首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Since the 1980s, bumblebee species have declined in Europe, partly because of agricultural intensification. Yet little is known about the potential consequences of agricultural decline on bumblebees. In most mountainous areas, agricultural decline from rural exodus is acute and alters landscapes as much as intensive farming. Our study aims at providing a quantitative assessment of agricultural decline through its impact on landscapes, and at characterising bumblebee assemblages associated with land-use types of mountain regions. The studied area (6.2 km2) belongs to the Eyne’s valley in the French Pyrenees, known to host the exceptional number of 33 bumblebee species of the 45 found in continental France. We compare aerial photographs from 1953 and 2000 to quantify agricultural decline. We cross a bumblebee database (2849 observations) with land-use types interpreted from aerial photographs from 2000. Comparison of land-use maps from 1953 and 2000 reveals a strong progression of woodland and urbanised areas, and a decline of agricultural land (pastures and crops), except for hayfields. Spatial correlations between low altitude agro-pastoral structure and the occurrence of bumblebee species shows that bumblebee specific richness is highest in agro-pastoral land-uses (pastures and hayfields) and in the ski area, and poorest in woodland and urbanised areas. Urbanisation and agricultural decline, through increased woodland areas, could lead to a loss of bumblebee diversity in the future. To preserve high bumblebee richness, it is crucial to design measures to maintain open land habitats and the landscape’s spatial heterogeneity through agro-pastoral practices.  相似文献   

3.
4.
Occasional observations of Black‐shouldered Kites Elanus caeruleus in Europe date back to the mid‐19th century, but it was only recorded as a breeding species in the early 1960s in Portugal and a few years later in neighbouring Spain. This recent colonization, possibly from Africa where the species is abundant, may be due to climate change, land‐use changes in southern Europe, or both. As a first step to understanding this range expansion process we have developed a habitat selection model using data from the current strongholds of its European distribution. Comparing the proportion of different habitat types around 46 breeding sites and 45 randomly chosen plots, we have found that the area of cultivated parklands known as dehesas in Spain is a strong predictor of the current distribution range of breeding pairs of Black‐shouldered Kites. Specifically, the percentage of dehesas with planted cereal and a low density of trees (i.e. < 7 trees/ha and thus a savannah‐like habitat) within the study plots explained 44.6% of the residual deviance in our model. The minimal adequate model classified 81.3% of breeding sites and random plots correctly. Our results suggest that Black‐shouldered Kites may have taken advantage of the gradual increase of cultivated dehesas in the second half of the 20th century to expand its range in Europe. This particular type of dehesa is structurally similar to the African savannahs where the species thrives and may offer a higher density of rodents than traditional dehesas, which primarily contain pastureland for livestock ranching.  相似文献   

5.
Global change will likely affect savanna and forest structure and distributions, with implications for diversity within both biomes. Few studies have examined the impacts of both expected precipitation and land use changes on vegetation structure in the future, despite their likely severity. Here, we modeled tree cover in sub‐Saharan Africa, as a proxy for vegetation structure and land cover change, using climatic, edaphic, and anthropic data (R2 = 0.97). Projected tree cover for the year 2070, simulated using scenarios that include climate and land use projections, generally decreased, both in forest and savanna, although the directionality of changes varied locally. The main driver of tree cover changes was land use change; the effects of precipitation change were minor by comparison. Interestingly, carbon emissions mitigation via increasing biofuels production resulted in decreases in tree cover, more severe than scenarios with more intense precipitation change, especially within savannas. Evaluation of tree cover change against protected area extent at the WWF Ecoregion scale suggested areas of high biodiversity and ecosystem services concern. Those forests most vulnerable to large decreases in tree cover were also highly protected, potentially buffering the effects of global change. Meanwhile, savannas, especially where they immediately bordered forests (e.g. West and Central Africa), were characterized by a dearth of protected areas, making them highly vulnerable. Savanna must become an explicit policy priority in the face of climate and land use change if conservation and livelihoods are to remain viable into the next century.  相似文献   

6.
Climate change is driving species to shift their distributions toward high altitudes and latitudes, while habitat loss and fragmentation may hamper species ability to follow their climatic envelope. These two drivers of change may act in synergy, with particularly disastrous impacts on biodiversity. Protected areas, PAs, may thus represent crucial buffers against the compounded effects of climate change and habitat loss. However, large‐scale studies assessing the performance of PAs as such buffers remain scarce and are largely based on species occurrence data. Conversely, abundance data have proven to be more reliable for addressing changes in wildlife populations under climate change. We evaluated changes in bird abundance from the 1970s–80s to the 2000s inside and outside PAs at the trailing range edge of 30 northern bird species and at the leading range edge of 70 southern species. Abundances of retracting northern species were higher and declined less inside PAs at their trailing range edge. The positive effect of PAs on bird abundances was particularly marked in northern species that rely strongly on PAs, that is, their density distribution is largely confined within PAs. These species were nearly absent outside PAs in the 2000s. The abundances of southern species were in general lower inside PAs and increased less from the 70s–80s to 2000s. Nonetheless, species with high reliance on PAs had much higher abundances inside than outside PAs in the 2000s. These results show that PAs are essential in mitigating the retraction of northern species, but also facilitate northward expansions of southern species highly reliant on PAs. Our study provides empirical evidence documenting the role of PAs in facilitating species to adjust to rapidly changing climatic conditions, thereby contributing to the mitigation of impending biodiversity loss. PAs may thus allow time for initiating wider conservation programs on currently unprotected land.  相似文献   

7.
Aim Land use intensity has been recognized as one of the major determinants of native species declines. The re‐expansion of species previously constrained by habitat degradation has been rarely investigated. Here, we use site occupancy models incorporating imperfect detection to identify the land use drivers of the re‐expansion of the Eurasian otter (Lutra lutra). Location Czech Republic. Methods We applied multi‐season occupancy models to otter presence–non‐detection data collected in three national surveys (1992, 2000, 2006) at 552 sites (11.2 × 12 km grid cells). Model parameters included site occupancy, colonization and extinction probabilities, and detection probability at a sub‐site level. We modelled changes in occupancy over time as a function of agricultural, urban and industrial land use and change in the extent of agricultural land use. Results Under the best fitting model, occupancy was estimated to be 34.6% in 1992, 51.3% in 2000 and 83.7% in 2006. Detection probability was neither perfect nor constant. Occupancy probability in 1992 was negatively related to land use gradients. Colonization was more likely to occur where a reduction in agricultural land was larger. Variation in extinction and colonization rates along land use gradients resulted in increased occupancy in industrial and especially urban landscapes. Conversely, occupancy remained almost unchanged along agricultural gradients. Main conclusions Dynamics of otter expansion were strongly associated with the two main patterns of the rapid environmental transition that has taken place in the Czech Republic since the early 1990s. Results show that a reduction in intensive agricultural land use led to an increase in otter distribution, providing evidence of the impact of agricultural land use on stream ecosystems. Moreover, otters recolonized urban and industrial landscapes, probably as a result of extensive reduction in water pollution from point sources. Our results suggest that active conservation of otter populations should focus on restoration of freshwater habitat at large scales, especially in agricultural landscapes.  相似文献   

8.
Land‐use changes such as conversion of natural forest to rural and urban areas have been considered as main drivers of ecosystem functions decline, and a large variety of indicators has been used to investigate these effects. Here, we used a replicated litter‐bag experiment to investigate the effects of land‐use changes on the leaf‐litter breakdown process and leaf‐associated invertebrates along the forest–pasture–urban gradient located in a subtropical island (Florianópolis, SC, Brazil). We identified the invertebrates and measured the litter breakdown rates using the litter bags approach. Litter bags containing 3 g of dry leaf of Alchornea triplinervia were deployed on forest rural and urban streams. Principal component analysis, based on physico‐chemical variables which, confirmed a gradient of degradation from forest to urban streams with intermediate values in rural areas. In accordance, shredder richness and abundance were lower in rural and urban than in forest streams. The land‐use changes led also to the dominance of tolerant generalist taxa (Chironomidae and Oligochaeta) reducing the taxonomic and functional diversity in these sites. Leaf‐litter breakdown rates decreased from forest to rural and finally to urban areas and were associated with changes in pH, water velocity, dissolved oxygen and abundance of leaf‐shredding invertebrates, although global decomposition rates did not differ between rural and urban streams. Overall, this study showed that land‐use changes, namely to rural and urban areas, have a strong impact on tropical streams ecosystems, in both processes and communities composition and structure. Despite of being apparently a smaller transformation of landscape, rural land use is comparable to urbanisation in terms of impact in stream functioning. It is thus critical to carefully plan urban development and maintain forest areas in the island of Florianópolis in order to preserve its natural biodiversity and aquatic ecosystems functioning.  相似文献   

9.
Increases in woody plant cover in savanna grassland environments have been reported on globally for over 50 years and are generally perceived as a threat to rangeland productivity and biodiversity. Despite this, few attempts have been made to estimate the extent of woodland increase at a national scale, principally due to technical constraints such as availability of appropriate remote sensing products. In this study, we aimed to measure the extent to which woodlands have replaced grasslands in South Africa's grassy biomes. We use multiseason Landsat data in conjunction with satellite L‐band radar backscatter data to estimate the extent of woodlands and grasslands in 1990 and 2013. The method employed allows for a unique, nationwide measurement of transitions between grassland and woodland classes in recent decades. We estimate that during the 23‐year study period, woodlands have replaced grasslands over ~57 000 km2 and conversely that grasslands have replaced woodlands over ~30 000 km2, a net increase in the extent of woodland of ~27 000 km2 and an annual increase of 0.22%. The changes varied markedly across the country; areas receiving over 500 mm mean annual precipitation showed higher rates of woodland expansion than regions receiving <500 mm (0.31% yr?1 and 0.11% yr?1, respectively). Protected areas with elephants showed clear loss of woodlands (?0.43% yr?1), while commercial rangelands and traditional rangelands showed increases in woodland extent (>0.19% yr?1). The woodland change map presented here provides a unique opportunity to test the numerous models of woody plant encroachment at a national/regional scale.  相似文献   

10.
Land‐use change may alter both species diversity and species functional diversity patterns. To test the idea that species diversity and functional diversity changes respond in differing ways to land‐use changes, we characterize the form of the change in bird assemblages and species functional traits along an intensifying gradient of land use in the savanna biome in a historically homogeneous vegetation type in Phalaborwa, South Africa. A section of this vegetation type has been untransformed, and the remainder is now mainly characterized by urban and subsistence agricultural areas. Using morphometric, foraging and breeding functional traits of birds, we estimate functional diversity changes. Bird species richness and abundance are generally higher in urban and subsistence agricultural land uses, as well as in the habitat matrix connecting these regions, than in the untransformed area, a pattern mainly driven through species replacement. Functionally unique species, particularly ground nesters of large body size, were, however, less abundant in more utilized land uses. For a previously homogenous vegetation type, declines in the seasonality of energy availability under land‐use change have led to an increase in local avian diversity, promoting the turnover of species, but reduced the abundance of functionally unique species. Although there is no simple relationship between land‐use and diversity change, land‐use change may suit some species, but such change may also involve functional homogenization.  相似文献   

11.
We examined radial growth responses of ponderosa pine (Pinus ponderosa var. ponderosa) between 1905–1954 and 1955–2004 to determine if the effects of increased intrinsic water‐use efficiencies (iWUE) caused by elevated atmospheric CO2 concentrations were age‐specific. We collected 209 cores from five sites in the Northern Rockies and calculated iWUE using carbon isotope data from 1850 to 2004. Standardized radial growth responses were age dependent, with older trees exhibiting significantly higher values than younger trees during the later period at four sites and all sites combined. No significant differences in radial growth existed either for the individual sites or combined site during the earlier period. Increases in iWUE during 1955–2004 were 11% greater than during 1905–1954, and pentadal fluctuations in iWUE were significantly correlated with the radial growth of older trees from 1850 to 2004. Radial growth of younger trees and iWUE were not significantly correlated. Our results suggest that: (1) responses to elevated atmospheric CO2 in old‐growth ponderosa forests are age‐specific; (2) radial growth increases in older trees coincided with increased iWUE; (3) ponderosa had increased growth rates in their third, fourth, and fifth centuries of life; and (4) age‐specific growth responses during 1955–2004 are unique since at least the mid‐16th century.  相似文献   

12.
13.
Abstract Insect populations are prone to respond to global changes through shifts in phenology, distribution and abundance. However, global changes cover several factors such as climate and land-use, the relative importance of these being largely unknown. Here, we aim at disentangling the effects of climate, land-use, and geographical drivers on aphid abundance and phenology in France, at a regional scale and over the last 40 years. We used aerial data obtained from suction traps between 1978 and 2015 on five aphid species varying in their degree of specialization to legumes, along with climate, legume crop area and geographical data. Effects of environmental and geographical variables on aphid annual abundance and spring migration dates were analyzed using generalized linear mixed models. We found that within the last four decades, aphids have advanced their spring migration by a month, mostly due to the increase in temperature early in the year, and their abundance decreased by half on average, presumably in response to a combination of factors. The influence of legume crop area decreased with the degree of specialization of the aphid species to such crops. The effect of geographical variation was high even when controlling for environmental variables, suggesting that many other spatially structured processes act on aphid population characteristics. Multifactorial analyses helped to partition the effects of different global change drivers. Climate and land-use changes have strong effects on aphid populations, with important implications for future agriculture. Additionally, trait-based response variation could have major consequences at the community scale.  相似文献   

14.
Biorefining agro‐industrial biomass residues for bioenergy production represents an opportunity for both sustainable energy supply and greenhouse gas (GHG) emissions mitigation. Yet, is bioenergy the most sustainable use for these residues? To assess the importance of the alternative use of these residues, a consequential life cycle assessment (LCA) of 32 energy‐focused biorefinery scenarios was performed based on eight selected agro‐industrial residues and four conversion pathways (two involving bioethanol and two biogas). To specifically address indirect land‐use changes (iLUC) induced by the competing feed/food sector, a deterministic iLUC model, addressing global impacts, was developed. A dedicated biochemical model was developed to establish detailed mass, energy, and substance balances for each biomass conversion pathway, as input to the LCA. The results demonstrated that, even for residual biomass, environmental savings from fossil fuel displacement can be completely outbalanced by iLUC, depending on the feed value of the biomass residue. This was the case of industrial residues (e.g. whey and beet molasses) in most of the scenarios assessed. Overall, the GHGs from iLUC impacts were quantified to 4.1 t CO2‐eq.ha?1demanded yr?1 corresponding to 1.2–1.4 t CO2‐eq. t?1 dry biomass diverted from feed to energy market. Only, bioenergy from straw and wild grass was shown to perform better than the alternative use, as no competition with the feed sector was involved. Biogas for heat and power production was the best performing pathway, in a short‐term context. Focusing on transport fuels, bioethanol was generally preferable to biomethane considering conventional biogas upgrading technologies. Based on the results, agro‐industrial residues cannot be considered burden‐free simply because they are a residual biomass and careful accounting of alternative utilization is a prerequisite to assess the sustainability of a given use. In this endeavor, the iLUC factors and biochemical model proposed herein can be used as templates and directly applied to any bioenergy consequential study involving demand for arable land.  相似文献   

15.
The flux and composition of carbon (C) from land to rivers represents a critical component of the global C cycle as well as a powerful integrator of landscape‐level processes. In the Congo Basin, an expansive network of streams and rivers transport and cycle terrigenous C sourced from the largest swathe of pristine tropical forest on Earth. Increasing rates of deforestation and conversion to agriculture in the Basin are altering the current regime of terrestrial‐to‐aquatic biogeochemical cycling of C. To investigate the role of deforestation on dissolved organic and inorganic C (DOC and DIC, respectively) biogeochemistry in the Congo Basin, six lowland streams that drain catchments of varying forest proportion (12%–77%) were sampled monthly for 1 year. Annual mean concentrations of DOC exhibited an asymptotic response to forest loss, while DIC concentrations increased continuously with forest loss. The isotopic signature of DIC became significantly more enriched with deforestation, indicating a shift in source and processes controlling DIC production. The composition of dissolved organic matter (DOM), as revealed by ultra‐high‐resolution mass spectrometry, indicated that deforested catchments export relatively more aliphatic and heteroatomic DOM sourced from microbial biomass in soils. The DOM compositional results imply that DOM from the deforested sites is more biolabile than DOM from the forest, consistent with the corresponding elevated stream CO2 concentrations. In short, forest loss results in significant and comprehensive shifts in the C biogeochemistry of the associated streams. It is apparent that land‐use conversion has the potential to dramatically affect the C cycle in the Congo Basin by reducing the downstream flux of stable, vascular‐plant derived DOC while increasing the transfer of biolabile soil C to the atmosphere.  相似文献   

16.
Historic land‐cover/use change is important for studies on climate change, soil carbon, and biodiversity assessments. Available reconstructions focus on the net area difference between two time steps (net changes) instead of accounting for all area gains and losses (gross changes). This leads to a serious underestimation of land‐cover/use dynamics with impacts on the biogeochemical and environmental assessments based on these reconstructions. In this study, we quantified to what extent land‐cover/use reconstructions underestimate land‐cover/use changes in Europe for the 1900–2010 period by accounting for net changes only. We empirically analyzed available historic land‐change data, quantified their uncertainty, corrected for spatial‐temporal effects and identified underlying processes causing differences between gross and net changes. Gross changes varied for different land classes (largest for forest and grassland) and led to two to four times the amount of net changes. We applied the empirical results of gross change quantities in a spatially explicit reconstruction of historic land change to reconstruct gross changes for the EU27 plus Switzerland at 1 km spatial resolution between 1950 and 2010. In addition, the reconstruction was extended back to 1900 to explore the effects of accounting for gross changes on longer time scales. We created a land‐change reconstruction that only accounted for net changes for comparison. Our two model outputs were compared with five commonly used global reconstructions for the same period and area. In our reconstruction, gross changes led in total to a 56% area change (ca. 0.5% yr?1) between 1900 and 2010 and cover twice the area of net changes. All global reconstructions used for comparison estimated fewer changes than our gross change reconstruction. Main land‐change processes were cropland/grassland dynamics and afforestation, and also deforestation and urbanization.  相似文献   

17.
Landsliding is a natural process influencing montane ecosystems, particularly in areas with elevated rainfall and seismic activity. Yet, to date, little effort has been made to quantify the contribution of this process to land‐cover change. Focusing on the mountains of Mexico and Central America (M‐CA), we estimated the contribution of landsliding to land‐cover change at two scales. At the scale of M‐CA, we classified the terrain into major landforms and entered in a GIS historical data on earthquake‐ and rainfall‐triggered landslides. At the scale of the Sierra de Las Minas of Guatemala, we investigated Landsat TM data to map rainfall‐triggered landslides. During the past 110 yr, >136,200 ha of land in the mountains of M‐CA have been affected by landslides, which translates into disturbance rates exceeding 0.317 percent/century. In Sierra de Las Minas, rainfall associated with hurricane Mitch affected 1765 ha of forest, or equivalently, landslides triggered by storms of this magnitude transformed between 0.196 (return time of 500 yr) and 1.290 (return time of 75 yr) percent of forest/century. Although landsliding results in smaller rates of land‐cover change than deforestation, we hypothesize that it has a stronger impact on ecosystems, both in qualitative and quantitative terms, given its influence on vegetation and soil. Moreover, interactions between landsliding and deforestation may be altering the expression of this complex process such that the few protected areas in the mountains of M‐CA may represent the only possibility for the conservation of this process.  相似文献   

18.
19.
20.
Deforestation and agricultural land degradation in tropical regions can create conditions for growth of perennial plant species forming mono‐dominated patches (MDP). Such species might limit forest regeneration, and their proliferation forces the abandonment of fields and subsequent deforestation to establish new fields. Therefore, identifying factors fostering MDP species is critical for biodiversity conservation in human‐modified landscapes. Here, we propose a conceptual framework to identify such factors and apply it to the case of Pteridium aquilinum (bracken fern), a light‐demanding species, tolerant of low soil fertility and fire. We hypothesize that bracken proliferation is promoted by land‐use changes that increase light availability, especially in sites with low soil fertility and land uses involving fire. We assessed this idea using agricultural fields in southeastern Mexico with different land‐use change histories and quantifying prevalence and cover of bracken. Five different land‐use change histories resulted from transitions among forest, crop, pasture, and fallow field stages. Of the 133 fields sampled, 71 percent had P. aquilinum; regression tree analysis indicated that 65 percent of inter‐field variation in prevalence and 90 percent in cover was explained by land‐use change history and soil type. Maximum prevalence, cover, and rates of increase in bracken were found on fields with low fertility sandy/clay soils, which had been used for crops and pasture, were frequently burned, and had high levels of light. Fields on fertile alluvial soil never used for pasture were bracken‐free. Agriculture promoting high light environments on less fertile soils is a major cause of bracken proliferation and likely that of other MDP species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号