首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chromosomal anomalies, microdeletions of AZF region of Y-chromosome and CFTR gene mutations have been studied among 80 infertile men with idiopathic spermatogenetic failure: 36 (45%) patients with aspermia, 19 (24%) patients with azoospermia and 25 (31%) patients with severe oligoasthenoteratozoospermia. In total 30% males with spermatogenetic failure genetic factor of infertility was observed. Karyotype anomalies were observed in 17.5% of infertile men, within 16.2% numerical and structural gonosomal anomalies and in 1.3%—Robertsonian translocation were revealed. In 11.25% males with spermatogenetic failure, Y-chromosome AZF region microdeletions were detected. The frequency of CFTR major mutation F508del among infertile men was 6.25%. 5T allele of polymorphic locus IVS8polyT was detected in 7.5% of examined men. The results obtained indicate the high complexity of cytogenetic and moleculargenetic studies of male infertility.  相似文献   

2.
Abnormal spermatogenesis in men with Y-chromosome microdeletions suggests that genes important for spermatogenesis have been removed from these individuals. VCY2 is a testis-specific gene that locates in the most frequently deleted azoospermia factor c region in the Y chromosome. We have raised an antiserum to VCY2 and used it to characterize the localization of VCY2 in human testis. Using Western blot analysis, the affinity-purified polyclonal VCY2 antibody gave a single specific band of approximately 14 kDa in size, corresponding to the expected size of VCY2 in all the collected human testicular biopsy specimens with normal spermatogenesis. Immunohistochemical analyses showed that VCY2 localized to the nuclei of spermatogonia, spermatocytes, and round spermatids, except elongated spermatids. At the ultrastructural level, VCY2 expression was found in the nucleus of human ejaculated spermatozoa. To determine the possible relationship of VCY2 with the pathogenesis of male infertility, we examined a group of infertile men with and without Y-chromosome microdeletions and with known testicular pathology using VCY2 antibody. VCY2 was weakly expressed at the spermatogonia and immunonegative in spermatocytes and round spermatids in testicular biopsy specimens with maturation arrest or hypospermatogenesis. The specific localization of the protein in germ cell nuclei indicates that VCY2 is likely to function in male germ cell development. The impaired expression of VCY2 in infertile men suggests its involvement in the pathogenesis of male infertility.  相似文献   

3.
非梗阻性无精子症(non-obstructive azoospermia,NOA)是导致男性不育的重要原因,影响着约0.6%的男性或10%的不育男性.NOA是一种由多因素引起的具有高度遗传异质性和表型异质性的复杂疾病,其中遗传学病因包括染色体异常、Y染色体微缺失、基因突变以及表观遗传修饰等.目前临床上针对NOA患者的遗传学检测,还仅限于结合附睾和睾丸穿刺活检的核型分析及Y染色体微缺失检测,而且一直缺乏理想的治疗方案.因此,深入解析NOA的具体分子机理,对阐明NOA的病因、提高男性不育的临床诊断和治疗具有重要意义.本综述将从NOA的遗传学基础、NOA的病理特征、临床诊断及治疗等方面进行系统的探讨.  相似文献   

4.
The results of molecular-genetic study of Y-chromosome microdeletions in men with spermatogenesis failure and in patients with cryptorchism are presented. The molecular-genetic studies of regions AZFa, AZFb, AZFc in STS loci - sY84, sY86, sY127, sY134, sY254, sY255 and SRY gene have been performed. Y-chromosome microdeletions were detected in 13,3% infertile men with spermogram failure. The frequency of genetic (cyto- and molecular) abnormalities among boys with isolated cryptorchism was 4%. The results show the necessity of additional study ofgenetic factors ofcryptorchism development.  相似文献   

5.
The role of the Y-chromosome in spermatogenesis remains one of the hottest topics in andrology. Three non overlapping recurrently deleted regions on Yq (AZFa, AZFb, AZFc) have been defined, each of them containing several genes that are candidates for male infertility. The causes and mechanisms leading to microdeletion formation on the Y are largely unknown. Theoretically, it could be possible that some groups of Y-chromosomes (haplogroups) currently distributed in the population could confer a selective advantage/disadvantage towards deletion formation. A precedent in the field is the recent identification of a Y-chromosome haplotype that confers a selective advantage against a translocation of Yp leading to another form of male infertility, the Y+XX-male phenotype. In order to test if selection is acting on Y-chromosome haplotype distribution, we have defined and compared Y-chromosome haplotypes in a group of around 60 individuals with Y microdeletions from North-Western Europe using 10 biallelic Y-markers (SRY-2627, SRY-1532, SRY-8299, 92R7, Tat, YAP, sY81, LLY22g, M9, DYS257). The defined heplotypes were compared to a control normospermic population of the same ethnic/geographic origin (in the framework of the European Biodiversity Project). We evaluatte the relationship between different Y-chromosome backgrounds and microdeletions, and to which extent selection on this chromosome could have influenced fifness of certain individuals/populations. We also discuss the selective forces that are acting on this chromosome and speculate on the mechanisms underlying deletion formation.  相似文献   

6.
We investigated the frequency and types of Y-chromosome microdeletions and chromosomal anomalies in non-obstructive azoospermic and severely oligozoospermic infertile males in northeastern China. The sample consisted of 519 infertile males (456 azoospermic, 63 severely oligozoospermic). PCR assays for Y-chromosome microdeletions and chromosome analysis were performed on all patients and controls. Array-comparative genomic hybridization was performed for three patients with chromosomal anomalies. Fifty-nine of 519 patients (11.37%) had Y-chromosome microdeletions. Microdeletions were found in 11.18% (51/456) of the non-obstructive azoospermic patients and in 12.7% (8/63) of the severely oligozoospermic patients. Eleven of 51 non-obstructive azoospermic patients with Y-chromosome microdeletions had multiple segmental deletions in the AZFb+c regions; four of these patients had chromosomal anomalies. Our sample from northeastern China had a higher frequency of microdeletions among severely oligozoospermic than among non-obstructive azoospermic males.  相似文献   

7.
Infertility affects about 10-15% of all couples attempting pregnancy with infertility attributed to the male partner in approximately half of the cases. Proposed causes of male infertility include sperm motility disturbances, Y chromosome microdeletions, chromosomal abnormalities, single gene mutations, and sperm mitochondrial DNA (mtDNA) rearrangements. To investigate the etiology of decreased sperm fertility and motility of sperm and to develop an appropriate therapeutic strategy, the molecular basis of these defects must be elucidated. In this study, we aimed to reveal the relationships between the genetic factors including sperm mtDNA mutations, Y chromosome microdeletions, and sperm parameters that can be regarded as candidate factors for male infertility. Thirty men with a history of infertility and 30 fertile men were recruited to the study. Y chromosome microdeletions were analyzed by multiplex PCR. Mitochondrial genes ATPase6, Cytb, and ND1, were amplified by PCR and then analyzed by direct sequencing. No Y chromosome microdeletions were detected in either group. However, a total of 38 different nucleotide substitutions were identified in the examined mitochondrial genes in both groups, all of which are statistically non-significant. Fifteen substitutions caused an amino acid change and 12 were considered novel mutations. As a conclusion, mtDNA mutations and Y chromosome microdeletions in male infertility should be examined in larger numbers in order to clarify the effect of genetic factors.  相似文献   

8.
A prospective study involving 118 infertile Japanese couples to assess the embryo outcomes in both azoospermic and oligoasthenoteratoazoospermic (OAT) patients with Y-chromosome microdeletion. The men were divided into two groups; azoospermia (n = 27), and OAT, sperm concentration <5 x 10(6)/ml (n = 91). They were investigated for Y-chromosome microdeletions by a polymerase chain reaction (PCR) amplification of the Y-chromosome-specific sequence tag site (STS). The embryo outcomes of patients found to have Y-microdeletion were determined. The frequency of microdeletion was 8.8% (9) and two had microdeletions distal to DAZ. The mean fertilization rate and the cleavage rate in the eight cycles of both azoospermic and oligospermic patients were 59.3 and 87.5%, respectively. The percentages of grade 1 & 2 embryos, > or =6 cells embryos, and blastocyts were 51.7, 65.6, and 45.3%, respectively. Three pregnancies resulted from the eight cycles (37.5%). CONCLUSION: in Y-chromosome microdeletion cycles in which sperm cells were available for intracytoplasmic sperm injection (ICSI), embryo outcome was comparable to conventional IVF.  相似文献   

9.
About 15% of couples worldwide are affected by reduced fertility. In 20% of cases of couple infertility, the problem can be predominantly attributed to the male. In 20% of cases, a genetic cause of male infertility can usually be identified. The main genetic causes are: autosomal and sex chromosomal abnormalities, microdeletions within regions of the Y-chromosome containing candidate gene families for spermatogenesis and mutations in theCFTR gene. However, despite enormous progress in the understanding of human reproductive physiology, the underlying cause of male infertility often cannot be elucidated. Candidate gene strategies, linkage analysis in large familial forms of male infertility, targeted mutagenesis in the mouse and studies of chromatin reorganization during spermatid maturation should provide rapid progress in our understanding of the genetic factors that contribute to male infertility, which may open up new approaches to the treatment of this condition.  相似文献   

10.
About 30% of couple infertilities are of male origin, some of them caused by genetic abnormalities of the Y chromosome. Deletions in AZF region can cause severe spermatogenic defects ranging from non-obstructive azoospermia to oligospermia. The intracytoplasmatic sperm injection technique (ICSI) is rapidly becoming a versatile procedure for human assisted reproduction in case of male infertility. The use of ICSI allows Y chromosome defects to be passed from father. The goal of our study is to evaluate the frequency of microdeletions in the long arm of Y chromosome, within the AZF regions, in these cases of infertilities, using molecular genetics techniques. Thirty infertile men with azoospermia or oligozoospermia, determined by spermogram, were studied after exclusion of patients with endocrine or obstructive causes of infertility. Peripheral blood DNA was extracted from each patient, then amplified by multiplex PCR with STS genomic markers from the Y chromosome AZF zones. Each case was checked by multiplex PCR through coamplification with the SRY marker. Three men with microdeletions of the long arm of the Y chromosome were diagnosed among the 30 patients, corresponding to a proportion of 10%. The relatively high proportion of microdeletions found in our population suggest the need for strict patient selection to avoid unnecessary screening for long arm Y chromosome microdeletions. The molecular diagnostics was performed according to the current European Academy of Andrology laboratory guidelines for molecular diagnosis of Y chromosomal microdeletions.  相似文献   

11.
目的:研究Y染色体微缺失与男性不育的关系。方法:采用多重PCR技术,研究正常男性、无精子症和严重少精子症男性不育患者Y染色体无精子因子(AZF)区域3个序列标志位点(STS)的缺失情况。结果:在93例无精子症或严重少精子症患者中,15例有Y染色体微缺失,缺失率为16%。其中,42例无精子症患者中,6例为AZFc区SY255位点缺失,2例为AZFb区SY134位点缺失;51例严重少精子症患者中,7例为AZFc区SY255位点缺失。40例正常男性无Y染色体微缺失。结论:多重PCR技术是简便而有效的对男性不育患者进行Y染色体微缺失筛查的方法;Y染色体微缺失是造成男性不育的一个重要原因,对男性不育患者进行辅助生育技术治疗前应常规进行Y染色体微缺失的检测。  相似文献   

12.
Male infertility is considered to be a difficult-to-treat condition because it is not a single entity, but rather reflects a variety of different pathologic conditions, thus making it difficult to use a single treatment strategy. Structural alterations in the Y chromosome have been the principal factor responsible for male infertility. We examined 26 family members of 13 patients with male infertility who showed deletions in the AZF region. In family 1, the father and a brother did not show microdeletions. However, a son showed a microdeletion in AZFa (sY84) and an azoospermic sperm analysis, but another son had a microdeletion in AZFa (sY84) and AZFb (sY127) and a normal sperm analysis. The father of family 2, with severe oligozoospermia, had a microdeletion in the AZFa region (sY84) and his son, conceived by intracytoplasmic sperm injection, also showed the same microdeletion. In the other families, only the men with an altered sperm analysis had a microdeletion. It is possible that in family 1, the father and brother who did not show microdeletions in this study, could have microdeletions in regions upstream or downstream of the one analyzed. The treatment with intracytoplasmic sperm injection can result in vertical transmission of microdeletions of the AZF region and can also cause the expansion of a de novo mutation. This finding reinforces the necessity of an investigation of microdeletions of the Y chromosome in individuals who are candidates for assisted reproduction, as well as genetic counciling and follow-up.  相似文献   

13.
Among azoospermic and severely oligozoospermic men, 7-15% present microdeletions of a region on the long arm of the Y chromosome that has been called AZF (azoospermia factor). Because these deletions present varying relative frequencies in different populations, we decided to ascertain whether their presence was correlated with specific Y-chromosome haplotypes. For that, we evaluated 51 infertile Israeli men, 9 of whom had microdeletions in AZF. Haplotypes were identified using a hierarchical system with eight biallelic DNA markers. We also checked for the presence of the deletion marker 50f2/C, which was absent in all seven patients with isolated AZFc deletion and also in the one patient with isolated AZFb deletion, suggesting that these microdeletions overlap. As expected, haplogroup J was the most common (47%), followed by equal frequencies of haplogroups Y* (xDE, J, K), P* (xR1a, R1b8), K* (xP), and E. In six patients with AZFc deficiencies of comparable size, three belonged to haplogroup J, two belonged to haplogroup P* (xR1a, R1b8), and one belonged to haplogroup R1a. Also, there were no significant differences in the haplotype frequencies between the groups with and without microdeletions. Thus we did not identify any association of a specific haplogroup with predisposition to de novo deletion of the AZF region in the Israeli population.  相似文献   

14.
Cytogenetic and molecular deletion analyses of azoospermic and oligozoospermic males have suggested the existence of AZoospermia Factor(s) (AZF) residing in deletion intervals 5 and 6 of the human Y-chromosome and coinciding with three functional regions associated with spermatogenic failure. Nonpolymorphic microdeletions in AZF are associated with a broad spectrum of testicular phenotypes. Unfortunately, Sequence Tagged Sites (STSs) employed in screening protocols range broadly in number and mapsite and may be polymorphic. To thoroughly analyze the AZF region(s) and any correlations that may be drawn between genotype and phenotype, we describe the design of nine multiplex PCR reactions derived from analysis of 136 loci. Each multiplex contains 4-8 STS primer pairs, amplifying a total of 48 Y-linked STSs. Each multiplex consists of one positive control: either SMCX or MIC2. We screened four populations of males with these STSs. Population I consisted of 278 patients diagnosed as having significant male factor infertility: either azoospermia, severe oligozoospermia associated with hypogonadism and spermatogenic arrest or normal sperm counts associated with abnormal sperm morphology. Population II consisted of 200 unselected infertile patients. Population III consisted of 36 patients who had previously been shown to have aneuploidy, cytological deletions or translocations involving the Y-chromosome or normal karyotypes associated with severe phenotype abnormalities. Population IV consisted of 920 fertile (control) males. The deletion rates in populations I, II and III were 20.5%, 7% and 58.3%, respectively. A total of 92 patients with deletions were detected. The deletion rate in population IV was 0.87% involving 8 fertile individuals and 4 STSs which were avoided in multiplex panel construction. The ability of the nine multiplexes to detect pathology associated microdeletions is equal to or greater than screening protocols used in other studies. Furthermore, the data suggest a fourth AZF region between AZFb and AZFc, which we have termed AZFd. Patients with microdeletions restricted to AZFd may present with mild oligozoospermia or even normal sperm counts associated with abnormal sperm morphology. Though a definitive genotype/phenotype correlation does not exist, large deletions spanning multiple AZF regions or microdeletions restricted to AZFa usually result in patients with Sertoli Cell Only (SCO) or severe oligozoospermia, whereas microdeletions restricted to AZFb or AZFc can result in patients with phenotypes which range from SCO to moderate oligozoospermia. The panel of nine multiplexed reactions, the Y-deletion Detection System (YDDS), provides a fast, efficient and accurate method of assessing the integrity of the Y-chromosome. To date, this study provides the most extensive screening of a proven fertile male population in tandem with 514 infertile males, derived from three different patient selection protocols.  相似文献   

15.
Male infertility is a multi‐factorial disorder, and identification of its etiology in an individual is critical for treatment. Systematically elucidating the underlying genetic causes (chromosomal and Yq microdeletion) and factors, such as reactive oxygen species (ROS) levels and total antioxidant capacity (TAC), which contribute to sperm DNA damage, may help to reduce the number of men with idiopathic infertility and provide them with the most suitable therapeutics and counseling. This study was done to comprehensively investigate genetic and oxidative stress factors that might be the etiology of a large percentage of men with idiopathic infertility. One hundred twelve infertile men and 76 fertile controls were screened for chromosomal aberrations and Yq microdeletions. ROS, TAC, and sperm DNA damage were assessed in cytogenetically normal, non‐azoospermic men with intact Y chromosome (n = 93). ROS was assessed in neat and washed semen by chemiluminescence; seminal TAC with a commercially available kit; and sperm DNA damage by the comet assay. Two men had cytogenetic abnormalities and seven men harbored Yq microdeletions. ROS levels in neat and washed semen of infertile men were significantly higher (P < 0.01) than controls. Infertile men had significantly lower (P < 0.01) TAC levels (1.79 mM), whereas sperm DNA fragmentation in infertile men was significantly higher (P < 0.01) than controls. Genetic factors and oxidative stress cumulatively account for large number of idiopathic infertile cases. Unlike, genetic causes, which cannot be cured, timely identification and management of oxidative stress may help to reverse/reduce the effects on induced DNA damage, and improve the outcomes for infertile males. Mol. Reprod. Dev. 79: 637–650, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
The aim of this study was to detect frequency of microdeletions of Y chromosome in idiopathic cases of male infertility in Serbian population. Patients were subjected to detailed clinical, endocrinological and cytogenetic examinations. Ninety patients with normal cytogenetic findings with azoospermia and severe oligozoospermia were included in the study. In these patients microdeletion analysis was performed by multiplex polymerase chain reaction (PCR) method on DNA extracted from peripheral blood. In each case 6 markers in azoospermia factor (AZF) regions were tested: sY84, sY86 (AZFa); sY127, sY134 (AZFb); sY254, sY255 (AZFc). Deletions on Y chromosome were detected in 14 of 90 cases (15.6%), 9 with azoospermia and 5 with severe oligozoospermia. Of total number of 17 deletions, 11 (64.7%) were detected in AZFc region, 3 (17.6%) in AZFa region and 3 (17.6%) in AZFb region. Microdeletions in AZF region of Y chromosome, especially AZFc microdeletions, represent common genetic cause of idiopathic azoospermia and severe oligozoospremia in Serbian infertile men. Therefore, testing for Y chromosome microdeletions should be considered as an important element in diagnosis and genetic counseling of infertile men in Serbia and decisions regarding the assisted reproduction should be made based on the presence and type of AZF microdeletions.  相似文献   

17.
The aim of this study was to detect frequency of microdeletions of Y chromosome in idiopathic cases of male infertility in Serbian population. Patients were subjected to detailed clinical, endocrinological and cytogenetic examinations. Ninety patients with normal cytogenetic findings with azoospermia and severe oligozoospermia were included in the study. In these patients microdeletion analysis was performed by multiplex polymerase chain reaction (PCR) method on DNA extracted from peripheral blood. In each case 6 markers in azoospermia factor (AZF) regions were tested: sY84, sY86 (AZFa); sY127, sY134 (AZFb); sY254, sY255 (AZFc). Deletions on the Y chromosome were detected in 14 of 90 cases (15.6%), nine with azoospermia and five with severe oligozoospermia. Of total number of 17 deletions, 11 (64.7%) were detected in AZFc region, three (17.6%) in AZFa region and three (17.6%) in AZFb region. Microdeletions in AZF region of the Y chromosome, especially AZFc microdeletions, represent common genetic cause of idiopathic azoospermia and severe oligozoospremia in Serbian infertile men. Therefore, testing for Y chromosome microdeletions should be considered as an important element in diagnosis and genetic counseling of infertile men in Serbia and decisions regarding the assisted reproduction should be made based on the presence and type of AZF microdeletions. The text was submitted by the authors in English.  相似文献   

18.
Ge Q  Liu Z  Bai Y  Zhang D  Yu P  Lu Z 《Analytical biochemistry》2007,367(2):173-178
Deletions in Y chromosome are thought to be pathologically involved in some cases of male infertility associated with azoospermia or oligozoospermia. An emulsion-based multiplex PCR method was developed for detecting Y chromosome microdeletions in infertile men and a plasma sample of pregnant women carrying a male fetus. The sensitivity of multiplex PCR in emulsion was evaluated. Conventional PCR was also carried out for comparison. A total of 13 sequence-tagged sites (STSs) distributed in the AZF region were analyzed simultaneously with this method. The SRY gene was also detected as the inner control. Results showed that Y chromosome microdeletions were found in 4 of 19 infertile patients. Also, in 1 of 63 samples collected from pregnant women, microdeletions were found in some of the detected sites. It is suggested that the emulsion PCR assay was proven to be a promising diagnostic tool and could be widely used in further clinical and academic research.  相似文献   

19.
Microdeletions in Yq are associated with defects in spermatogenesis, while those in the AZF region are considered critical for germ cell development. We examined microdeletions in the Y chromosomes of patients attended at the Laboratory of Human Reproduction of the Clinical Hospital of the Federal University of Goiás as part of a screening of patients who plan to undergo assisted reproduction. Analysis was made of the AZF region of the Y chromosome in men who had altered spermograms to detect possible microdeletions in Yq. Twenty-three patients with azoospermia and 40 with severe oligozoospermia were analyzed by PCR for the detection of six sequence-tagged sites: sY84 and sY86 for AZFa, sY127 and sY134 for AZFb, and sY254 and sY255 for AZFc. Microdeletions were detected in 28 patients, including 10 azoospermics and 18 severe oligozoospermics. The patients with azoospermia had 43.4% of their microdeletions in the AZFa region, 8.6% in the AZFb region and 17.4% in the AZFc region. In the severe oligozoospermics, 40% were in the AZFa region, 5% in the AZFb region and 5% in the AZFc region. We conclude that microdeletions can be the cause of idiopathic male infertility, supporting conclusions from previous studies.  相似文献   

20.
Human Y chromosome is used as a tool in male infertility and population genetic studies. The aims of this research were to analyse the prevalence of Y chromosome microdeletions among infertile Latvian men, and to identify possible lineages of Y chromosome that may be at increased risk of developing infertility. A study encompassed 105 infertile men with different spermatogenic disturbances. Deletions on Y chromosome were detected in 5 out of 105 (approximately 5%) cases analysed in this study. Three of them carried deletion in AZFc region and two individuals had AZFa + b + c deletion. Study of Y chromosome haplogroups showed that N3a1 and R1a1 lineages were found less frequently in the infertile male group compared to ethnic Latvian group, however K* cluster was predominantly found in infertile male Y chromosomes. Conclusions: 1) Our study advocates running Y chromosome microdeletion analyses only in cases of severe form of infertility; 2) Y chromosome haplogroup analysis showed statistically significant tendencies that some haplogroups are more common in ethnic male group, but others are more common in infertile males.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号