. D. 《Plant and Soil》2003,256(1):103-114
Field lysimeters of a sandy soil were amended to a depth of 100 mm with four rates (0, 5, 10 and 20%, wt/wt) of fly ash, and effects on soil water content, nutrient leaching, turf growth and nutrition, and uptake of trace elements by turf were assessed. Measurements were taken for 70 days for lysimeters either planted with rhizomes of Cynodon dactylon(L.) Pers., cv. `Wintergreen', or left bare. When irrigated daily, soil water content increased progressively with increasing rates of fly ash and leachate volumes were decreased by 17–52% for lysimeters containing fly ash amended soil. Fertiliser was applied equivalent to 28.4 g N m–2 and 10.3 g P m–2 for the entire 70 days (including pre-plant application). Macronutrient concentrations in leaf tissue were within levels regarded as sufficient. Total dry mass (root plus shoot) decreased when fertiliser application rates were reduced by 25%, irrespective of fly ash treatment. In `bare' lysimeters containing fly ash amended soil, cumulative leaching of NO3 , NH4 +and P were 0.32–0.88 of the values in non-amended soil. When planted with turf, leaching of those nutrients was minimal (equivalent to 3% of total N applied) and leaching loses did not differ among fly ash rates. Extractable soil P levels were increased 2.5–4.5-fold in the fly ash amended zone, compared with non-amended soil. Root mass in the top 100 mm was 1.2–1.5-fold larger for turf in fly ash amended soil, compared to non-amended soil. The Se concentrations were higher in leaf tissue grown in fly ash amended soil (being at most 0.63 g g–1), but there was no effect of fly ash amended soil on As, Ba, B, Cd, Co, Cr, Cu, Pb, Hg, Mn, Ni, Ag or Zn in leaf tissues. Thus, fly ash amendment may be a suitable management option for turf culture on sandy soils, since fly ash improved soil water holding capacity and root growth in the amended zone.  相似文献   

17.
Suitable soils for reclamation can be acquired through excavation and translocation of local soils, increasing the industrial footprint on previously undisturbed lands and causing negative environmental impacts. Manufactured soils (Technosols) could be a viable soil source when the availability of suitable natural soils is limited. The purpose of this study was to manufacture a Technosol from an admixture of woody residuals, primary paper sludge, and two subtypes of nonacid generating crushed mine rock, to function as a growth substrate for revegetation of mined land. Technosols manufactured with 0, 25, 50, and 75% organic materials (v/v) were assessed in a 10‐week growth study using annual ryegrass biomass production and allocation as a performance indicator. Technosols containing no organic materials had significantly lower plant nutrient concentrations than Technosols containing an organic constituent and, after 5 weeks of growth, ryegrass grown on nonorganic Technosols had greater root:shoot ratios than ryegrass grown on organic Technosols. Organics increase the water holding capacity and nutrient concentrations of Technosols and should be included in manufacturing Technosols for revegetation. Technosols manufactured with primary paper sludge produced lower shoot biomass than Technosols manufactured with woody residuals, which could be in part due to the higher pH of the paper sludge. Technosols can be manufactured for revegetation purposes and individual components should be assessed before and after mixing. Further development of Technosols should include field testing and amendment or fertilizer use to improve soil nutrient content.  相似文献   

18.
A pot experiment was conducted to study the performance of EDTA and citric acid (CA) addition in improving phytoextraction of Cd, Cu, Pb, and Cr from artificially contaminated soil by T. angustifolia. T. angustifolia showed the remarkable resistance to heavy metal toxicity with no visual toxic symptom including chlorosis and necrosis when exposed to metal stress. EDTA-addition significantly reduced plant height and biomass, compared with the control, and stunted plant growth, while 2.5 and 5 mM CA addition induced significant increases in root dry weight. EDTA, and 5 and 10 mM CA significantly increased shoot Cd, Pb, and Cr concentrations compared with the control, with EDTA being more effective. At final harvest, the highest shoot Cd, Cr, and Pb concentrations were recorded in the treatment of 5 mM EDTA addition, while maximal root Pb concentration was found at the 2.5 mM CA treatment. However, shoot Cd accumulation in the 10 mM CA treatment was 36.9% higher than that in 2.5 mM EDTA, and similar with that in 10 mM EDTA. Shoot Pb accumulation was lower in 10 mM CA than that in EDTA treatments. Further, root Cd, Cu, and Pb accumulation of CA treatments and shoot Cr accumulation in 5 or 10 mM CA treatments were markedly higher than that of control and EDTA treatments. The results also showed that EDTA dramatically increased the dissolution of Cu, Cr, Pb, and Cd in soil, while CA addition had less effect on water-soluble Cu, Cr, and Cd, and no effect on Pb levels. It is suggested that CA can be a good chelator candidate for T. angustifolia used for environmentally safe phytoextraction of Cd and Cr in soils.  相似文献   

19.
有机物料对污染土壤上水稻生长和重金属吸收的影响   总被引:10,自引:0,他引:10  
采用盆栽试验,研究了施用有机碳源、菜籽饼和猪粪对污染土壤上水稻生长和重金属吸收特性的影响.结果表明: 施用菜籽饼和猪粪均能缓解重金属对水稻的毒害作用,促进水稻生长,显著增加地上部生物量和籽粒产量,降低糙米中重金属浓度;而有机碳源抑制水稻生长.与施用化肥相比,施用菜籽饼和猪粪处理的水稻籽粒产量分别增加128.3%和67.9%;施用菜籽饼处理的糙米Cd、Cu和Zn浓度分别降低47.6%、35.2%和21.5%,施用猪粪处理分别降低9.5%、21.2%和9.3%.土壤中DTPA提取态重金属浓度与水稻地上部生物量和重金属积累总量呈显著负相关.  相似文献   

20.
Phytoextraction of copper (Cu) from contaminated soils greatly depends on the metal bioavailability in the soils and metal uptake ability of the plant. In this study, the effects of chelators [ethylenediamine tetraacetic acid (EDTA), citric acid (CA)] and compost amendments on Cu phytoextraction potential by a tolerant and accumulating plant species (E. splendens) were examined in two types of contaminated soils, ie., the mined soil from Cu-mined area (MS) and a paddy soil polluted by Cu refining (PS). The results showed that EDTA application at 2.5-5.0 mmol kg(-1) increased phytoextraction of Cu by four- and eight-fold from both MS and PS, respectively, which is mainly attributed to increased H2O extractable Cu in the soil. The Cu amount extracted by the shoots of E. splendens reached 800-1000 microg Cu plant(-1) from the MS and 400-700 microg Cu plant(-1) from the PS at EDTA application rates of 2.5-5.0 mmol kg(-1). The application of CA at 5.0 mmol kg(-1) had minimal effects on Cu extractability in both soils and slightly decreased Cu extraction efficiency by E. splendens. Plant biomass production was enhanced by CA at 0.25 mmol L(-1) in nutrient solution, but inhibited by CA at 5.0 mmol kg(-1) in both MS and PS. Increasing the compost rate significantly decreased H2O extractable Cu in the MS, but raised H2O-extractable Cu in the PS, which resulted mainly front the reduced exchangeable Cu in the MS and the increased exchangeable and organic fractions of Cu in the PS by compost. At high compost rate (5%), the shoots of E. splendens extracted 3.6-fold higher Cu from the PS than from the MS. These results indicate that, among the soil amendments, efficiency of Cu phytoextraction is enhanced mostly by 2.5-5.0 mmol kg(-1) EDTA, followed by 5% (w:w) compost, whereas < 5.0 mmol kg(-1) CA has minimal effects on Cu phytoextraction by E. splendens in the PS. As for the MS, only 2.5-5.0 mmol kg(-1) EDTA can elevate the efficiency of Cu, while 5% compost amendment and < 5.0 mmol kg(-1) CA application have no marked effects on Cu phytoextraction by E. splendens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号