首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Growth analysis of wild oats ( Avena fatua and A. ludoviciana ) grown in pots with different levels of nitrogen supply showed many similarities to spring barley, winter oats and winter wheat.
Small differences that could affect competition between wild oats and cereals occurred mainly in the seedlings. Wild oat seedlings were smaller than the corresponding cultivated cereals in total dry weight, total nitrogen content, leaf area and number of shoots. However, very young wild oat plants had higher net assimilation rates than the cultivated cereals and soon caught up and passed them. The difference in net assimilation rate did not persist, and in the later stages of growth differences in dry-matter production depended mainly on differences in leaf area. Another important difference between wild oats and cultivated cereals was that 98–100% of the wild oat seeds and none of the crop seeds were dormant 2 months after harvest.
Ear emergence in wild oats spread over a longer period, the range of ear heights was greater and the tallest ears were taller than in the corresponding cultivated cereals. Assimilation in the ear appeared to account for less of the total dry matter of the plants of wild and cultivated oats than of wheat. The wild oats produced more seeds per plant than the cultivated cereals, but the 1000-grain weight, and hence the total dry weight of seeds, was lower in the weeds than in the crop.
Addition of nitrogen to the soil affected the growth of the wild oats in the same ways as the cultivated cereals; they took up the same amount of nitrogen per plant as winter oats and winter wheat but more than spring barley.
It is concluded that wild oats are most susceptible in the seedling stage to competition from the crop and that nitrogenous fertilizer applied to an infested field is unlikely to alter the balance between the yields of crop and of wild oats.  相似文献   

2.
研究江汉平原豆麦(大豆/小麦)和稻麦(水稻/小麦)轮作系统中冬小麦生长规律对氮肥运筹模式的响应,可为缩小两种轮作模式下的小麦产量差异提供理论依据。试验设置传统施肥(70%底肥,30%越冬期追肥)和优化施肥(1/3底肥,1/3越冬期追肥,1/3拔节期追肥)2个处理,并以不施氮处理为对照,分析了豆麦和稻麦轮作系统中冬小麦的生长规律、产量及产量构成因素、肥料利用率和施肥效益等。结果表明: 施氮和轮作模式均对小麦产量有显著影响,优化施肥产量显著高于传统施肥,两者产量差异在豆麦轮作系统下为920 kg·hm-2,在稻麦轮作系统下为2195 kg·hm-2。相同轮作模式下,传统施肥冬季、春季群体茎蘖数高于优化施肥,而优化施肥在整个生育期干物质总积累量较传统施肥高5%~31%(豆麦)和14%~28%(稻麦)。传统施肥下豆茬小麦产量较高的原因是穗数、成穗率、群体干物质积累量等均高于稻茬小麦;优化施肥下稻茬小麦产量较豆茬小麦增加幅度更大,表明优化氮肥模式可缩小豆麦与稻麦轮作中小麦的产量差异。两种轮作模式中小麦花后粒重分别呈现“慢-快-中”(豆麦)和“中-快-慢”(稻麦)的增加趋势;氮肥农学效率、小麦季纯收益等指标均以稻麦轮作优化施肥处理最高。综上,在江汉平原地区,稻麦轮作优化施肥处理下小麦群体结构合理,干物质积累量较高,产量和施肥效益增加显著,是江汉平原地区兼顾产量与施肥效益的最佳模式。  相似文献   

3.
Catt  J.A.  Howse  K.R.  Christian  D.G.  Lane  P.W.  Harris  G.L.  Goss  M.J. 《Plant and Soil》1998,203(1):57-69
Nitrate losses in drainflow were measured over five years on eight hydrologically isolated field plots, pairs of which had the following cropping regimes: (a) a 3-yr unfertilised, ungrazed grass ley followed by winter and spring cereals, (b) mixed cropping including winter cover crops, spring cereals, winter cereals, winter fallow and spring beans, (c) a similar sequence to (b) but with a winter fallow replacing the cover crop in the first year and a winter cover crop replacing the fallow in the third year, and (d) continuous winter cereals (control plots). Less nitrate was lost in winter drainflow from winter cover crops than from the winter fallows, but over all five years less nitrate was leached from the continuous cereal plots than from those with mixed cropping. Most of the extra nitrate lost from the mixed cropping regimes probably resulted from mineralisation of the cover crop residues, which occurred at times when subsequent crops could not take advantage of the mineral nitrogen released. Crops grown after the grass ley and cover crops did not benefit from their residues, in terms of either grain yield or of total nitrogen uptake. We conclude that on heavy clay soils in UK a cropping regime of continuous winter cereals offers the best compromise between profitable crop production and minimised nitrate loss to surface waters.  相似文献   

4.
半干旱黄土区苜蓿草地轮作农田土壤氮、磷和有机质变化   总被引:28,自引:0,他引:28  
大田试验研究了多年生苜蓿草地轮作农田2年内的耕层土壤氮、磷养分和有机质变化.结果表明,与苜蓿连作相比,苜蓿草地轮作成农田后,土壤N和有机质消耗增加,2年中耕层土壤全氮含量平均分别下降了5.4%和19.5%、有机质下降了46.8%和28.2%,土壤全磷无显著变化;轮作提高了土壤氮、磷养分有效性及其活化率,土壤硝态氮含量2年分别提高了15.5%和159.1%、速效磷含量提高了44.5%和48.0%,差异显著.不同轮作方式对土壤养分变化有显著影响.苜蓿草地轮作后第2年,种植春小麦与种植玉米相比差异显著,种植马铃薯和休闲处理土壤养分变化幅度处于二者之间.种植春小麦能够维持农田土壤肥力生长季平衡,种植玉米增加了对土壤全氮、有机质和速效磷的消耗,土壤养分含量出现季节性下降,C/N和C/P降低.在半干旱地区多年生苜蓿草地向农田转变过程中,以轮作春小麦为宜,应避免种植玉米作物,以维持农田肥力平衡.  相似文献   

5.
在华北平原灌溉区,采用冬小麦 夏玉米周年轮作田间试验,研究麦季牛场肥水灌溉对冬小麦和夏玉米产量、磷吸收量、磷累计利用率及土壤积累的影响.结果表明:麦季肥水灌溉能显著提高冬小麦和夏玉米产量,冬小麦产量随肥水带入磷的增加先增加后降低,肥水灌溉带入137 kg P2O5·hm-2时冬小麦产量最高,磷的当季利用率较高,分别为7646.4 kg·hm-2和24.8%,肥水灌溉带入过量磷会降低冬小麦产量和磷当季利用率;夏玉米产量和磷素吸收量随冬小麦季肥水灌溉带入磷量增加而增加,后季夏玉米产量增加2222.4~2628.6 kg·hm-2,磷吸收量增加13.9~21.1 kg·hm-2.农民习惯施肥处理夏玉米当季施磷88 kg P2O5·hm-2时,与不施肥处理相比,夏玉米产量增加2235.0 kg·hm-2.随着牛场肥水灌溉年限的推移,作物增产效果逐渐明显,冬小麦 夏玉米轮作体系作物累计磷利用率逐年升高,6季作物收获后,磷累计利用率达40.0%~47.7%.试验条件下,
冬小麦 夏玉米轮作体系进行2次肥水灌溉是较经济安全的灌溉模式.  相似文献   

6.
Summary Ammonium nitrate fertilizer, labelled with15N, was applied in spring to winter wheat growing in undisturbed monoliths of clay and sandy loam soil in lysimeters; the rates of application were respectively 95 and 102 kg N ha−1 in the spring of 1976 and 1975. Crops of winter wheat, oilseed rape, peas and barley grown in the following 5 or 6 years were treated with unlabelled nitrogen fertilizer at rates recommended for maximum yields. During each year of the experiments the lysimeters were divided into treatments which were either freelydrained or subjected to periods of waterlogging. Another labelled nitrogen application was made in 1980 to a separate group of lysimeters with a clay soil and a winter wheat crop to study further the uptake of nitrogen fertilizer in relation to waterlogging. In the first growing season, shoots of the winter wheat at harvest contained 46 and 58% of the fertilizer nitrogen applied to the clay and sandy loam soils respectively. In the following year the crops contained a further 1–2% of the labelled fertilizer, and after 5 and 6 years the total recoveries of labelled fertilizer in the crops were 49 and 62% on the clay and sandy loam soils respectively. In the first winter after the labelled fertilizer was applied, less than 1% of the fertilizer was lost in the drainage water, and only about 2% of the total nitrogen (mainly nitrate) in the drainage water from both soils was derived from the fertilizer. Maximum annual loss occurred the following year but the proportion of tracer nitrogen in drainage was nevertheless smaller. Leaching losses over the 5 and 6 years from the clay and sandy loam soil were respectively 1.3 and 3.9% of the original application. On both soils the percentage of labelled nitrogen to the total crop nitrogen content was greater after a period of winter waterlogging than for freely-drained treatments. This was most marked on the clay soil; evidence points to winter waterlogging promoting denitrification and the consequent loss of soil nitrogen making the crop more dependent on spring fertilizer applications.  相似文献   

7.
针对目前集约化农业生产中氮肥用量盲目偏高、氮素利用率低、土壤及肥料中氮素以温室气体N2O形式的排放量增加等问题,采用田间试验研究了不同氮肥水平(150、225、300 kg·hm-2)配施双氰胺(DCD)对华北地区集约化农田冬小麦-夏玉米轮作系统N2O排放的影响,并分析了其经济效益.结果表明: 在整个轮作系统中,不同氮水平配施DCD处理的N2O排放通量减小25.6%~32.1%,N2O年度累积排放量降低23.1%~31.1%.土壤N2O排放通量与表面温度和湿度均呈显著指数相关,且湿度对小麦季N2O排放的影响大于玉米季,而温度对玉米季的影响大于小麦季.施用DCD后,小麦、玉米产量分别增加16.7%~24.6%和29.8%~34.5%,两季作物经济收益平均增加7973.2 元·hm-2.因此,合理氮肥用量配施DCD既可以保证作物产量、提高经济效益,又可以减少N2O排放.综合考虑环境效益与经济效益,本试验条件下中量氮肥配施双氰胺(N总量225 kg·hm-2)是一种适宜在华北地区推广的优良氮肥管理模式.  相似文献   

8.
针对目前集约化农业生产中氮肥用量盲目偏高、氮素利用率低、土壤及肥料中氮素以温室气体N2O形式的排放量增加等问题,采用田间试验研究了不同氮肥水平(150、225、300 kg·hm-2)配施双氰胺(DCD)对华北地区集约化农田冬小麦-夏玉米轮作系统N2O排放的影响,并分析了其经济效益.结果表明: 在整个轮作系统中,不同氮水平配施DCD处理的N2O排放通量减小25.6%~32.1%,N2O年度累积排放量降低23.1%~31.1%.土壤N2O排放通量与表面温度和湿度均呈显著指数相关,且湿度对小麦季N2O排放的影响大于玉米季,而温度对玉米季的影响大于小麦季.施用DCD后,小麦、玉米产量分别增加16.7%~24.6%和29.8%~34.5%,两季作物经济收益平均增加7973.2 元·hm-2.因此,合理氮肥用量配施DCD既可以保证作物产量、提高经济效益,又可以减少N2O排放.综合考虑环境效益与经济效益,本试验条件下中量氮肥配施双氰胺(N总量225 kg·hm-2)是一种适宜在华北地区推广的优良氮肥管理模式.  相似文献   

9.
Delia platura Mg. is a polyphagous and polyvoltinic Holarctic species feeding mainly on booting cereals and seedling roots. In Samara Province, three generations of the species develop annually; the species hibernates as puparia in soil under winter crops at a depth of 10–20 cm; adults emerge during the first ten days of May. Most of all, the fly infests barley and winter wheat, preferring crop rotation systems with green-manure fallow and causing 2.6–7.2% yield loss.  相似文献   

10.
Rice is major crop in India and its cultivation in northwest India started 25 to 30 years ago in assured irrigation areas during the summer rainy season. In this region, rice-wheat rotation became most popular owing to its high yields; however, these crops are highly infested by the weeds, thus farmers use herbicides for their control. Hence, this rotation consumes a maximum quantity of herbicides in this region, which has resulted in several problems (environmental pollution, human health hazards, development of herbicide resistance in weeds). Thus, serious ecological questions about the reliance on herbicides for weed control in this rotation have been raised. One of the alternatives to overcome these problems is with the use of allelopathic strategies, including the use of weed-smothering crops for weed management and for the sustainability of agriculture. The field, pot culture, and laboratory studies have shown that inclusion of weed-smothering crops in rotation considerably reduced the weed population in the current and succeeding crops. Early summer (April-June) fodder crops of sorghum, pearlmillet and maize drastically smothered the weed population and biomass. The residual suppression effect of peralmillet also persisted in the next crop up to 45 days. Thus, it is conceptualized that the inclusion of such summer fodder crops before the rice crop in the rice-wheat rotation may provide satisfactory weed control in the succeeding rice crop and may minimize the use of herbicides. Likewise, the replacement of wheat by winter fodder crops of oat and berseem (Trifolium alexandrinum) may also help in the control of winter weeds. Hence, further studies in this direction may provide satisfactory weed management in rice-wheat rotation and may minimize the use of herbicides and thereby help indeveloping sustainable agricultural practices.  相似文献   

11.
评估不同轮作模式的生态可持续性和作物生产力,可为调整优化种植结构提供理论依据。设置7个不同轮作作物和周期茬口处理,采用实时荧光定量PCR技术测定不同轮作茬口的土壤细菌群落丰度,采用16S rRNA基因扩增子高通量测序技术分析土壤细菌群落多样性与物种组成,并测定土壤速效养分状况和后茬小麦产量。结果表明: 与夏玉米茬口相比,不同轮作周期夏花生或夏大豆茬口处理降低了土壤有机碳、无机氮和速效钾含量,显著增加了土壤有效磷含量。不同轮作周期夏花生或夏大豆茬口处理的土壤细菌16S rRNA基因拷贝数显著降低,而群落丰富度和多样性有所增加。不同轮作作物显著改变了土壤细菌群落结构和物种组成。与夏玉米茬口相比,不同轮作周期夏大豆茬口显著增加了后茬冬小麦籽粒千粒重和产量。综上,不同轮作周期夏花生或夏大豆茬口有利于增加土壤有效磷含量和细菌群落多样性,显著改变土壤细菌群落结构,其中,夏大豆茬口对后茬冬小麦产量形成具有积极作用。  相似文献   

12.
Green peach aphid, Myzus persicae (Sulzer), does not overwinter outdoors in Minnesota; it arrives each spring on low-level jet streams from the south. After arrival, anholocylic reproduction occurs on numerous herbaceous species, including many common weeds, before movement to potato, Solanum tuberosum L. In investigating aphid feeding behavior on barrier crops, we observed winter wheat, Triticum aestivum L., colonized by green peach aphid. The Northern Great Plains grows 94,000 ha of potatoes and 20.5 million ha of small grain cereals each year, the latter potentially providing an early emerging and widely distributed green peach aphid host to influence early season potato colonization. Life tables statistics indicated green peach aphid had its highest reproductive potential among cereals on winter wheat, with rye (Secale cereale L.) > barley (Hordeum vulgare L.) > oats (Avena sativa L.). Green peach aphid was found to colonize barley, rye, and winter wheat, but not oats. Mean generation time, net reproductive rate, doubling time, and finite rate of increase were significantly different between host plants. Electrical penetration graph technique indicated mean nonpenetration duration by green peach aphid was significantly different among plant species, and significantly longer on winter wheat than on the other cereals. Mean xylem phase duration was not significantly different among plant species but sieve element salivation was of longest duration on potato. Phloem sap ingestion (E2) was also significantly different among plant species with longest E2 duration on winter wheat. This study demonstrates that this aphid can effectively use key cereals at the vegetative stage.  相似文献   

13.
Incidence of yellow leaf blotch (Drechslera tritici-repentis) on winter wheat in dependence on crop rotation and under the influence of different spray programs On winter wheat grown on two experimental fields in different crop rotation programs, a severe incidence of Drechslera tritici-repentis on the leaves was observed. Monoculture of wheat resulted in a significantly higher attack than growing in rotation with other crops. A distinct relation between different spray programs and disease severity could be found only in isolated cases.  相似文献   

14.
Recous  Sylvie  Machet  Jean-Marie 《Plant and Soil》1999,206(2):137-149
Previous studies on the fate of fertiliser nitrogen applied to winter wheat in temperate climates have shown that nitrogen (N) applied early, at tillering for wheat, was less efficiently taken up than N applied later in the growth cycle. We examined the extent to which the soil microbial N immobilisation varied during the wheat spring growth cycle and how microbial immobilisation and plant uptake competed for nitrogen. We set up a pulse-15N labelled field experiment in which N was applied at eight development stages from tillering (beginning of March) to anthesis (mid-June). Each application was 50 kg N ha-1 as 15N labelled urea except for the first application which was 25 kg N ha-1. The distribution of fertiliser 15N in shoots, roots, mineral and organic soil N was examined by destructive sampling 7 and 14 days after each 15N pulse. The inorganic 15N pool was almost depleted by day 14. The N uptake efficiency increased with later applications from 45% at tillering to 65% at flowering. N immobilisation was rather constant at 13–16% of N applied, whatever the date of application. The increase in plant 15N uptake resulted in an increase in the total 15N recovery in the plant-soil system (15N in soil +15N in plant), suggesting that gaseous losses were lower at the later application dates.  相似文献   

15.
Water tables are dropping by approximately one meter annually throughout the North China Plain mainly due to water withdrawals for irrigating winter wheat year after year. In order to examine whether the drawdown can be reduced we calculate the net water use for an 11 year field experiment from 2003 to 2013 where six irrigated crops (winter wheat, summer maize, cotton, peanuts, sweet potato, ryegrass) were grown in different crop rotations in the North China Plain. As part of this experiment moisture contents were measured each at 20 cm intervals in the top 1.8 m. Recharge and net water use were calculated based on these moisture measurement. Results showed that winter wheat and ryegrass had the least recharge with an average of 27 mm/year and 39 mm/year, respectively; cotton had the most recharge with an average of 211 mm/year) followed by peanuts with 118 mm/year, sweet potato with 76 mm/year, and summer maize with 44 mm/year. Recharge depended on the amount of irrigation water pumped from the aquifer and was therefore a poor indicator of future groundwater decline. Instead net water use (recharge minus irrigation) was found to be a good indicator for the decline of the water table. The smallest amount of net (ground water) used was cotton with an average of 14 mm/year, followed by peanut with 32 mm/year, summer maize with 71 mm/year, sweet potato with 74 mm/year. Winter wheat and ryegrass had the greatest net water use with the average of 198 mm/year and 111 mm/year, respectively. Our calculations showed that any single crop would use less water than the prevalent winter wheat summer maize rotation. This growing one crop instead of two will reduce the decline of groundwater and in some rain rich years increase the ground water level, but will result in less income for the farmers.  相似文献   

16.
《植物生态学报》2017,41(10):1060
Aims Global warming is expected to be the strongest in high altitude mountainous areas, which are more ecologically fragile and economically marginalized. The Qinghai-Xizang Plateau is among such areas most vulnerable to global warming, and more than 80% of its population depends on subsistence agriculture. The aim of this study is to understand the impacts of warming on indigenous crop production, which can help to devise better strategies for crop adaptation and food security in this area.Methods A field warming experiment using a facility of free air temperature increase was conducted to simulate the predicted warming level in Caigongtang town, Lhasa City, China. The experiment consisting of two treatments (warmed and non-warmed) was performed using a completely random design with three replicates. An infrared heater (180 cm in length and 20 cm in width) of 1 500 W was suspended 1.5 m above the ground in each warmed plot. In each non-warmed plot, a ‘dummy’ heater of same dimensions was also suspended to mimic the shading effects. The warming treatment was performed from the sown date to the harvest date. We measured dry matter and nitrogen accumulation, partition and translocation of winter wheat (Triticum aestivum) using ‘Shandong 6’ under warming and control treatments.Important findings Results showed that, with 1.1 °C increase in daily mean air temperature during winter wheat growing season, the dry matter accumulation rate at population level from sowing to anthesis stage, grain dry matter partition ratio and contribution of dry matter translocation amount to grain after anthesis were 27.5%, 5.6% and 68.6% higher, respectively, in the warmed plots than those in the non-warmed plots. Meanwhile, warming increased nitrogen accumulation rate at population level of winter wheat. Nitrogen distribution proportions in grain and nitrogen translocation efficiency from vegetative organs to grain after anthesis in the warmed treatment were 6.0% and 5.5% higher than those in the non-warmed treatment, respectively. Compared with non-warmed treatment, warming decreased harvest index by 3.1%, though the difference was not statistically significant. Grain yield, nitrogen uptake efficiency, nitrogen partial factor productivity and nitrogen harvest index were 8.1%, 20.8%, 8.1% and 6.0% higher, respectively, in the warmed plots than those in the non-warmed plots. In conclusion, an increase in daily mean air temperature of about 1.1 °C can enhance plant growth during the pre-anthesis phase by mitigating the low temperature limitation, and accelerate dry matter and nitrogen partition and translocation to the grain after anthesis in winter wheat. These results suggest that warming may benefit winter wheat production through increasing nitrogen use efficiency in high altitude areas.  相似文献   

17.
Legume‐containing leys are commonly used to improve soil fertility in the 2‐year conversion period from conventional to organic production. While in‐conversion land may be grazed, in stockless farming systems, land is effectively out of production, leading to a reduction in income and pressure on cash flow. The impacts of seven organic conversion strategies on the first organic crop (winter wheat) were previously reported. This study investigates the effect of the conversion strategies on the second (winter beans) and third (winter oats) organic crops, thereby extending the analysis throughout the first complete rotation. The strategies were (a) 2‐years’ red clover–ryegrass green manure, (b) 2‐years’ hairy vetch green manure, (c) red clover for seed production then a red clover–ryegrass green manure, (d) spring wheat undersown with red clover, then a red clover green manure, (e) spring oats, then winter beans, (f) spring wheat, then winter beans and (g) spring wheat undersown with red clover, then a barley–pea intercrop. Conversion strategy had a significant impact on organic bean yield, which ranged from 2.78 to 3.62 t ha?1, and organic oat yield, which ranged from 3.24 to 4.17 t ha?1. In the organic bean crop, weed abundance prior to harvest, along with soil texture, accounted for 70% of yield variation. For the oats, soil mineral nitrogen in November together with weed abundance in April accounted for 72% of the variation in yield. The impacts of conversion strategies on soil mineral nitrogen levels were still detectable 3 years after conversion. The results from this study indicate that the choice of conversion crop has important long‐term implications. More exploitative conversion strategies, that is those with a higher proportion of cash cropping, had an increased weed burden and decreased levels of soil mineral nitrogen, leading to reduced yields of beans and oats, 2 and 3 years after conversion.  相似文献   

18.
Summary In a series of experiments with winter cereals growing in pots, mechanical compaction of moist soil over wheat seed severely inhibited germination — no plants emerged from a compacted sandy loam soil. Conversely, the destruction of the surface tilth by falling water drops had no effect on the rate of emergence of either wheat or oats.Tillered wheat plants, growing at winter temperatures, survived prolonged adverse conditions of soil aeration.  相似文献   

19.
Aims Understanding the effect of long-term fertilization on the sensitivity of grain yield to temperature changes is critical for accurately assessing the impact of global warming on crop production. In this study, we aim to assess the impacts of temperature changes on grain yields of winter wheat (Triticum aestivum L.) under different fertilization treatments in a long-term manipulative experiment in North China.Methods We measured grain yields of winter wheat under four fertilization treatments at the Yucheng Comprehensive Experimental Station each year from 1993 to 2012. We also measured air temperature at 0200, 0800, 1400 and 2000h each day since 1 January 1980. We then used the first-difference method and simple linear regression models to examine the relationship of crop yield changes to mean air temperature, mean daytime and nighttime air temperature in crop growing seasons.Important findings We found that increases in mean daily temperature, mean daytime temperature and mean nighttime temperature each had a positive impact on the grain yield of winter wheat. Grain yield increased by 16.7–85.6% for winter wheat in response to a 1°C increase in growing season mean daily temperature. Winter wheat yield was more sensitive to variations of nighttime temperature than to that of daytime temperature. The observed temperature impacts also varied across different fertilization treatments. Balanced fertilization significantly enhanced grain yields for winter wheat under a warming climate. Wheat plots treated with nitrogen and phosphorous balanced fertilization (NPK- and NP-treated plots) were more responsive to temperature changes than those without. This report provides direct evidence of how temperature change impacts grain yields under different fertilization treatments, which is useful for crop management in a changing global climate.  相似文献   

20.
Over the course of 5 years, different maize residue treatments were conducted on 14 zero tillage on-farm sites in Switzerland to evaluate their effect on the development of Fusarium head blight (FHB) and the contamination with the mycotoxin deoxynivalenol (DON) in winter wheat grains and wheat straw following grain maize. Two experimental series with three and five different treatments were carried out, respectively. Fusarium graminearum (Schwabe) was the predominant FHB-causing species with an overall incidence of 15% infected wheat grains. A significant correlation between symptoms in the field, F. graminearum incidence and DON content in wheat grains and wheat straw was observed. The average DON content in both wheat grains and wheat straw was approximately 5,000 μg/kg and thus several times higher than the European maximum limit of 1,250 μg/kg for unprocessed small-grain cereals for human consumption. Of all grain samples, 74% were above the maximum limit. Pooled over both experimental series, the average reduction of DON in grains through treatments of the maize residue compared with a control treatment ranged between 21 and 38%. The effect of various other factors, including the year, the wheat variety, the site, the maize hybrid and the production system was evaluated as well. The year and the wheat variety were the most important FHB influencing factors. Over all treatments, the variety Levis showed a fivefold higher average DON content compared with the variety Titlis. From different categories of maize residue particles, intact pieces of 5–15 cm length were strongly correlated with F. graminearum incidence and DON content in grains. During the time course of this study, the recommendation from a preliminary version of the internet-based DON forecasting system FusaProg to apply or to omit a fungicide treatment was correct in 32 out of 42 cases. The results are currently being used to optimise the FusaProg models. This study has shown that in a grain maize/winter wheat rotation, the DON content in wheat grains frequently exceeded the European maximum limit, even with a thorough treatment of maize residues and less susceptible wheat varieties. Hence, in order to reduce the contamination risk in a zero tillage system, the crop rotation needs to be modified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号