首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We find the evolutionarily stable dispersal behaviour of a population that inhabits a heterogeneous environment where patches differ in safety (the probability that a juvenile individual survives until reproduction) and productivity (the total competitive weight of offspring produced by the local individual), assuming that these characteristics do not change over time. The body condition of clonally produced offspring varies within and between families. Offspring compete for patches in a weighted lottery, and dispersal is driven by kin competition. Survival during dispersal may depend on body condition, and competitive ability increases with increasing body condition. The evolutionarily stable strategy predicts that families abandon patches which are too unsafe or do not produce enough successful dispersers. From families that invest in retaining their natal patches, individuals stay in the patch that are less suitable for dispersal whereas the better dispersers disperse. However, this clear within-family pattern is often not reflected in the population-wide body condition distribution of dispersers or non-dispersers. This may be an explanation why empirical data do not show any general relationship between body condition and dispersal. When all individuals are equally good dispersers, then there exist equivalence classes defined by the competitive weight that remains in a patch. An equivalence class consists of infinitely many dispersal strategies that are selectively neutral. This provides an explanation why very diverse patterns found in body condition dependent dispersal data can all be equally evolutionarily stable.  相似文献   

2.
Dispersers often differ in body condition from non-dispersers. The social dominance hypothesis explains dispersal of weak individuals, but it is not yet well understood why strong individuals, which could easily retain their natal site, are sometimes exposed to risky dispersal. Based on the model for dispersal under kin competition by Hamilton and May, we construct a model where dispersal propensity depends on body condition. We consider an annual species that inhabits a patchy environment with varying patch qualities. Offspring body condition corresponds to the quality of the natal patch and competitive ability increases with body condition. Our main general result balances the fitness benefit from not dispersing and retaining the natal patch and the benefit from dispersing and establishing somewhere else. We present four different examples for competition, which all hint that dispersal of strong individuals may be a common outcome under the assumptions of the present model. In three of the examples, the evolutionarily stable dispersal probability is an increasing function of body condition. However, we found an example where, counterintuitively, the evolutionarily stable dispersal probability is a non-monotone function of body condition such that both very weak and very strong individuals disperse with high probability but individuals of intermediate body condition do not disperse at all.  相似文献   

3.
Avoidance of competition and inbreeding have been invoked as the major ultimate causes of natal dispersal, but proximate factors such as sex, body condition or birth date can also be important. Natal dispersal is expected to be of particular importance to understanding the ecological and evolutionary implications of dispersal strategies, since 1) numerous evidences suggest that individual differences in dispersal strategies are expressed early in life (i.e. at the onset of dispersal movement), 2) ultimate and proximate factors are more likely to act during this stage and 3) this stage is associated with the highest mortality rates in most vertebrates. We analysed the natal dispersal (hereafter, dispersal) behaviour in 100 marked individuals of a lekking species, the North African houbara bustards Chlamydotis undulata undulata, during four years. We investigated the effects of proximate factors on dispersal pattern and distance, as well as the mortality cost associated with movement using multievent models, allowing uncertainty in sex assignment and mixture of live recaptures and dead recoveries. Overall, males exhibited longer dispersal distances than females, contrary to the common pattern in birds. Moreover, males in poorer body condition moved further than those in better condition, whereas distance was independent of body condition in females. Finally, survival rates during dispersal were lower for females than for males and were negatively correlated with the distances covered with a similar distance‐survival slope in the two sexes. Collectively, our results suggest that 1) there is substantial dispersal cost in both sexes, 2) dispersal is strongly male‐biased, 3) this bias is unlikely to be explained by differential movement costs of each sex, and 4) dispersal differences found across different categories of individuals are in broad agreement with both the inbreeding avoidance and intraspecific competition mechanisms for dispersal.  相似文献   

4.
Body condition‐dependent dispersal strategies are common in nature. Although it is obvious that environmental constraints may induce a positive relationship between body condition and dispersal, it is not clear whether positive body conditional dispersal strategies may evolve as a strategy in metapopulations. We have developed an individual‐based simulation model to investigate how body condition–dispersal reaction norms evolve in metapopulations that are characterized by different levels of environmental stochasticity and dispersal mortality. In the model, body condition is related to fecundity and determined either by environmental conditions during juvenile development (adult dispersal) or by those experienced by the mother (natal dispersal). Evolutionarily stable reaction norms strongly depend on metapopulation conditions: positive body condition dependency of dispersal evolved in metapopulation conditions with low levels of dispersal mortality and high levels of environmental stochasticity. Negative body condition‐dependent dispersal evolved in metapopulations with high dispersal mortality and low environmental stochasticity. The latter strategy is responsible for higher dispersal rates under kin competition when dispersal decisions are based on body condition reached at the adult life stage. The evolution of both positive and negative body condition‐dependent dispersal strategies is consequently likely in metapopulations and depends on the prevalent environmental conditions.  相似文献   

5.
Anne Loison  Rolf Langvatn 《Oecologia》1998,116(4):489-500
Populations of red deer (Cervus elaphus) in Norway have increased continuously over the last decades. We tested the possible effects of climate and increase in population size on the survival rates and body condition of individuals in one of the northernmost populations of red deer in Europe. Based on 678 individuals of known age marked between 1977 and 1995, we estimated annual survival rates, the probabilities of being harvested and the recapture probability according to sex, age, year, winter and spring weather, population size, and, body weight and body condition, using capture-mark-recapture models. Winter harshness negatively influenced the body weight of yearlings and the survival of calves of both sexes. Spring weather influenced the survival of males in all age classes. A negative trend during the study period was detected in body weight and condition of calves and yearlings, but not in any age- or sex- specific survival rates. No significant gender differences in mean survival were shown in any age class. Moreover, there was little (male) or no (female) detectable between-year variation in survival rates for yearlings and adults. Winter weather acts as a limiting factor on population growth through a short-term effect on first-year survival and a long-term effect on body weight. We discuss the surprising low sex differences in natural survival rates and the differential effects of winter harshness on body weight, body condition and survival in relation to life history characteristics of red deer. Received: 10 November 1997 / Accepted: 2 June 1998  相似文献   

6.
Dispersal is not a blind process, and evidence is accumulating that individual dispersal strategies are informed in most, if not all, organisms. The acquisition and use of information are traits that may evolve across space and time as a function of the balance between costs and benefits of informed dispersal. If information is available, individuals can potentially use it in making better decisions, thereby increasing their fitness. However, prospecting for and using information probably entail costs that may constrain the evolution of informed dispersal, potentially with population-level consequences. By using individual-based, spatially explicit simulations, we detected clear coevolutionary dynamics between prospecting and dispersal movement strategies that differed in sign and magnitude depending on their respective costs. More specifically, we found that informed dispersal strategies evolve when the costs of information acquisition during prospecting are low but only if there are mortality costs associated with dispersal movements. That is, selection favours informed dispersal strategies when the acquisition and use processes themselves were not too expensive. When non-informed dispersal strategies evolve, they do so jointly with the evolution of long dispersal distance because this maximizes the sampling area. In some cases, selection produces dispersal rules different from those that would be ‘optimal’ (i.e. the best possible population performance—in our context quantitatively measured as population density and patch occupancy—among all possible individual movement rules) for the population. That is, on the one hand, informed dispersal strategies led to population performance below its highest possible level. On the other hand, un- and poorly informed individuals nearly optimized population performance, both in terms of density and patch occupancy.  相似文献   

7.
Theories posit that the relative mortality rate of adults and juveniles is a major determinant of population dynamics and life history evolution. Moreover, differential survival of pre-reproductive individuals may be an important source of variation in lifetime reproductive success, and characters that influence survival of juveniles are likely to be under strong selection. We examined survival from hatching to maturity in a natural population of Psammodromus algirus lizards using data from a capture-mark-recapture study. We found that mortality from hatching to maturity was high: only 8% of males and 14% of females that hatched in 1996 survived the entire study period until maturity in spring 1998. The probability of survival was 75% during both the first and second overwinter periods when lizards were inactive most of the time, and about 25% during their first spring to autumn activity season. Our analyses further revealed significant associations between survival and snout-vent length, body condition, sex and microhabitat use. However, the relationship between survival and morphological characters varied among time periods, presumably because the sources of mortality during the activity season were different from those during hibernation. The association between survival and body condition also varied within time periods, both between large and small individuals and between the two sexes. This suggests that the relative importance of different selective agents may change during the life of individuals and vary between males and females due to differences in body size and behaviour. Received: 24 March 1999 / Accepted: 14 February 2000  相似文献   

8.
An important process for the persistence of populations subjected to habitat loss and fragmentation is the dispersal of individuals between habitat patches. Dispersal involves emigration from a habitat patch, movement between patches through the surrounding landscape, and immigration into a new suitable habitat patch. Both landscape and physical condition of the disperser are known to influence dispersal ability, although disentangling these effects can often be difficult in the wild. In one of the first studies of its kind, we used an invertebrate model system to investigate how dispersal success is affected by the interaction between the habitat condition, as determined by food availability, and life history characteristics (which are also influenced by food availability). Dispersal of juvenile and adult mites (male and female) from either high food or low food natal patches were tested separately in connected three patch systems where the intervening habitat patches were suitable (food supplied) or unsuitable (no food supplied). We found that dispersal success was reduced when low food habitat patches were coupled to colonising patches via unsuitable intervening patches. Larger body size was shown to be a good predictor of dispersal success, particularly when the intervening landscape is unsuitable. Our results suggest that there is an interaction between habitat fragmentation and habitat suitability in determining dispersal success: if patches degrade in suitability and this affects the ability to disperse successfully then the effective connectance across landscapes may be lowered. Understanding these consequences will be important in informing our understanding of how species, and the communities in which they are embedded, may potentially respond to habitat fragmentation.  相似文献   

9.
In some animal populations, immigrants have lower survival than philopatric individuals. Costs of dispersal or low phenotypic quality of dispersers may explain the pattern. However, apparent adult survival estimates, which describe real survival combined with site fidelity cannot be separated from permanent emigration. Thus, heterogeneity in breeding dispersal propensities of immigrants and philopatrics can bias fitness correlates of dispersal. Differences in breeding dispersal propensities may be caused by different strategies in response to environmental cues inducing dispersal, such as reproductive success. In such cases, the reported differences between immigrants and philopatric individuals may not reflect true variation in survival. We studied whether dispersal status specific apparent adult survival is associated with reproductive success in a Temminck's stint Calidris temminckii population. We analysed two long term capture–recapture datasets characterised by low and high nest predation levels. Philopatric individuals had higher apparent adult survival than immigrants in both datasets and the difference was highlighted during the high nest predation period. By contrasting return rates between successful and unsuccessful breeders as a proxy for dispersal, we found that unsuccessful immigrants breeding for the first time dispersed more likely than successful immigrants, but such a pattern was not found among philopatric individuals. Our results support the hypothesis that immigrant and philopatric individuals have different breeding dispersal strategies following reproductive failure and that their apparent adult survival differences are at least partly explained by different breeding dispersal propensities. Our results also suggest that the recent decline of the study population reflects a multiple response to increased nest predation through decreased local recruitment and increased emigration.  相似文献   

10.
By dispersing from localized aggregations of recruits, individuals may obtain energetic benefits due to reduced experienced density. However, this will depend on the spatial scale over which individuals compete. Here, we quantify this scale for juvenile Atlantic salmon (Salmo salar) following emergence and dispersal from nests. A single nest was placed in each of ten replicate streams during winter, and information on the individual positions (±1 m) and the body sizes of the resulting young-of-the-year (YOY) juveniles was obtained by sampling during the summer. In six of the ten streams, model comparisons suggested that individual body size was most closely related to the density within a mean distance of 11 m (range 2–26 m). A link between body size and density on such a restricted spatial scale suggests that dispersal from nests confers energetic benefits that can counterbalance any survival costs. For the four remaining streams, which had a high abundance of trout and older salmon cohorts, no single spatial scale could best describe the relation between YOY density and body size. Energetic benefits of dispersal associated with reduced local density therefore appear to depend on the abundance of competing cohorts or species, which have spatial distributions that are less predictable in terms of distance from nests. Thus, given a trade-off between costs and benefits associated with dispersal, and variation in benefits among environments, we predict an evolving and/or phenotypically plastic growth rate threshold which determines when an individual decides to disperse from areas of high local density.  相似文献   

11.
Body condition may predict individual fitness because those in better condition have more resources to allocate towards improving their fitness. However, the hypothesis that condition indices are meaningful proxies for fitness has been questioned. Here, we ask if intraspecific variation in condition indices predicts annual reproductive success and survival. We monitored a population of Neochmia phaeton (crimson finch), a sedentary, tropical passerine, for reproductive success and survival over four breeding seasons, and sampled them for commonly used condition indices: mass adjusted for body size, muscle and fat scores, packed cell volume, hemoglobin concentration, total plasma protein, and heterophil to lymphocyte ratio. Our study population is well suited for this research because individuals forage in common areas and do not hold territories such that variation in condition between individuals is not confounded by differences in habitat quality. Furthermore, we controlled for factors that are known to impact condition indices in our study population (e.g., breeding stage) such that we assessed individual condition relative to others in the same context. Condition indices that reflect energy reserves predicted both the probability of an individual fledging young and the number of young produced that survived to independence, but only during some years. Those that were relatively heavy for their body size produced about three times more independent young compared to light individuals. That energy reserves are a meaningful predictor of reproductive success in a sedentary passerine supports the idea that energy reserves are at least sometimes predictors of fitness. However, hematological indices failed to predict reproductive success and none of the indices predicted survival. Therefore, some but not all condition indices may be informative, but because we found that most indices did not predict any component of fitness, we question the ubiquitous interpretation of condition indices as surrogates for individual quality and fitness.  相似文献   

12.
Evolution of local adaptations in dispersal strategies   总被引:2,自引:0,他引:2  
The optimal probability and distance of dispersal largely depend on the risk to end up in unsuitable habitat. This risk is highest close to the habitat's edge and consequently, optimal dispersal probability and distance should decline towards the habitat's border. This selection should lead to the emergence of spatial gradients in dispersal strategies. However, gene flow caused by dispersal itself is counteracting local adaptation. Using an individual based model we investigate the evolution of local adaptations of dispersal probability and distance within a single, circular, habitat patch. We compare evolved dispersal probabilities and distances for six different dispersal kernels (two negative exponential kernels, two skewed kernels, nearest neighbour dispersal and global dispersal) in patches of different size. For all kernels a positive correlation between patch size and dispersal probability emerges. However, a minimum patch size is necessary to allow for local adaptation of dispersal strategies within patches. Beyond this minimum patch area the difference in mean dispersal distance between center and edge increases linearly with patch radius, but the intensity of local adaptation depends on the dispersal kernel. Except for global and nearest neighbour dispersal, the evolved spatial pattern are qualitatively similar for both, mean dispersal probability and distance. We conclude, that inspite of the gene-flow originating from dispersal local adaptation of dispersal strategies is possible if a habitat is of sufficient size. This presumably holds for any realistic type of dispersal kernel.  相似文献   

13.
Natal or prebreeding dispersal is a key driver of the functioning, dynamics, and evolution of populations. Conditions experienced by individuals during development, that is, rearing conditions, may have serious consequences for the multiple components that shape natal dispersal processes. Rearing conditions vary as a result of differences in parental and environmental quality, and it has been shown that favorable rearing conditions are beneficial for individuals throughout their lives. However, the long‐term consequences of rearing conditions on natal dispersal are still not fully understood in long‐lived birds. In this study, we aim to test the following hypotheses to address the relationship between rearing conditions and certain components of the natal dispersal process in Bonelli’s eagle (Aquila fasciata): (1) The body condition of nestlings depends on the quality of the territory and/or breeders; and (2) the survival until recruitment, (3) the age of recruitment, and (4) the natal dispersal distance (NDD) all depend on rearing conditions. As expected, nestlings reared in territories with high past productivity of chicks had better body condition, which indicates that both body condition and past productivity reflect the rearing conditions under which chicks are raised. In addition, chicks raised in territories with high past productivity and with good body condition had greater chances of surviving until recruitment. Furthermore, birds that have better condition recruit earlier, and males recruit at a younger age than females. At last, although females in good body condition exhibited higher NDD when they recruited at younger ages, this pattern was not observed in either older females or males. Overall, this study provides evidence that rearing conditions have important long‐term consequences in long‐lived birds. On the basis of our results, we advocate that conservation managers work actively in the promotion of actions aimed at improving the rearing conditions under which individuals develop in threatened populations.  相似文献   

14.
Dispersal has long been recognized as a mechanism that shapes many observed ecological and evolutionary processes. Thus, understanding the factors that promote its evolution remains a major goal in evolutionary ecology. Landscape connectivity may mediate the trade-off between the forces in favour of dispersal propensity (e.g. kin-competition, local extinction probability) and those against it (e.g. energetic or survival costs of dispersal). It remains, however, an open question how differing degrees of landscape connectivity may select for different dispersal strategies. We implemented an individual-based model to study the evolution of dispersal on landscapes that differed in the variance of connectivity across patches ranging from networks with all patches equally connected to highly heterogeneous networks. The parthenogenetic individuals dispersed based on a flexible logistic function of local abundance. Our results suggest, all else being equal, that landscapes differing in their connectivity patterns will select for different dispersal strategies and that these strategies confer a long-term fitness advantage to individuals at the regional scale. The strength of the selection will, however, vary across network types, being stronger on heterogeneous landscapes compared with the ones where all patches have equal connectivity. Our findings highlight how landscape connectivity can determine the evolution of dispersal strategies, which in turn affects how we think about important ecological dynamics such as metapopulation persistence and range expansion.  相似文献   

15.
1. Dispersal behaviour can be affected by an individual's phenotype, by the environmental or social context they experience, and by interactions between these factors. Differential dispersal propensities between individuals may also be an important modifier of functional connectivity between populations. To assess how a key trait, body size, affected both social interactions and dispersal behaviour, this study examined the relationship between body size, antagonistic interactions, and breeding dispersal in male dragonflies (Pachydiplax longipennis) across a seasonal decline in adult body size. 2. During a seasonal peak in male body size in this study, dispersers were smaller than non‐dispersers. Later in the season, the body size of dispersers and non‐dispersers did not differ. 3. Focal observations found that body size was related to competitive dominance, large males engaged in aggressive chases more often and smaller males were more frequently pursued. 4. These results indicate that when large males were present, small males were more likely to disperse suggesting that dispersal is a tactic adopted by social subordinates in this context. If breeding dispersal is typically undertaken by subordinate males, functional connectivity between populations may be less than estimated from absolute dispersal rates.  相似文献   

16.
We examine the evolutionary stability of strategies for dispersal in heterogeneous patchy environments or for switching between discrete states (e.g. defended and undefended) in the context of models for population dynamics or species interactions in either continuous or discrete time. There have been a number of theoretical studies that support the view that in spatially heterogeneous but temporally constant environments there will be selection against unconditional, i.e. random, dispersal, but there may be selection for certain types of dispersal that are conditional in the sense that dispersal rates depend on environmental factors. A particular type of dispersal strategy that has been shown to be evolutionarily stable in some settings is balanced dispersal, in which the equilibrium densities of organisms on each patch are the same whether there is dispersal or not. Balanced dispersal leads to a population distribution that is ideal free in the sense that at equilibrium all individuals have the same fitness and there is no net movement of individuals between patches or states. We find that under rather general assumptions about the underlying population dynamics or species interactions, only such ideal free strategies can be evolutionarily stable. Under somewhat more restrictive assumptions (but still in considerable generality), we show that ideal free strategies are indeed evolutionarily stable. Our main mathematical approach is invasibility analysis using methods from the theory of ordinary differential equations and nonnegative matrices. Our analysis unifies and extends previous results on the evolutionary stability of dispersal or state-switching strategies.  相似文献   

17.
Adaptive significance of maternal induction of density-dependent phenotypes   总被引:2,自引:0,他引:2  
Density has been demonstrated to impact life history traits such as growth, fecundity and survival. Some authors have proposed that morphological and behavioral traits have evolved in response to density conditions. To escape the adverse effect of density, individuals can either adapt to crowding or avoid crowding by dispersing. The aim of this work is to study the interplay between local adaptation and dispersal in four populations of the common lizard, Lacerta vivipara, where densities of both the maternal and juvenile environment have been experimentally manipulated. Density was decreased in the spring by removing a quarter of the population at two sites and was un-manipulated in two other sites. One month later, we caught some pregnant females and kept them in the laboratory until parturition. To manipulate density of postnatal neonates and juveniles, we divided each clutch into two, and released half of the juveniles either in a reduced density site or in a control one. We then recaptured individuals a year after release and recorded their size and weight. When density was reduced, females increased their clutch size, but produced offspring of lower body condition than in the control sites. The conspicuous ventral color of females was likewise increased when density was reduced. However, offspring growth rate, local survival and dispersal were not influenced by maternal density. Juvenile females released in the reduced-density site had lower survival rate than those released in the control density site. Contrary to expectations, offspring dispersal was significantly higher at the reduced compared to control density sites. There was no interaction between maternal density habitat and the juvenile release habitat indicating that maternal effects did not influence juvenile life history traits in a different way according to the level of density. Moreover, clutch size and offspring size had no effect on juvenile growth or survival.  相似文献   

18.
Survival of females in relation to their body condition was investigated in the Collared Flycatcher Ficedula albicollis on Gotland, Sweden. The brood size was manipulated by enlarging or reducing the number of nestlings by one or two chicks. We found a positive relationship between experimental treatment and the condition of the female in the year of the experiment. Among females which disappeared (had apparently died) between years, the relationship was negative but not significant. When the effect of brood manipulation on the probability of survival was analysed separately for females in poor and good body condition, a negative relationship between experimental treatment and probability of survival among females in poor condition was found. This result indicates the existence of a cost of reproduction in terms of survival in low quality females. There was no effect of brood manipulation on the survival of females in good body condition. Our analyses suggest that individuals have different costs of reproduction, depending on their conditional state.  相似文献   

19.
Why do the young of cooperative breeders--species in which more than two individuals help raise offspring at a single nest--delay dispersal and live in groups? Answering this deceptively simple question involves examining the costs and benefits of three alternative strategies: (1) dispersal and attempting to breed, (2) dispersal and floating, and (3) delayed dispersal and helping. If, all other things being equal, the fitness of individuals that delay dispersal is greater than the fitness of individuals that disperse and breed on their own, intrinsic benefits are paramount to the current maintenance of delayed dispersal. Intrinsic benefits are directly due to living with others and may include enhanced foraging efficiency and reduced susceptibility to predation. However, if individuals that disperse and attempt to breed in high-quality habitat achieve the highest fitness, extrinsic constraints on the ability of offspring to obtain such high-quality breeding opportunities force offspring to either delay dispersal or float. The relevant constraint to independent reproduction has frequently been termed habitat saturation. This concept, of itself, fails to explain the evolution of delayed dispersal. Instead, we propose the delayed-dispersal threshold model as a guide for organizing and evaluating the ecological factors potentially responsible for this phenomenon. We identify five parameters critical to the probability of delayed dispersal: relative population density, the fitness differential between early dispersal/breeding and delayed dispersal, the observed or hypothetical fitness of floaters, the distribution of territory quality, and spatiotemporal environmental variability. A key conclusion from the model is that no one factor by itself causes delayed dispersal and cooperative breeding. However, a difference in the dispersal patterns between two closely related species or populations (or between individuals in the same population in different years) may be attributable to one or a small set of factors. Much remains to be done to pinpoint the relative importance of different ecological factors in promoting delayed dispersal. This is underscored by our current inability to explain satisfactorily several patterns including the relative significance of floating, geographic biases in the incidence of cooperative breeding, sexual asymmetries in delayed dispersal, the relationship between delayed dispersal leading to helping behavior and cooperative polygamy, and the rarity of the co-occurrence of helpers and floaters within the same population. Advances in this field remain to be made along several fronts.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
This study deals with dispersal behavior of sexuals and intraspecificvariation in queen numbers. The specific questions are: (1)Is there an association between male and female dispersal behaviorand the number of queens in a colony? (2) Is there an associationbetween individual behavior and physiological condition? (3)Do males and females from monogyne (one queen per colony) andpolygyne (several functional queens per colony) colonies differwith respect to size, weight, and physiological condition? Theresults show that both males and females are more prone to dispersein monogyne than in polygyne colonies. Moreover, males and femalesof both monogyne and polygyne colonies show dispersal polymorphism,suggesting that an increased tendency of reproductive femalesto stay in the maternal colony may cause monogyne colonies toswitch to polygyny. The propensity to disperse is associatedwith the physiological condition of individuals. Larger andheavier females containing more fat and glycogen preferentiallydisperse, whereas smaller ones with less fat and glycogen moreeasily dealate and mate without a previous nuptial flight. Maledispersal correlates positively to larger size and higher levelsof glycogen; fat contents do not increase during maturation.The females produced in monogyne colonies are larger, heavier,and contain more fat and glycogen than those produced in polygynecolonies. The males produced in monogyne colonies have relativelylonger wings and are heavier than those produced in polygynecolonies. However, there are no differences in size and fatcontents between males from monogyne and polygyne colonies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号