首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endospores of thermophilic bacteria are found in cold and temperate sediments where they persist in a dormant state. As inactive endospores that cannot grow at the low ambient temperatures, they are akin to tracer particles in cold sediments, unaffected by factors normally governing microbial biogeography (e.g., selection, drift, mutation). This makes thermophilic endospores ideal model organisms for studying microbial biogeography since their spatial distribution can be directly related to their dispersal history. To assess dispersal histories of estuarine bacteria, thermophilic endospores were enriched from sediments along a freshwater‐to‐marine transect of the River Tyne in high temperature incubations (50°C). Dispersal histories for 75 different taxa indicated that the majority of estuarine endospores were of terrestrial origin; most closely related to bacteria from warm habitats associated with industrial activity. A subset of the taxa detected were marine derived, with close relatives from hot deep marine biosphere habitats. These patterns are consistent with the sources of sediment in the River Tyne being predominantly terrestrial in origin. The results point to microbial communities in estuarine and marine sediments being structured by bi‐directional currents, terrestrial run‐off and industrial effluent as vectors of passive dispersal and immigration.  相似文献   

2.
The effects of bioturbation in marine sediments are mainly associated with an increase in oxic and oxidized zones through an influx of oxygen‐rich water deeper into the sediment and the rapid transport of particles between oxic and anoxic conditions. However, macrofaunal activity also can increase the occurrence of reduced microniches and anaerobic processes, such as sulfate reduction. Our goal was to determine the two‐dimensional distribution of microniches associated with burrows of a ghost shrimp (Neotrypaea californiensis) and to determine microbial activities. In laboratory experiments, detailed measurements of sulfate reduction rates (SRR) were measured by injecting, in a 1 cm grid, radiolabelled sulfate directly into a narrow aquarium (40 cm × 30 cm × 3 cm) containing the complex burrow of an actively burrowing shrimp. Light‐coloured oxidized burrow walls, along with black reduced microniches, were clearly visible through the aquarium walls. Direct injection of radiotracers allowed for whole‐aquarium incubation to obtain two‐dimensional documentation of sulfate reduction. Results indicated SRR were up to three orders of magnitude higher (140–790 nmol SO42? cm?3 day?1) in reduced microniches associated with burrows when compared with the surrounding sediment. Additionally, some of the subsurface sulfate‐reducing microniches associated with the burrow system appeared to be zones of dinitrogen fixation. Bioturbation may also lead to decreased sulfate reduction in other microniches and the sum of the activity in all microniches might not result in a total increase of sulfate reduction compared with non‐bioturbated control sediments.  相似文献   

3.
Early diagenesis of organic matter in bottom sediments of Lake Baikal is a focus of many geochemical studies, because it is one of the few sites of petroleum formation in a nonmarine environment. Although Baikal is a rift lake and considered one of the prospective fields for deep biosphere investigations, the transformation processes of organic matter by microbial communities from deep bottom sediments and likely entering of the microorganisms from deep sediments into the near-surface sediments were not previously studied in Lake Baikal. The natural microbial community from near-surface sediments of the cold methane seep Goloustnoe (Southern Baikal Basin) was incubated with methane and the diatom Synedra acus at 80°C and 49.5 atm to simulate catagenesis. The 11-month incubation yielded the enrichment culture of viable thermophilic microorganisms. Their presence in low-temperature sediment layers may be indicative of their migration through fault zones together with gas-bearing fluids. After culturing, molecular biological methods allowed for the detection of both widespread microorganisms and unique clones whose phylogenetic status is currently unknown. The sediment after the experiment showed the formation of polycyclic aromatic hydrocarbon, retene. Retene can be either a conifer or algal biomarker, thus, interpretation of paleoclimate data is tenuous.  相似文献   

4.
Anaerobic methanotrophic archaea (ANME) consume methane in marine sediments, limiting its release to the water column, but their responses to changes in methane and sulfate supplies remain poorly constrained. To address how methane exposure may affect microbial communities and methane- and sulfur-cycling gene abundances in Arctic marine sediments, we collected sediments from offshore Svalbard that represent geochemical horizons where anaerobic methanotrophy is expected to be active, previously active, and long-inactive based on reaction-transport biogeochemical modelling of porewater sulfate profiles. Sediment slurries were incubated at in situ temperature and pressure with different added methane concentrations. Sediments from an active area of seepage began to reduce sulfate in a methane-dependent manner within months, preceding increased relative abundances of anaerobic methanotrophs ANME-1 within communities. In previously active and long-inactive sediments, sulfur-cycling Deltaproteobacteria became more dominant after 30 days, though these communities showed no evidence of methanotrophy after nearly 8 months of enrichment. Overall, enrichment conditions, but not methane, broadly altered microbial community structure across different enrichment times and sediment types. These results suggest that active ANME populations may require years to develop, and consequently microbial community composition may affect methanotrophic responses to potential large-scale seafloor methane releases in ways that provide insight for future modelling studies.  相似文献   

5.

Sedimentary environments in the Arctic are known to harbor diverse microbial communities playing a crucial role in the remineralization of organic matter and associated biogeochemical cycles. In this study, we used a combination of culture-dependent and culture-independent approaches to understanding the bacterial community composition associated with the sediments of a terrestrial versus fjord system in the Svalbard Arctic. Community-level metabolic profiling and growth response of retrieved bacterial isolates towards different carbon substrates at varying temperatures were also studied to assess the metabolic response of communities and isolates in the system. Bacterial species belonging to Cryobacterium and Psychrobacter dominated the terrestrial and fjord sediment retrievable fraction. Amplicon sequencing analysis revealed higher bacterial diversity in the terrestrial sediments (Shannon index; 8.135 and 7.935) as compared to the fjord sediments (4.5–5.37). Phylum Proteobacteria and Bacteroidetes dominated both terrestrial and fjord sediments. Phylum Verrucomicrobia and Cyanobacteria were abundant in terrestrial sediments while Epsilonbacteraeota and Fusobacteriia dominated the fjord sediments. Significant differences were observed in the carbon substrate utilization profiles between the terrestrial and fjord sediments at both 4 °C and 20 °C incubations (p?<?0.005). Utilization of N-acetyl-D-glucosamine, D-mannitol and Tween-80 by the sediment communities and bacterial isolates from both systems, irrespective of their temperature incubations implies the affinity of bacteria for such substrates as energy sources and for their survival in cold environments. Our results suggest the ability of sediment bacterial communities to adjust their substrate utilization profiles according to condition changes in the ecosystems and are found to be less influenced by their phylogenetic relatedness.

  相似文献   

6.

Bacterial populations exist at great depths in marine sediments, but little is known about the type and characteristics of organisms in this unique bacterial environment. Cascadia Margin sediments from the Pacific Ocean have deep bacterial activity and bacterial populations, which are stimulated around a gas hydrate zone (215–225 m below sea floor [mbsf]). Bacterial sulfate reduction is the dominant anaerobic process within these sediments, and the depth distribution of sulfate‐reducing activity corresponds with distributions of viable sulfate‐reducing bacteria (SRB). Anaerobically stored sediments from this site were used to isolate sulfate‐reducing bacteria using a temperature‐gradient system, elevated pressure and temperatures, different media, and a range of growth substrates. A variety of enrichments on lactate were obtained from 0.5 and 222 mbsf, with surprisingly more rapid growth from the deeper sediments. The temperature range of enrichments producing strong growth from 222 mbsf was markedly wider than those from the near surface sediment (15–45°C and 9–19°C, respectively). This presumably reflects a temperature increase in deeper sediments. Only a few of these enrichments were successfully isolated due to very slow or no growth on subculture, despite the use of a wide range of different media and growth conditions. Psychrophilic and mesophilic sulfate‐reducing isolates were obtained from 0.5 m depth. As the minimum growth temperature of the mesophile (probably a Desulfotomaculum sp.) was above the in situ temperature of 3°C, it must have been present in the sediment as spores. A larger number of isolates (23) was obtained from 222 mbsf, and these barophilic SRB were closely related (based on 16S rRNA gene analysis), but not identical to, Desulfovibrio profundus, recently isolated from deep sediments from the Japan Sea. Bacteria related to D. profundus may be widespread in deep marine sediments.  相似文献   

7.
Temperature has a fundamental impact on the metabolic rates of microorganisms and strongly influences microbial ecology and biogeochemical cycling in the environment. In this study, we examined the catabolic temperature response of natural communities of sulfate-reducing microorganisms (SRM) in polar, temperate and tropical marine sediments. In short-term sediment incubation experiments with 35S-sulfate, we demonstrated how the cardinal temperatures for sulfate reduction correlate with mean annual sediment temperatures, indicating specific thermal adaptations of the dominant SRM in each of the investigated ecosystems. The community structure of putative SRM in the sediments, as revealed by pyrosequencing of bacterial 16S rRNA gene amplicons and phylogenetic assignment to known SRM taxa, consistently correlated with in situ temperatures, but not with sediment organic carbon concentrations or C:N ratios of organic matter. Additionally, several species-level SRM phylotypes of the class Deltaproteobacteria tended to co-occur at sites with similar mean annual temperatures, regardless of geographic distance. The observed temperature adaptations of SRM imply that environmental temperature is a major controlling variable for physiological selection and ecological and evolutionary differentiation of microbial communities.  相似文献   

8.
Thermophilic endospores are widespread in cold marine sediments where the temperature is too low to support growth and activity of thermophiles in situ. These endospores are likely expelled from warm subsurface environments and subsequently dispersed by ocean currents. The endospore upper temperature limit for survival is 140°C, which can be tolerated in repeated short exposures, potentially enabling transit through hot crustal fluids. Longer-term thermal tolerance of endospores, and how long they could persist in an environment hotter than their maximum growth temperature, is less understood. To test whether thermophilic endospores can survive prolonged exposure to high temperatures, sediments were incubated at 80–90°C for 6, 12 or 463 days. Sediments were then cooled by 10–40°C, mimicking the cooling in subsurface oil reservoirs subjected to seawater injection. Cooling the sediments induced sulfate reduction, coinciding with an enrichment of endospore-forming Clostridia. Different Desulfofundulus, Desulfohalotomaculum, Desulfallas, Desulfotomaculum and Desulfofarcimen demonstrated different thermal tolerances, with some Desulfofundulus strains surviving for >1 year at 80°C. In an oil reservoir context, heat-resistant endospore-forming sulfate-reducing bacteria have a survival advantage if they are introduced to, or are resident in, an oil reservoir normally too hot for germination and growth, explaining observations of reservoir souring following cold seawater injection.  相似文献   

9.
This study was undertaken to determine the rates and controls ofanaerobic respiration reactions coupled to organic matter mineralization as afunction of space and time along a transect from a bioturbated creekbank to themidmarsh in Georgia saltmarsh sediments. Sulfate reduction rates (SRR) weremeasured at 3 sites during 5 sampling periods throughout the growth season. Thesites differed according to hydrologic regime and the abundance of dominantplants and macrofauna. SRR and pore water / solid phase geochemistry showedevidence of enhanced sediment oxidation at sites exposed to intensebioturbation. Iron(III) reduction rates (FeRR) were directly determined insaltmarsh sediments for the first time, and in agreement with measured SRR,higher rates were observed at the bioturbated, unvegetated creekbank (BUC) andbioturbated, vegetated levee (BVL) sites in comparison to a vegetated mid-marsh(MM) site. An unexpected result was the fact that SRR varied nearly as muchbetween sites (2–3 x) as it did with temperature or season (3–4 x).The BVL site, vegetated by the tall form of Spartinaalterniflora, always exhibited the highest SRR and carbon oxidationrates (> 4000 nmol cm–3 d–1) with high activity levels extending deep ( 50 cm)into the sediment, while the MM site, dominated by the short form ofSpartina, always exhibited the lowest SRR which werelocalized to the top 15 cm of sediment. SRR and FeRR at BUC wereintermediate between those measured at the BVL and MM. Acetate was the mostabundant microbial fermentation product (concentrations up to > 1mM) in marsh porewaters, and its distribution reflectedrespirationactivity. Chemical exchange, caused by bioturbation, appeared to be the primarycontrol explaining trends in rates of sulfate and Fe(III) reduction withmacrophytes and carbon source acting as secondary controls.  相似文献   

10.
Factors controlling bacterial production in marine and freshwater sediments   总被引:11,自引:4,他引:7  
We collected benthic bacterial production data measured by 3H thymidine incorporation (TTI) (25 studies), frequency of dividing cells (FDC) (3 studies), dark-C02 assimilation (1 study) and 3H-adenine uptake (2 studies) from the literature, which included 18 marine, 6 river, and 2 lake studies. In all of the studies that used the TTI method, 3H-DNA was isolated and incubations were carried out at in situ temperatures. Most of the researchers also determined 3H-DNA extraction efficiencies and isotope dilution, thus interpretable estimates of bacterial production were used in the analysis. In marine sediments, bacterial production rates were linked to bacterial biomass, bacterial abundance, sediment organic matter, temperature, and sediment chlorophyll a, with these variables explaining between 40% and 68% of the variation in production rates. Simple relationships between production and bacterial biomass or bacterial abundance, or between production and sediment organic matter, were improved by also including temperature in the analysis of marine sediments. Sediment organic matter explained an appreciable fraction (58%) of the observed production in freshwater sediments. Temperature was the most powerful predictor of the observed variability in specific growth rates (r 2 = 0.48 and r 2 = 0.58) in marine and freshwater sediments, respectively. Thus, bacterial production and specific growth rates are most closely linked to substrate supply and temperature in marine and freshwater sediments. Offprint requests to: B. C. Sander.  相似文献   

11.
Arctic soils contain large amounts of organic matter due to very slow rates of detritus decomposition. The first step in decomposition results from the activity of extracellular enzymes produced by soil microbes. We hypothesized that potential enzyme activities are low relative to the large stocks of organic matter in Arctic tundra soils, and that enzyme activity is low at in situ temperatures. We measured the potential activity of six hydrolytic enzymes at 4 and 20 °C on four sampling dates in tussock, intertussock, shrub organic, and shrub mineral soils at Toolik Lake, Alaska. Potential activities of N‐acetyl glucosaminidase, β‐glucosidase, and peptidase tended to be greatest at the end of winter, suggesting that microbes produced enzymes while soils were frozen. In general, enzyme activities did not increase during the Arctic summer, suggesting that enzyme production is N‐limited during the period when temperatures would otherwise drive higher enzyme activity in situ. We also detected seasonal variations in the temperature sensitivity (Q10) of soil enzymes. In general, soil enzyme pools were more sensitive to temperature at the end of the winter than during the summer. We modeled potential in situβ‐glucosidase activities for tussock and shrub organic soils based on measured enzyme activities, temperature sensitivities, and daily soil temperature data. Modeled in situ enzyme activity in tussock soils increased briefly during the spring, then declined through the summer. In shrub soils, modeled enzyme activities increased through the spring thaw into early August, and then declined through the late summer and into winter. Overall, temperature is the strongest factor driving low in situ enzyme activities in the Arctic. However, enzyme activity was low during the summer, possibly due to N‐limitation of enzyme production, which would constrain enzyme activity during the brief period when temperatures would otherwise drive higher rates of decomposition.  相似文献   

12.
This study investigated the suitability of mesocosms for studying the seasonal development of microbial variables in the benthic system of the North Sea. Undisturbed sediment cores were taken from two locations in the North Sea, one with sandy sediment (28 m depth) and the other with silty sediment (38 m depth) and installed in mesocosms in January–April 1989. Cores were kept as in situ temperature in the dark until December 1989. One set of sandy and silty sediments was starved and the other set received a supply of organic matter in May–June, simulating the settlement of the spring bloom of Phaeocystis pouchetii. Seasonal developments in bacterial production (methyl 3H-thymidine incorporation), abundance and biomass of bacteria and nanoflagellates and oxygen consumption were compared between the mesocosms and the field in surface sediments every 1.5 to 2.5 months. Effects of seasonal temperature variations (range 6–17.5 °C) on microbial variables in starved mesocosms were limited, which possibly indicates a subordinate role of temperature in microbial processes in North Sea sediments. Organic matter produced a direct response in bacterial production and oxygen consumption in mesocosms. Bacterial and protozoan abundance also increased. The effect of the organic input disappeared within 2 months and values of enhanced variables declined to initial levels. The organic matter enrichment in mesocosms apparently did not provide sufficient energy to keep the microbenthos active at field levels through summer.These results suggest that in the silty sediments in the field, organic matter is available for bacterial production throughout summer. In sandy sediments, the major organic matter input, which sets the seasonal pattern, appears to be in June. Apparently the seasonal development of microbial variables can be mimicked in mesocosms with organic matter supplies. Differences between the field and mesocosms are further illustrated by carbon budgets. Recycling of bacterial biomass was required to meet the bacterial carbon demand in the budget.Publication No. 22 of the project Applied Scientific Research Neth. Inst. for Sea Res. (BEWON).  相似文献   

13.
Our pigment analyses from a year‐long study in the coastal Beaufort Sea in the western Canadian Arctic showed the continuous prevalence of eukaryotic picoplankton in the green algal class Prasinophyceae. Microscopic analyses revealed that the most abundant photosynthetic cell types were Micromonas‐like picoprasinophytes that persisted throughout winter darkness and then maintained steady exponential growth from late winter to early summer. A Micromonas (CCMP2099) isolated from an Arctic polynya (North Water Polynya between Ellesmere Island and Greenland), an ice‐free section, grew optimally at 6°C–8°C, with light saturation at or below 10 μmol photons·m?2·s?1 at 0°C. The 18S rDNA analyses of this isolate and environmental DNA clone libraries from diverse sites across the Arctic Basin indicate that this single psychrophilic Micromonas ecotype has a pan‐Arctic distribution. The 18S rDNA from two other picoprasinophyte genera was also found in our pan‐Arctic clone libraries: Bathycoccus and Mantoniella. The Arctic Micromonas differed from genotypes elsewhere in the World Ocean, implying that the Arctic Basin is a marine microbial province containing endemic species, consistent with the biogeography of its macroorganisms. The prevalence of obligate low‐temperature, shade‐adapted species in the phytoplankton indicates that the lower food web of the Arctic Ocean is vulnerable to ongoing climate change in the region.  相似文献   

14.
The study focuses on the response of a sulphate rich lowland river (River Spree) to a further increase in sulphate concentration as a result of mining activities in its catchments. It was hypothesized that riverine sediments could be conservative against an increase in sulphate concentration relating to both the intensity of sulphate reduction and the accompanying P mobilization. The usually lower amount of organic matter, compared to lakes or wetlands, and the high contents of iron oxides in the Spree sediment from discharged mining waters should counteract an enhanced P mobilization. Three short-term incubation experiments were carried out to test the sensitivity of different sediment horizons (0–10, 10–20 and 20–30 cm), the influence of temperature (5 and 25 °C) and the effect of a rising sulphate concentration (2.6–7.8 mM) on P mobilization rates (PMR) and sulphate reduction rates (SRR). Contrary to our initial hypothesis sulphate played a key role for P mobilization in riverine sediments because (1) all sulphate treated horizons showed a significant increase in pore water P concentrations, (2) increasing sulphate concentrations led to rising SRR and PMR, (3) the highest response on sulphate-mediated P mobilization was observed by a temperature enhancement of 20 °C. PMR increased one order of magnitude at all tested sulphate concentrations, but these increases in PMR only slightly effected the P concentrations in the overlying water. In conclusions, an increase of internal P load is only expected in case of doubling the recent in situ sulphate concentrations, but extended warm periods as an effect of climate change or increasing temperature, respectively, could be of more importance.  相似文献   

15.
The anaerobic oxidation of methane (AOM) with sulfate controls the emission of the greenhouse gas methane from the ocean floor. AOM is performed by microbial consortia of archaea (ANME) associated with partners related to sulfate-reducing bacteria. In vitro enrichments of AOM were so far only successful at temperatures ⩽25 °C; however, energy gain for growth by AOM with sulfate is in principle also possible at higher temperatures. Sequences of 16S rRNA genes and core lipids characteristic for ANME as well as hints of in situ AOM activity were indeed reported for geothermally heated marine environments, yet no direct evidence for thermophilic growth of marine ANME consortia was obtained to date. To study possible thermophilic AOM, we investigated hydrothermally influenced sediment from the Guaymas Basin. In vitro incubations showed activity of sulfate-dependent methane oxidation between 5 and 70 °C with an apparent optimum between 45 and 60 °C. AOM was absent at temperatures ⩾75 °C. Long-term enrichment of AOM was fastest at 50 °C, yielding a 13-fold increase of methane-dependent sulfate reduction within 250 days, equivalent to an apparent doubling time of 68 days. The enrichments were dominated by novel ANME-1 consortia, mostly associated with bacterial partners of the deltaproteobacterial HotSeep-1 cluster, a deeply branching phylogenetic group previously found in a butane-amended 60 °C-enrichment culture of Guaymas sediments. The closest relatives (Desulfurella spp.; Hippea maritima) are moderately thermophilic sulfur reducers. Results indicate that AOM and ANME archaea could be of biogeochemical relevance not only in cold to moderate but also in hot marine habitats.  相似文献   

16.
Anaerobic oxidation of methane (AOM) is an important methane sink in the ocean but the microbes responsible for AOM are as yet resilient to cultivation. Here we describe the microbial analysis of an enrichment obtained in a novel submerged‐membrane bioreactor system and capable of high‐rate AOM (286 μmol gdry weight?1 day?1) coupled to sulfate reduction. By constructing a clone library with subsequent sequencing and fluorescent in situ hybridization, we showed that the responsible methanotrophs belong to the ANME‐2a subgroup of anaerobic methanotrophic archaea, and that sulfate reduction is most likely performed by sulfate‐reducing bacteria commonly found in association with other ANME‐related archaea in marine sediments. Another relevant portion of the bacterial sequences can be clustered within the order of Flavobacteriales but their role remains to be elucidated. Fluorescent in situ hybridization analyses showed that the ANME‐2a cells occur as single cells without close contact to the bacterial syntrophic partner. Incubation with 13C‐labelled methane showed substantial incorporation of 13C label in the bacterial C16 fatty acids (bacterial; 20%, 44% and 49%) and in archaeal lipids, archaeol and hydroxyl‐archaeol (21% and 20% respectively). The obtained data confirm that both archaea and bacteria are responsible for the anaerobic methane oxidation in a bioreactor enrichment inoculated with Eckernförde bay sediment.  相似文献   

17.
Sulfur is an important element in the metabolism of salt marshes and subtidal, coastal marine sediments because of its role as an electron acceptor, carrier, and donor. Sulfate is the major electron acceptor for respiration in anoxic marine sediments. Anoxic respiration becomes increasingly important in sediments as total respiration increases, and so sulfate reduction accounts for a higher percentage of total sediment respiration in sediments where total respiration is greater. Thus, sulfate accounts for 25% of total sediment respiration in nearshore sediments (200 m water depth or less) where total respiration rates are 0.1 to 0.3gCm–1 day–1 , for 50% to 70% in nearshore sediments with higher rates of total respiration (0.3 to 3gCm–2 day–1), and for 70% to 90% in salt marsh sediments where total sediment respiration rates are 2.5 to 5.5gcm–2 day–1 .During sulfate reduction, large amounts of energy from the respired organic matter are conserved in inorganic reduced sulfur compounds such as soluble sulfides, thiosulfate, elemental sulfur, iron monosulfides, and pyrite. Only a small percentage of the reduced sulfur formed during sulfate reduction is accreted in marine sediments and salt marshes. When these reduced sulfur compounds are oxidized, energy is released. Chemolithoautotrophic bacteria which catalyze these oxidations can use the energy of oxidation with efficiencies (the ratio of energy fixed in organic biomass to energy released in sulfur oxidation) of up to 21–37% to fix CO2 and produce new organic biomass.Chemolithoautotrophic bacterial production may represent a significant new formation of organic matter in some marine sediments. In some sediments, chemolithoautotrophic bacterial production may even equal or exceed organoheterotrophic bacterial production. The combined cycle of anaerobic decomposition through sulfate reduction, energy conservation as reduced sulfur compounds; and chemolithoautotrophic production of new organic carbon serves to take relatively low-quality organic matter from throughout the sediments and concentrate the energy as living biomass in a discrete zone near the sediment surface where it can be readily grazed by animals.Contribution from a symposium on the role of sulfur in ecosystem processes held August 10, 1983, at the annual meeting of the A.I.B.S., Grand Forks, ND; Myron Mitchell, convenor.  相似文献   

18.
Petrochemical and geological evidence suggest that petroleum in most reservoirs is anaerobically biodegraded to some extent. However, the conditions for this metabolism and the cultivation of the requisite microorganisms are rarely established. Here, we report on microbial hydrocarbon metabolism in two distinct oilfields on the North Slope of Alaska (designated Fields A and B). Signature anaerobic hydrocarbon metabolites were detected in produced water from the two oilfields offering evidence of in situ biodegradation activity. Rate measurements revealed that sulfate reduction was an important electron accepting process in Field A (6–807 µmol S l?1 day?1), but of lesser consequence in Field B (0.1–10 µmol S l?1 day?1). Correspondingly, enrichments established at 55°C with a variety of hydrocarbon mixtures showed relatively high sulfate consumption but low methane production in Field A incubations, whereas the opposite was true of the Field B enrichments. Repeated transfer of a Field B enrichment showed ongoing methane production in the presence of crude oil that correlated with ≥ 50% depletion of several component hydrocarbons. Molecular‐based microbial community analysis of the methanogenic oil‐utilizing consortium revealed five bacterial taxa affiliating with the orders Thermotogales, Synergistales, Deferribacterales (two taxa) and Thermoanaerobacterales that have known fermentative or syntrophic capability and one methanogen that is most closely affiliated with uncultured clones in the H2‐using family Methanobacteriaceae. The findings demonstrate that oilfield‐associated microbial assemblages can metabolize crude oil under the thermophilic and anaerobic conditions prevalent in many petroleum reservoirs.  相似文献   

19.
20.
Sulfate‐reducing methanotrophy by anaerobic methanotrophic archaea (ANME) and sulfate‐reducing bacteria (SRB) is a major biological sink of methane in anoxic methane‐enriched marine sediments. The physiology of a microbial community dominated by free‐living ANME‐1 at 14–16 cm below the seafloor in the G11 pockmark at Nyegga was investigated by integrated metagenomic and metaproteomic approaches. Total DNA was subjected to 454‐pyrosequencing (829 527 reads), and 16.6 Mbp of sequence information was assembled into 27352 contigs. Taxonomic analysis supported a high abundance of Euryarchaea (70%) with 66% of the assembled metagenome belonging to ANME‐1. Extracted sediment proteins were separated in two dimensions and subjected to mass spectrometry (LTQ‐Orbitrap XL). Of 356 identified proteins, 245 were expressed by ANME‐1. These included proteins for cold‐adaptation and production of gas vesicles, reflecting both the adaptation of the ANME‐1 community to a permanently cold environment and its potential for positioning in specific sediment depths respectively. In addition, key metabolic enzymes including the enzymes in the reverse methanogenesis pathway (except N5,N10‐methylene‐tetrahydromethanopterin reductase), heterodisulfide reductases and the F420H2:quinone oxidoreductase (Fqo) complex were identified. A complete dissimilatory sulfate reduction pathway was expressed by sulfate‐reducing Deltaproteobacteria. Interestingly, an APS‐reductase comprising Gram‐positive SRB and related sequences were identified in the proteome. Overall, the results demonstrated that our approach was effective in assessing in situ metabolic processes in cold seep sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号