首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Macroautophagy is a highly conserved intracellular bulk degradation system of all eukaryotic cells. It is governed by a large number of autophagy proteins (ATGs) and is crucial for many cellular processes. Here, we describe the phenotypes of Dictyostelium discoideum ATG16 and ATG9/16 cells and compare them to the previously reported ATG9 mutant. ATG16 deficiency caused an increase in the expression of several core autophagy genes, among them atg9 and the two atg8 paralogues. The single and double ATG9 and ATG16 knock-out mutants had complex phenotypes and displayed severe and comparable defects in pinocytosis and phagocytosis. Uptake of Legionella pneumophila was reduced. In addition, ATG9 and ATG16 cells had dramatic defects in autophagy, development and proteasomal activity which were much more severe in the ATG9/16 double mutant. Mutant cells showed an increase in poly-ubiquitinated proteins and contained large ubiquitin-positive protein aggregates which partially co-localized with ATG16-GFP in ATG9/16 cells. The more severe autophagic, developmental and proteasomal phenotypes of ATG9/16 cells imply that ATG9 and ATG16 probably function in parallel in autophagy and have in addition autophagy-independent functions in further cellular processes.  相似文献   

2.
Autophagy is a complex degradative process in which cytosolic material, including organelles, is randomly sequestered within double‐membrane vesicles termed autophagosomes. In Saccharomyces cerevisiae, the autophagy genes ATG1 and ATG8 are crucial for autophagy induction and autophagosome assembly, respectively, and their deletion has an impact on the autophagic potential of the corresponding mutant strains. We were interested in the role of autophagy in the development and virulence of U. maydis. Using a reverse genetic approach, we showed that the U. maydis ATG8 orthologue, atg8, is associated with autophagy‐dependent processes. Deletion of atg8 abolished autophagosome accumulation in the vacuoles of carbon‐starved cells and drastically reduced the survival of U. maydisΔatg8 mutant strains during these conditions. In addition, atg8 deletion had an impact on the budding process during saprobic haploid growth. The infection of maize with compatible Δatg8 strains resulted in fewer galled plants, and fungal gall colonization was strongly reduced, as reflected by the very low hyphal density in these tissues. Δatg8 infections resulted in the formation of very few teliospores. To corroborate the role of autophagy in U. maydis development, we also deleted the ATG1 orthologue, atg1. Deletion of atg1 yielded phenotypes similar to the Δatg8 strains during saprobic growth, but of lower magnitude. The Δatg1 strains were only slightly less pathogenic than the wild‐type and teliospore production was not affected. Surprisingly, atg1 deletion in the Δatg8 background exacerbated those phenotypes already observed in the Δatg8 and Δatg1 single‐mutant strains, strongly suggesting an additive phenotype. In particular, the double mutant was completely suppressed for plant gall induction.  相似文献   

3.
《Autophagy》2013,9(4):538-549
Autophagy is a highly conserved process that maintains intracellular homeostasis by degrading proteins or organelles in all eukaryotes. The effect of autophagy on fungal biology and infection of insect pathogens is unknown. Here, we report the function of MrATG8, an ortholog of yeast ATG8, in the entomopathogenic fungus Metarhizium robertsii. MrATG8 can complement an ATG8-defective yeast strain and deletion of MrATG8 impaired autophagy, conidiation and fungal infection biology in M. robertsii. Compared with the wild-type and gene-rescued mutant, Mratg8Δ is not inductive to form the infection-structure appressorium and is impaired in defense response against insect immunity. In addition, accumulation of lipid droplets (LDs) is significantly reduced in the conidia of Mratg8Δ and the pathogenicity of the mutant is drastically impaired. We also found that the cellular level of a LD-specific perilipin-like protein is significantly lowered by deletion of MrATG8 and that the carboxyl terminus beyond the predicted protease cleavage site is dispensable for MrAtg8 function. To corroborate the role of autophagy in fungal physiology, the homologous genes of yeast ATG1, ATG4 and ATG15, designated as MrATG1, MrATG4 and MrATG15, were also deleted in M. robertsii. In contrast to Mratg8Δ, these mutants could form appressoria, however, the LD accumulation and virulence were also considerably impaired in the mutant strains. Our data showed that autophagy is required in M. robertsii for fungal differentiation, lipid biogenesis and insect infection. The results advance our understanding of autophagic process in fungi and provide evidence to connect autophagy with lipid metabolism.  相似文献   

4.
Macroautophagy/autophagy involves the formation of an autophagosome, a double-membrane vesicle that delivers sequestered cytoplasmic cargo to lysosomes for degradation and recycling. Closely related, endocytosis mediates the sorting and transport of cargo throughout the cell, and both processes are important for cellular homeostasis. However, how endocytic proteins functionally intersect with autophagy is not clear. Mutations in the DAF-2/insulin-like IGF-1 (INSR) receptor at the permissive temperature result in a small increase in GFP::LGG-1 foci, i.e. autophagosomes, but a large increase at the nonpermissive temperature, allowing us to control the level of autophagy. In a RNAi screen for endocytic genes that alter the expression of GFP::LGG-1 in daf-2 mutants, we identified RAB-10, a small GTPase that regulates basolateral endocytosis. Loss of rab-10 in daf-2 mutants results in more GFP::LGG-1-positive foci at the permissive, but less GFP::LGG-1 or SQST-1::GFP foci at the nonpermissive temperature. As previously reported, loss of rab-10 alone resulted in an increase of GFP:LGG-1 foci. Exposure of rab-10 mutant animals to chloroquine, a known inhibitor of autophagic flux, failed to increase the number of GFP::LGG-1 foci. Moreover, colocalization between LMP-1::tagRFP and GFP::LGG-1 (the lysosome and autophagosome reporters) was decreased in daf-2; rab-10 dauers at the nonpermissive temperature. Intriguingly, RAB-10 was required to maintain the normal size of GFP::ATG-9-positive structures in daf-2 mutants at both the permissive and nonpermissive temperature. Finally, we found that RAB-10 GTPase cycling was required to control the size of GFP::ATG-9 foci. Collectively, our data support a model where rab-10 controls autophagic flux by regulating autophagosome formation and maturation.  相似文献   

5.
The major fungal pathogen Candida albicans has the metabolic flexibility to assimilate a wide range of nutrients in its human host. Previous studies have suggested that C. albicans can encounter glucose‐poor microenvironments during infection and that the ability to use alternative non‐fermentable carbon sources contributes to its virulence. JEN1 encodes a monocarboxylate transporter in C. albicans and we show that its paralogue, JEN2, encodes a novel dicarboxylate plasma membrane transporter, subjected to glucose repression. A strain deleted in both genes lost the ability to transport lactic, malic and succinic acids by a mediated mechanism and it displayed a growth defect on these substrates. Although no significant morphogenetic or virulence defects were found in the double mutant strain, both JEN1 and JEN2 were strongly induced during infection. Jen1‐GFP (green fluorescent protein) and Jen2‐GFP were upregulated following the phagocytosis of C. albicans cells by neutrophils and macrophages, displaying similar behaviour to an Icl1‐GFP fusion. In the murine model of systemic candidiasis approximately 20–25% of C. albicans cells infecting the kidney expressed Jen1‐GFP and Jen2‐GFP. Our data suggest that Jen1 and Jen2 are expressed in glucose‐poor niches within the host, and that these short‐chain carboxylic acid transporters may be important in the early stages of infection.  相似文献   

6.
Eukaryotic cells can employ autophagy to defend themselves against invading pathogens. Upon infection by Plasmodium berghei sporozoites, the host hepatocyte targets the invader by labelling the parasitophorous vacuole membrane (PVM) with the autophagy marker protein LC3. Until now, it has not been clear whether LC3 recruitment to the PVM is mediated by fusion of autophagosomes or by direct incorporation. To distinguish between these possibilities, we knocked out genes that are essential for autophagosome formation and for direct LC3 incorporation into membranes. The CRISPR/Cas9 system was employed to generate host cell lines deficient for either FIP200, a member of the initiation complex for autophagosome formation, or ATG5, responsible for LC3 lipidation and incorporation of LC3 into membranes. Infection of these knockout cell lines with Pberghei sporozoites revealed that LC3 recruitment to the PVM indeed depends on functional ATG5 and the elongation machinery, but not on FIP200 and the initiation complex, suggesting a direct incorporation of LC3 into the PVM. Importantly, in Pberghei‐infected ATG5?/? host cells, lysosomes still accumulated at the PVM, indicating that the recruitment of lysosomes follows an LC3‐independent pathway.  相似文献   

7.
8.
9.
Sphingolipids are bioactive molecules playing a key role as membrane components, but they are also central regulators of many intracellular processes including macroautophagy/autophagy. In particular, sphingosine-1-phosphate (S1P) is a critical mediator that controls the balance between sphingolipid-induced autophagy and cell death. S1P levels are adjusted via S1P synthesis, dephosphorylation or degradation, catalyzed by SGPL1 (sphingosine-1-phosphate lyase 1). Intracellular pathogens are able to modulate many different host cell pathways to allow their replication. We have found that infection of eukaryotic cells with the human pathogen Legionella pneumophila triggers a change in the host cell sphingolipid metabolism and specifically affects the levels of sphingosine. Indeed, L. pneumophila secretes a protein highly homologous to eukaryotic SGPL1 (named LpSPL). We solved the crystal structure of LpSPL and showed that it encodes lyase activity, targets the host's sphingolipid metabolism, and plays a role in starvation-induced autophagy during L. pneumophila infection to promote intracellular survival.  相似文献   

10.
ABSTRACT

CASP9 (caspase 9) is a well-known initiator caspase which triggers intrinsic apoptosis. Recent studies also suggest various non-apoptotic roles of CASP9, including macroautophagy/autophagy regulation. However, the involvement of CASP9 in autophagy and its molecular mechanisms are not well understood. Here we report the non-apoptotic function of CASP9 in positive regulation of autophagy through maintenance of mitochondrial homeostasis. Growth factor or amino acid deprivation-induced autophagy activated CASP9, but without apoptotic features. Pharmacological inhibition or genetic ablation of CASP9 decreased autophagy flux, while ectopic expression of CASP9 rescued autophagy defects. In CASP9 knockout (KO) cells, initiation and elongation of phagophore membranes were normal, but sealing of the membranes and autophagosome maturation were impaired, and the lifetime of autophagosomes was prolonged. Ablation of CASP9 caused an accumulation of inactive ATG3 and decreased lipidation of the Atg8-family members, most severely that of GABARAPL1. Moreover, it resulted in abnormal mitochondrial morphology with depolarization of the membrane potential, reduced reactive oxygen species production, and aberrant accumulation of mitochondrial fusion-fission proteins. CASP9 expression or exogenously added H2O2 in the CASP9 KO cells corrected the ATG3 level and lipidation status of Atg8-family members, and restored autophagy flux. Of note, only CASP9 expression but not H2O2 rescued mitochondrial defects, revealing regulation of mitochondrial homeostasis by CASP9. Our findings suggest a new regulatory link between mitochondria and autophagy through CASP9 activity, especially for the proper operation of the Atg8-family conjugation system and autophagosome closure and maturation.  相似文献   

11.
12.
Autophagic recycling of intracellular plant constituents is maintained at a basal level under normal growth conditions but can be induced in response to nutritional demand, biotic stress, and senescence. One route requires the ubiquitin‐fold proteins Autophagy‐related (ATG)‐8 and ATG12, which become attached to the lipid phosphatidylethanolamine (PE) and the ATG5 protein, respectively, during formation of the engulfing vesicle and delivery of its cargo to the vacuole for breakdown. Here, we genetically analyzed the conjugation machinery required for ATG8/12 modification in Arabidopsis thaliana with a focus on the two loci encoding ATG12. Whereas single atg12a and atg12b mutants lack phenotypic consequences, atg12a atg12b double mutants senesce prematurely, are hypersensitive to nitrogen and fixed carbon starvation, and fail to accumulate autophagic bodies in the vacuole. By combining mutants eliminating ATG12a/b, ATG5, or the ATG10 E2 required for their condensation with a method that unequivocally detects the ATG8‐PE adduct, we also show that ATG8 lipidation requires the ATG12–ATG5 conjugate. Unlike ATG8, ATG12 does not associate with autophagic bodies, implying that its role(s) during autophagy is restricted to events before the vacuolar deposition of vesicles. The expression patterns of the ATG12a and ATG12b genes and the effects of single atg12a and atg12b mutants on forming the ATG12–ATG5 conjugate reveal that the ATG12b locus is more important during basal autophagy while the ATG12a locus is more important during induced autophagy. Taken together, we conclude that the formation of the ATG12–ATG5 adduct is essential for ATG8‐mediated autophagy in plants by promoting ATG8 lipidation.  相似文献   

13.
The severe pneumonia known as Legionnaires' disease occurs following infection by the Gram‐negative bacterium Legionella pneumophila. Normally resident in fresh‐water sources, Legionella are subject to predation by eukaryotic phagocytes such as amoeba and ciliates. To counter this, L. pneumophila has evolved a complex system of effector proteins which allow the bacteria to hijack the phagocytic vacuole, hiding and replicating within their erstwhile killers. These same mechanisms allow L. pneumophila to hijack another phagocyte, lung‐based macrophages, which thus avoids a vital part of the immune system and leads to infection. The course of infection can be divided into five main categories: pathogen uptake, formation of the replication‐permissive vacuole, intracellular replication, host cell response, and bacterial exit. L. pneumophila effector proteins target every stage of this process, interacting with secretory, endosomal, lysosomal, retrograde and autophagy pathways, as well as with mitochondria. Each of these steps can be studied in protozoa or mammalian cells, and the knowledge gained can be readily applied to human pathogenicity. Here we describe the manner whereby L. pneumophila infects host protozoa, the various techniques which are available to analyse these processes and the implications of this model for Legionella virulence and the pathogenesis of Legionnaires' disease.  相似文献   

14.
Legionella pneumophila has become a model system to decipher the non‐apoptotic functions of caspases and their role in immunity. In permissive cells, the L. pneumophila‐containing vacuole evades endosomal traffic and is remodelled by the endoplasmic reticulum. Evasion of the endosomes is mediated by the Dot/Icm type IV secretion system. Upon L. pneumophila infection of genetically restrictive cells such as wild‐type (WT) C57Bl/6J murine macrophages, flagellin is sensed by the NOD‐like receptor Nlrc4 leading to caspase‐1 activation by the inflammasome complex. Then, caspase‐7 is activated downstream of the Nlrc4 inflammasome, promoting non‐apoptotic functions such as L. pneumophila‐containing phagosome maturation and bacterial degradation. Interestingly, caspase‐3 is activated in permissive cells during early stages of infection. However, caspase‐3 activation does not lead to apoptosis until late stages of infection because it is associated with potent Dot/Icm‐mediated anti‐apoptotic stimuli that render the infected cells resistant to external apoptotic inducers. Therefore, the role of caspase‐1 and non‐apoptotic functions of executioner caspases are temporally and spatially modulated during infection by L. pneumophila, which determine permissiveness to intracellular bacterial proliferation. This review will examine the novel activation pathways of caspases by L. pneumophila and discuss their role in genetic restriction and permissiveness to infection.  相似文献   

15.
16.
《Autophagy》2013,9(2):93-95
The role of autophagy in ageing regulation has been suggested based on studies in C. elegans, in which knockdown of the expression of bec-1 (ortholog of the yeast and mammalian autophagy genes ATG6/VPS30 and beclin 1, respectively) shortens the lifespan of the daf-2(e1370) mutant C. elegans. However, Beclin1/ATG6 is also known to be involved in other cellular functions in addition to autophagy. In the current study, we knocked down two other autophagy genes, atg-7 and atg-12, in C. elegans using RNAi. We showed that RNAi shortened the lifespan of both wild type and daf-2 mutant C. elegans, providing strong support for a role of autophagy in ageing regulation.  相似文献   

17.
18.
Shu Yang 《Autophagy》2016,12(10):1721-1737
Macroautophagy/autophagy is a cellular degradation process that sequesters organelles or proteins into a double-membrane structure called the phagophore; this transient compartment matures into an autophagosome, which then fuses with the lysosome or vacuole to allow hydrolysis of the cargo. Factors that control membrane traffic are also essential for each step of autophagy. Here we demonstrate that 2 monomeric GTP-binding proteins in Saccharomyces cerevisiae, Arl1 and Ypt6, which belong to the Arf/Arl/Sar protein family and the Rab family, respectively, and control endosome-trans-Golgi traffic, are also necessary for starvation-induced autophagy under high temperature stress. Using established autophagy-specific assays we found that cells lacking either ARL1 or YPT6, which exhibit synthetic lethality with one another, were unable to undergo autophagy at an elevated temperature, although autophagy proceeds normally at normal growth temperature; specifically, strains lacking one or the other of these genes are unable to construct the autophagosome because these 2 proteins are required for proper traffic of Atg9 to the phagophore assembly site (PAS) at the restrictive temperature. Using degron technology to construct an inducible arl1Δ ypt6Δ double mutant, we demonstrated that cells lacking both genes show defects in starvation-inducted autophagy at the permissive temperature. We also found Arl1 and Ypt6 participate in autophagy by targeting the Golgi-associated retrograde protein (GARP) complex to the PAS to regulate the anterograde trafficking of Atg9. Our data show that these 2 membrane traffic regulators have novel roles in autophagy.  相似文献   

19.
Plants encounter environmental stress challenges that are distinct from those of other eukaryotes because of their relative immobility. Therefore, plants may have evolved distinct regulatory mechanisms for conserved cellular functions. Plants, like other eukaryotes, share aspects of both calcium‐ and calmodulin‐based cellular signaling and the autophagic process of cellular renewal. Here, we report a novel function for an Arabidopsis calmodulin‐related protein, CML24, and insight into ATG4‐regulated autophagy. CML24 interacts with ATG4b in yeast two‐hybrid, in vitro pull‐down and transient tobacco cell transformation assays. Mutants with missense mutations in CML24 have aberrant ATG4 activity patterns in in vitro extract assays, altered ATG8 accumulation levels, an altered pattern of GFP–ATG8‐decorated cellular structures, and altered recovery from darkness‐induced starvation. Together, these results support the conclusion that CML24 affects autophagy progression through interactions with ATG4.  相似文献   

20.
Sphingomyelin is an essential cellular lipid that traffics between plasma membrane and intracellular organelles until directed to lysosomes for SMPD1 (sphingomyelin phosphodiesterase 1)-mediated degradation. Inactivating mutations in the SMPD1 gene result in Niemann-Pick diseases type A and B characterized by sphingomyelin accumulation and severely disturbed tissue homeostasis. Here, we report that sphingomyelin overload disturbs the maturation and closure of autophagic membranes. Niemann-Pick type A patient fibroblasts and SMPD1-depleted cancer cells accumulate elongated and unclosed autophagic membranes as well as abnormally swollen autophagosomes in the absence of normal autophagosomes and autolysosomes. The immature autophagic membranes are rich in WIPI2, ATG16L1 and MAP1LC3B but display reduced association with ATG9A. Contrary to its normal trafficking between plasma membrane, intracellular organelles and autophagic membranes, ATG9A concentrates in transferrin receptor-positive juxtanuclear recycling endosomes in SMPD1-deficient cells. Supporting a causative role for ATG9A mistrafficking in the autophagy defect observed in SMPD1-deficient cells, ectopic ATG9A effectively reverts this phenotype. Exogenous C12-sphingomyelin induces a similar juxtanuclear accumulation of ATG9A and subsequent defect in the maturation of autophagic membranes in healthy cells while the main sphingomyelin metabolite, ceramide, fails to revert the autophagy defective phenotype in SMPD1-deficient cells. Juxtanuclear accumulation of ATG9A and defective autophagy are also evident in tissues of smpd1-deficient mice with a subsequent inability to cope with kidney ischemia-reperfusion stress. These data reveal sphingomyelin as an important regulator of ATG9A trafficking and maturation of early autophagic membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号