首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Uxmal and Tulum are two important Mayan sites in the Yucatan peninsula. The buildings are mainly composed of limestone and grey/black discoloration is seen on exposed walls and copious greenish biofilms on inner walls. The principal microorganisms detected on interior walls at both Uxmal and Tulum were cyanobacteria; heterotrophic bacteria and filamentous fungi were also present. A dark‐pigmented mitosporic fungus and Bacillus cereus, both isolated from Uxmal, were shown to be acidogenic in laboratory cultures. Cyanobacteria belonging to rock‐degrading genera Synechocystis and Gloeocapsa were identified at both sites. Surface analysis previously showed that calcium ions were present in the biofilms on buildings at Uxmal and Tulum, suggesting the deposition of biosolubilized stone. Apart from their potential to degrade the substrate, the coccoid cyanobacteria supply organic nutrients for bacteria and fungi, which can produce organic acids, further increasing stone degradation.  相似文献   

2.
Recognition of evaporite formations from continental Tertiary basins of Spain provides evidence that trace fossils (including rhizoliths) can be abundant in some saline lake systems and their study helps in palaeoenvironmental interpretation of ancient continental evaporite sequences. Six main types of trace fossils have been distinguished and include: (1) networks of small rhizoliths; (2) large rhizoliths; (3) tangle-patterned small burrows; (4) isolated large burrows; (5) L-shaped traces; and (6) vertebrate tracks. Rhizoliths were related to both marginal areas of hypersaline lakes and lakes of moderately high saline waters. In these settings, pedoturbation resulted from colonization by grasses and bushes of distinct lake subenvironments. The activity of burrowing invertebrate faunas was especially intense in lakes of moderately concentrated brines from which gypsum was the main evaporite mineral deposited. A specific gypsum lithofacies (‘bioturbated gypsum deposits') forming thick, massive beds has a widespread occurrence in many of the basins. Tangle-patterned small burrows and minor isolated large burrows constitute the typical trace fossil types within the gypsum. The traces are interpreted as having been caused by burrowing insect larvae, probably chironomids, coleopterans and annelids. The behaviour of these organisms in recent lake environments yields information about the salinity range of lake waters from which gypsum precipitated. Concentration values averaging 100–150 g/l may be thus deduced though some organisms involved in the formation of the traces can tolerate higher salinities. The combined analysis of lithofacies and trace fossils from the lacustrine evaporite sequences contributes to the study of distinct saline lake subenvironments as well as changes in the sedimentary evolution of the lake systems. Consequently, trace fossils can provide valuable insight for palaeoenvironmental analysis of at least some evaporite formations that accumulated in continental settings.  相似文献   

3.
The scarcity of liquid water in the hyperarid core of the Atacama Desert makes this region one of the most challenging environments for life on Earth. The low numbers of microbial cells in the soils suggest that within the Atacama Desert lies the dry limit for life on our planet. Here, we show that the Ca‐sulfate crusts of this hyperarid core are the habitats of lithobiontic micro‐organisms. This microporous, translucent substrate is colonized by epilithic lichens, as well as endolithic free‐living algae, fungal hyphae, cyanobacteria and non photosynthetic bacteria. We also report a novel type of endolithic community, “hypoendoliths”, colonizing the undermost layer of the crusts. The colonization of gypsum crusts within the hyperarid core appears to be controlled by the moisture regime. Our data shows that the threshold for colonization is crossed within the dry core, with abundant colonization in gypsum crusts at one study site, while crusts at a drier site are virtually devoid of life. We show that the cumulative time in 1 year of relative humidity (RH) above 60% is the best parameter to explain the difference in colonization between both sites. This is supported by controlled humidity experiments, where we show that colonies of endolithic cyanobacteria in the Ca‐sulfate crust undergo imbibition process at RH >60%. Assuming that life once arose on Mars, it is conceivable that Martian micro‐organisms sought refuge in similar isolated evaporite microenvironments during their last struggle for life as their planet turned arid.  相似文献   

4.
Bacteria and fungi, isolated from United States Air Force (USAF) aviation fuel samples, were identified by gas chromatograph fatty acid methyl ester (GC-FAME) profiling and 16S or 18S rRNA gene sequencing. Thirty-six samples from 11 geographically separated USAF bases were collected. At each base, an above-ground storage tank, a refueling truck, and an aircraft wing tank were sampled at the lowest sample point, or sump, to investigate microbial diversity and dispersion within the fuel distribution chain. Twelve genera, including four Bacillus species and two Staphylococcus species, were isolated and identified. Bacillus licheniformis, the most prevalent organism isolated, was found at seven of the 11 bases. Of the organisms identified, Bacillus sp., Micrococcus luteus, Sphinogmonas sp., Staphylococcus sp., and the fungus Aureobasidium pullulans have previously been isolated from aviation fuel samples. The bacteria Pantoea ananatis, Arthrobacter sp., Alcaligenes sp., Kocuria rhizophilia, Leucobacter komagatae, Dietza sp., and the fungus Discophaerina fagi have not been previously reported in USAF aviation fuel. Only at two bases were the same organisms isolated from all three sample points in the fuel supply distribution chain. Isolation of previously undocumented organisms suggests either, changes in aviation fuel microbial community in response to changes in aviation fuel composition, additives and biocide use, or simply, improvements in isolation and identification techniques.  相似文献   

5.
Of 70 micro‐organisms (fungi, bacteria and actinomycetes) isolated from soil using vegetable tissue baits, 16 produced substances in culture fluids capable of preventing the development of blast caused by Magnaporthe oryzae on rice leaves with little or no inhibitory effect on the conidial germination of the pathogen. Isolate KS‐F14, which secreted substances capable of activating resistance in untreated leaves, was selected and identified as Fusarium solani. The resistance‐inducing substances were effective at pH values ranging from 5 to 10 and were stable under high temperatures, maintaining approximately the same level of activity even after autoclaving for 20 min. After application, the activated resistance in rice leaves persisted for 14 days. The polar solvent extracts of freeze‐dried KS‐F14 secretions were effective in activating resistance against M. oryzae in rice plants. The non‐polar solvent extracts were also effective, albeit not as effective as the polar solvent extracts, indicating that although the majority of the secreted resistance‐inducing compounds are hydrophilic, some of the compounds are hydrophobic. Treating secretions with cation or anion exchange resins only partially reduced their resistance‐inducing ability, suggesting that the resistance‐inducing components include both charged and non‐charged compounds. The resistance‐inducing compounds produced by F. solani have the potential to be developed into a commercial product for the control of rice blast and possibly other plant diseases.  相似文献   

6.
Cellulose degrading bacteria were isolated from brackish Phragmites reed beds near the Humber Estuary. Of 23 strains brought into pure culture, all developed characteristic differentiated colonies on certain media. On the basis of colour of the colonies (pseudosori) the organisms could be allocated to two groups, XMo and XMb. Related strains were isolated from a similar habitat on the Dee Estuary. Numerical taxonomy showed the group to be relatively diverse but, with a single exception, the XMo and XMb organisms appeared in separate clusters. The organisms were weakly motile or non-motile and certain cells had a polar flagellum. Pigments isolated from one strain had u.v. spectral characteristics similar to those of the xanthomonadins; the organisms may therefore be related to Xanthomonas .  相似文献   

7.
青藏高原有毒植物瑞香狼毒根抑菌活性初步研究   总被引:16,自引:0,他引:16  
以人体病原细菌大肠杆菌、金黄色葡萄球菌、深部真菌白色念珠菌、浅部真菌红色毛癣菌、石膏样毛癣菌、石膏样小孢子菌、絮状表皮癣菌为供试菌,采用药敏纸片法对瑞香狼毒活性成分的抑菌活性进行了初步研究。结果表明瑞香狼毒对人体常见病原细菌和真菌有抑制作用,乙酸乙酯萃取物在33.33g/L浓度下对细菌组的抑菌圈直径最高可达12.02mm,对真菌组最高可达9.04mm,并初测瑞香狼毒中的抑菌活性物质主要为中偏强极性成分。  相似文献   

8.
Aims: The aim of this study was to determine the antimicrobial and antiadhesive properties of a biosurfactant isolated from Lactobacillus paracasei ssp. paracasei A20 against several micro‐organisms, including Gram‐positive and Gram‐negative bacteria, yeasts and filamentous fungi. Methods and Results: Antimicrobial and antiadhesive activities were determined using the microdilution method in 96‐well culture plates. The biosurfactant showed antimicrobial activity against all the micro‐organisms assayed, and for twelve of the eighteen micro‐organisms (including the pathogenic Candida albicans, Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis and Streptococcus agalactiae), the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) were achieved for biosurfactant concentrations between 25 and 50 mg ml?1. Furthermore, the biosurfactant showed antiadhesive activity against most of the micro‐organisms evaluated. Conclusions: As far as we know, this is the first compilation of data on antimicrobial and antiadhesive activities of biosurfactants obtained from lactobacilli against such a broad group of micro‐organisms. Although the antiadhesive activity of biosurfactants isolated from lactic acid bacteria has been widely reported, their antimicrobial activity is quite unusual and has been described only in a few strains. Significance and Impact of the Study: The results obtained in this study regarding the antimicrobial and antiadhesive properties of this biosurfactant opens future prospects for its use against micro‐organisms responsible for diseases and infections in the urinary, vaginal and gastrointestinal tracts, as well as in the skin, making it a suitable alternative to conventional antibiotics.  相似文献   

9.
Aim We used a landscape‐scale study of birch invasion onto heather moorland to determine the consistency of changes in vegetation type and soil properties and in the community composition of five soil organism groups. Our aim was to determine whether the degree to which soil organisms respond to natural changes and/or induced changes (e.g. changes in land‐use type and climate) in habitat is consistent across trophic and taxonomic groups in the context of conservation policies for birch woodland and heather moorland. Location Mainland Scotland. Methods We sampled mesostigmatid mites, oribatid mites, fungi, bacteria and archaea in adjacent patches of birch woodland (dominated by Betula pubescens) and heather moorland (dominated by Calluna vulgaris) at 12 sites for which annual rainfall ranged between 713 and 2251 mm. Differences in community composition were visualized using non‐metric multidimensional scaling based on Bray–Curtis dissimilarities. The factors contributing to differences between habitats within sites were explored using general linear models and those among sites using redundancy analysis. Results The communities of all groups differed between habitats within sites, but only the oribatid mites and fungi differed consistently between habitats across sites. Within sites, dissimilarity in fungal communities was positively related to the difference in C. vulgaris cover between habitats, whereas dissimilarities in bacteria and archaea were positively related to differences in soil pH and C:N ratio between habitats, respectively. Main conclusions The influence of vegetation type and soil properties differed between groups of soil organisms, albeit in a predictable manner, across the 12 sites. Organisms directly associated with plants (fungi), and organisms with microhabitat and resource preferences (Oribatida) were strongly responsive to changes in habitat type. The response of organisms not directly associated with plants (bacteria, archaea) depended on differences in soil properties, while organisms with less clear microhabitat and resource preferences (Mesostigmata) were not strongly responsive to either vegetation type or soil properties. These results show that it is possible to predict the impact of habitat change on specific soil organisms depending on their ecology. Moreover, the community composition of all groups was related to variation in precipitation within the study area, which shows that external factors, such as those caused by climate change, can have a direct effect on belowground communities.  相似文献   

10.
The adaptation of plants to particular soil types has long intrigued biologists. Gypsum soils occupy large areas in many regions of the world and host a striking biological diversity, but their vegetation has been much less studied than that developing over serpentine or saline soils. Herein, we review all aspects of plant life on gypsum ecosystems, discuss the main processes driving their structure and functioning, and highlight the main conservation threats that they face. Plant communities in gypsum habitats typically show distinctive bands at very small spatial scales, which are mainly determined by topography. Plants living on gypsum soils can be classified into three categories: (i) wide gypsophiles are specialists that can penetrate the physical soil crust during early life stages and have physiological adjustments to cope with the chemical limitations imposed by gypsum soils; (ii) narrow gypsophiles are refugee plants which successfully deal with the physical soil crust and can tolerate these chemical limitations but do not show specific adaptations for this type of soils; and (iii) gypsovags are non‐specialist gypsum plants that can only thrive in gypsum soils when the physical crust is absent or reduced. Their ability to survive in gypsum soils may also be mediated by below‐ground interactions with soil microorganisms. Gypsophiles and gypsovags show efficient germination at low temperatures, seed and fruit heteromorphism within and among populations, and variation in seed dormancy among plants and populations. In gypsum ecosystems, spatio‐temporal changes in the composition and structure of above‐ground vegetation are closely related to those of the soil seed bank. Biological soil crusts (BSCs) dominated by cyanobacteria, lichens and mosses are conspicuous in gypsum environments worldwide, and are important drivers of ecosystem processes such as carbon and nitrogen cycling, water infiltration and run‐off and soil stability. These organisms are also important determinants of the structure of annual plant communities living on gypsum soils. The short‐distance seed dispersal of gypsophiles is responsible for the high number of very narrow endemisms typically found in gypsum outcrops, and suggests that these species are evolutionarily old taxa due to the time they need to colonize isolated gypsum outcrops by chance. Climate change and habitat fragmentation negatively affect both plants and BSCs in gypsum habitats, and are among the major threats to these ecosystems. Gypsum habitats and specialists offer the chance to advance our knowledge on restrictive soils, and are ideal models not only to test important evolutionary questions such as tolerance to low Ca/Mg proportions in soils, but also to improve the theoretical framework of community ecology and ecosystem functioning.  相似文献   

11.
Numbers and types of microorganisms in uranium mill tailings were determined using culturing techniques.Arthrobacter were found to be the predominant microorganism inhabiting the sandy tailings, whereasBacillus and fungi predominated in the slime tailings. Sulfate-reducing bacteria, capable of leaching radium, were isolated in low numbers from tailings samples but were isolated in significantly high numbers from topsoil in contact with the tailings. The results are placed in the context of the magnitude of uranium mill tailings in the United States, the hazards posed by the tailings, and how such hazards could be enhanced or diminished by microbial activities. Patterns in the composition of the microbial population are evaluated with respect to the ecological variables that influence microbial growth.  相似文献   

12.
Microbial volatiles have a significant impact on the physiological functions of prokaryotic and eukaryotic organisms. Various ketones are present in volatile mixtures produced by plants, bacteria, and fungi. Our earlier results demonstrated the inhibitory effects of soil bacteria volatiles, including ketones, on cyanobacteria. In this work, we thoroughly examined the natural ketones, 2‐nonanone and 2‐undecanone to determine their influence on the photosynthetic activity in Synechococcus sp. PCC 7942. We observed for the first time that the ketones strongly inhibit electron transport through PSII in cyanobacteria cells in vivo. The addition of ketones decreases the quantum yield of primary PSII photoreactions and changes the PSII chlorophyll fluorescence induction curves. There are clear indications that the ketones inhibit electron transfer from QA to QB, electron transport at the donor side of PSII. The ketones can also modify the process of energy transfer from the antenna complex to the PSII reaction center and, by this means, increase both chlorophyll fluorescence quantum yield and the chlorophyll excited state lifetime. At the highest tested concentration (5 mM) 2‐nonanone also induced chlorophyll release from Synechococcus cells that strongly indicates the possible role of the ketones as detergents.  相似文献   

13.
Summary Microflora of rhizosphere soil, rhizoplane and macerated root-portions of Aristida coerulescens, naturally occurring in the Libyan desert, were different in count and isolates, in the different root zones. A rhizosphere effect characteristic of each zone is shown. The root base contained the lowest numbers of microflora (bacteria and fungi) whilst the root tip included the highest counts. Distribution of most of the individual fungal species in the different root zones and root-surfaces is given in text.  相似文献   

14.
In an extended study on the biodiversity of rock-dwelling bacteria, the colony and cell morphology, physiology, protein patterns, and 16S rDNA sequences of 17 bacterial strains isolated from different surfaces of rocks, stones, and monuments and from various geographical locations were characterized. All except one strain, which was found to be a Bacillus, were members of the order Actinomycetales. The majority of the strains either were closely related to Geodermatophilus obscurus, which was also analyzed in this study, or formed a closely related sister taxon. All of these strains were isolated from the surface of marble in Namibia and Greece and from limestone from the Negev desert, Israel. One strain, G10, of Namibia origin was equidistantly related to Geodermatophilus obscurus, Frankia alni, Sporichthya polymorpha, and Acidothermus cellulolyticus. Three strains from rock varnish in the Mojave desert, California, were found to be highly related to Arthrobacter (formerly Micrococcus) agilis. All clusters could be confirmed from results of studies on morphological and physiological properties and from banding patterns of whole cell proteins. Based on the results of tests, four additional strains were assigned to the lineage defined by strain G10. Received: 16 October 1995 / Accepted: 4 April 1996  相似文献   

15.
Fungi have been only rarely isolated from glacial ice in extremely cold polar regions and were in these cases considered as random, long-term preserved Aeolian deposits. Fungal presence has so far not been investigated in polar subglacial ice, a recently discovered extreme habitat reported to be inhabited exclusively by heterotrophic bacteria. In this study we report on the very high occurrence (up to 9000 CFU L−1) and diversity of filamentous Penicillium spp. in the sediment-rich subglacial ice of three different polythermal Arctic glaciers (Svalbard, Norway). The dominant species was P. crustosum, representing on the average half of all isolated strains from all three glaciers. The other most frequently isolated species were P. bialowiezense, P. chrysogenum, P. thomii, P. solitum, P. palitans, P. echinulatum, P. polonicum, P. commune, P. discolor, P. expansum, and new Penicillium species (sp. 1). Twelve more Penicillium species were occasionally isolated. The fungi isolated produced consistent profiles of secondary metabolites, not different from the same Penicillium species from other habitats. This is the first report on the presence of large populations of Penicillium spp. in subglacial sediment-rich ice.  相似文献   

16.
为了解喀斯特典型物种-小蓬竹根际土壤微生物及不同部位内生真菌多样性,采用沿等高线等距离取样法采集小蓬竹根际土壤及健康植株,通过可培养对根际土微生物及内生菌进行分离,利用分子技术对其进行鉴定,根据鉴定结果构建系统发育树,并计算小蓬竹根际土壤微生物和根茎叶内生真菌多样性。结果如下:(1)共从根际土壤、根、茎、叶分离得到139个真菌菌株,隶属于27属,其中根际土壤分离得到34个真菌菌株隶属于12属,根部分离得到的63个内生真菌菌株隶属于17个属,茎部分离得到的14个内生真菌菌株隶属于8个属,叶部分离得到28个内生真菌菌株隶属于9个属;(2)根际土壤共分离得到41株细菌菌株,隶属于7个属26个种,20株放线菌菌株,隶属于1属15种;从Shannon-Wiener多样性指数、均匀度指数、Simpson指数排序来看,真菌主要表现为根 > 根际土壤 > 茎 > 叶,细菌和放线菌多样性均较低。(3)按层次聚类分析可分别将真菌、细菌、放线菌聚为3支。小蓬竹根际土壤、根、茎和叶具有丰富的微生物多样性,不同部位菌群组成存在差异性(P<0.05),且存在以假单胞菌属、芽孢杆菌属等为优势属的抗盐耐旱菌群,这有助于揭示小蓬竹对喀斯特生境的适应性,以及为微生物-植物群落之间相互关系提供一定基础数据,为后期寻找小蓬竹相关耐性功能菌奠定基础。  相似文献   

17.
Several studies isolated fungal and bacterial species from extreme environments, such as Sabkha and hot deserts, as their natural habitat, some of which are of medicinal importance. Current research aimed investigating the microbial (fungi and bacteria) diversity and abundance in Sabkha and desert areas in Saudi Arabia. Soil samples from nine different geographical areas (Al-Aushazia lake, AlQasab, AlKasar, Tabuk, Al-Kharj, Al-Madina, Jubail, Taif and Abqaiq) were collected and cultured for microbial isolation. Isolated fungi and bacteria were identified by molecular techniques (PCR and sequencing). Based on 18S rDNA sequencing, 203 fungal species belonging to 33 genera were identified. The most common fungal genera were Fusarium, Alternaria, Chaetomium, Aspergillus Cochliobolus and Pencillium, while the most common species were Chaetomium globosum and Fusarium oxysporum. By 16S rDNA sequencing 22 bacterial species belonging to only two genera, Bacillus and Lactobacillus, were identified. The most commonly isolated bacterial species were Bacillus subtilis and Lactobacillus murinus. Some fungal species were confined to specific locations, such as Actinomyces elegans, Fusarium proliferatum, Gymnoascus reesii and Myzostoma spp. that were only isolated from Al-Aushazia soil. AlQasab soil had the highest microbial diversity among other areas with abundances of 23.5% and 4.4% of total fungi, and bacteria, respectively. Findings of this study show a higher degree of fungal diversity than that of bacteria in all studied areas. Further studies needed to investigate the connection between some isolated species and their habitat ecology, as well as to identify those of medicinal importance.  相似文献   

18.
Sulphoquinovosyldiacylglycerols (SQDG) are polar sulphur‐containing membrane lipids, whose presence has been related to a microbial strategy to adapt to phosphate deprivation. In this study, we have targeted the sqdB gene coding the uridine 5′‐diphosphate‐sulphoquinovose (UDP‐SQ) synthase involved in the SQDG biosynthetic pathway to assess potential microbial sources of SQDGs in the marine environment. The phylogeny of the sqdB‐coding protein reveals two distinct clusters: one including green algae, higher plants and cyanobacteria, and another one comprising mainly non‐photosynthetic bacteria, as well as other cyanobacteria and algal groups. Evolutionary analysis suggests that the appearance of UDP‐SQ synthase occurred twice in cyanobacterial evolution, and one of those branches led to the diversification of the protein in members of the phylum Proteobacteria. A search of homologues of sqdB‐proteins in marine metagenomes strongly suggested the presence of heterotrophic bacteria potential SQDG producers. Application of newly developed sqdB gene primers in the marine environment revealed a high diversity of sequences affiliated to cyanobacteria and Proteobacteria in microbial mats, while in North Sea surface water, most of the detected sqdB genes were attributed to the cyanobacterium Synechococcus sp. Lipid analysis revealed that specific SQDGs were characteristic of microbial mat depth, suggesting that SQDG lipids are associated with specific producers.  相似文献   

19.
Aims: The aim of the present study was to purify and characterize a natural antimicrobial compound from Bacillus sp. strain N associated with a novel rhabditid entomopathogenic nematode. Methods and Results: The cell‐free culture filtrate of a bacterium associated with a novel entomopathogenic nematode (EPN), Rhabditis (Oscheius) sp. exhibited strong antimicrobial activity. The ethyl acetate extract of the bacterial culture filtrate was purified by column chromatography, and two bioactive compounds were isolated and their chemical structures were established based on spectral analysis. The compounds were identified as 3,4′,5‐trihydroxystilbene (1) and 3,5‐dihydroxy‐4‐isopropylstilbene (2). The presence of 3,4′,5‐trihydroxystilbene (resveratrol) is reported for the first time in bacteria. Compound 1 showed antibacterial activity against all the four test bacteria, whereas compound 2 was effective against the Gram‐positive bacteria only. Compounds 1 and 2 were active against all the five fungi tested and are more effective than bavistin, the standard fungicide. The antifungal activity of the compounds against the plant pathogenic fungi, Rhizoctonia solani is reported for the first time. Conclusions: Cell‐free extract of the bacterium and isolated stilbenes demonstrated high antibacterial activity against bacteria and fungi especially against plant pathogenic fungi. We conclude that the bacterium‐associated EPN are promising sources of natural bioactive secondary metabolites. Significance and Impact of the Study: Stilbene compounds can be used for the control of fungi and bacteria.  相似文献   

20.
Most habitat fragmentation studies have focused on the effects of population size on reproductive success of single species, but studies assessing the effects of both fragment size and connectivity, and their interaction, on several coexisting species are rare. In this study, we selected 20 fragments along two continuous gradients of size and degree of isolation in a gypsum landscape in central Spain. In each fragment, we selected 15 individuals of each of three dominant gypsophiles (Centaurea hyssopifolia, Lepidium subulatum and Helianthemum squamatum, 300 plants per species, 900 plants in total) and measured several reproductive traits: inflorescence number, fruit set, seed set and seed mass. We hypothesised that plant fitness would be lower on small and isolated fragments due to an interaction between fragment size and connectivity, and that response patterns would be species‐specific. Overall, fragment size had very little effect on reproductive traits compared to that of connectivity. We observed a positive effect of fragment connectivity on C. hyssopifolia fitness, mediated by the increased seed predation in plants from isolated fragments, resulting in fewer viable seeds per capitulum and lower seed set. Furthermore, seed mass was lower in plants from isolated fragments for both C. hyssopifolia and L. subulatum. In contrast, few reproductive traits of H. squamatum were affected by habitat fragmentation. We discuss the implications of species‐specific responses to habitat fragmentation for the dynamics and conservation of gypsum plant communities. Our results highlight the complex interplay among plants and their mutualistic and antagonistic visitors, and reinforce the often‐neglected role of habitat connectivity as a key component of the fragmentation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号