首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
2.
Populations of organisms routinely face abiotic selection pressures, and a central goal of evolutionary biology is to understand the mechanistic underpinnings of adaptive phenotypes. Ultraviolet radiation (UVR) is one of earth's most pervasive environmental stressors, potentially damaging DNA in any organism exposed to solar radiation. We explored mechanisms underlying differential survival following UVR exposure in genotypes of the water flea Daphnia melanica derived from natural ponds of differing UVR intensity. The UVR tolerance of a D. melanica genotype from a high‐UVR habitat depended on the presence of visible and UV‐A light wavelengths necessary for photoenzymatic repair of DNA damage, a repair pathway widely shared across the tree of life. We then measured the acquisition and repair of cyclobutane pyrimidine dimers, the primary form of UVR‐caused DNA damage, in D. melanica DNA following experimental UVR exposure. We demonstrate that genotypes from high‐UVR habitats repair DNA damage faster than genotypes from low‐UVR habitats in the presence of visible and UV‐A radiation necessary for photoenzymatic repair, but not in dark treatments. Because differences in repair rate only occurred in the presence of visible and UV‐A radiation, we conclude that differing rates of DNA repair, and therefore differential UVR tolerance, are a consequence of variation in photoenzymatic repair efficiency. We then rule out a simple gene expression hypothesis for the molecular basis of differing repair efficiency, as expression of the CPD photolyase gene photorepair did not differ among D. melanica lineages, in both the presence and absence of UVR.  相似文献   

3.
Oxidatively damaged DNA precursors (deoxyribonucleotides) are formed by reactive oxygen species. After the damaged DNA precursors are incorporated into DNA, they might be removed by DNA repair enzymes. In this study, to examine whether a nucleotide excision repair enzyme, Escherichia coli UvrABC, could suppress the mutations induced by oxidized deoxyribonucleotides in vivo, oxidized DNA precursors, 8-hydroxy-2′-deoxyguanosine 5′-triphosphate and 2-hydroxy-2′-deoxyadenosine 5′-triphosphate, were introduced into uvrA, uvrB, and uvrC E. coli strains, and mutations in the chromosomal rpoB gene were analyzed. Unexpectedly, these oxidized DNA precursors induced mutations only slightly in the uvrA and uvrB strains. In contrast, effect of the uvrC-deficiency was not observed. Next, mutT, mutT/uvrA, and mutT/uvrB E. coli strains were treated with H2O2, and the rpoB mutant frequencies were calculated. The frequency of the H2O2-induced mutations was increased in all of the strains tested; however, the increase was three- to four-fold lower in the mutT/uvrA and mutT/uvrB strains than in the mutT strain. Thus, UvrA and UvrB are involved in the enhancement, but not in the suppression, of the mutations induced by these oxidized deoxyribonucleotides. These results suggest a novel role for UvrA and UvrB in the processing of oxidative damage.  相似文献   

4.
Within the vast oceanic gyres, a significant fraction of the total chlorophyll belongs to the light-harvesting antenna systems of a single genus, Prochlorococcus. This organism, discovered only about 10 years ago, is an extremely small, Chl b-containing cyanobacterium that sometimes constitutes up to 50% of the photosynthetic biomass in the oceans. Various Prochlorococcus strains are known to have significantly different conditions for optimal growth and survival. Strains which dominate the surface waters, for example, have an irradiance optimum for photosynthesis of 200 μmol photons m−2 s−1, whereas those that dominate the deeper waters photosynthesize optimally at 30–50 μmol photons m−2 s−1. These high and low light adapted ‘ecotypes’ are very closely related — less than 3% divergent in their 16S rRNA sequences — inviting speculation as to what features of their photosynthetic mechanisms might account for the differences in photosynthetic performance. Here, we compare information obtained from the complete genome sequences of two Prochlorococcus strains, with special emphasis on genes for the photosynthetic apparatus. These two strains, Prochlorococcus MED4 and MIT 9313, are representatives of high- and low-light adapted ecotypes, characterized by their low or high Chl b/a ratio, respectively. Both genomes appear to be significantly smaller (1700 and 2400 kbp) than those of other cyanobacteria, and the low-light-adapted strain has significantly more genes than its high light counterpart. In keeping with their comparative light-dependent physiologies, MED4 has many more genes encoding putative high-light-inducible proteins (HLIP) and photolyases to repair UV-induced DNA damage, whereas MIT 9313 possesses more genes associated with the photosynthetic apparatus. These include two pcb genes encoding Chl-binding proteins and a second copy of the gene psbA, encoding the Photosystem II reaction center protein D1. In addition, MIT 9313 contains a gene cluster to produce chromophorylated phycoerythrin. The latter represents an intermediate form between the phycobiliproteins of non-Chl b containing cyanobacteria and an extremely modified β phycoerythrin as the sole derivative of phycobiliproteins still present in MED4. Intriguing features found in both Prochlorococcus strains include a gene cluster for Rubisco and carboxysomal proteins that is likely of non-cyanobacterial origin and two genes for a putative and β lycopene cyclase, respectively, explaining how Prochlorococcus may synthesize the α branch of carotenoids that are common in green organisms but not in other cyanobacteria. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
Postreplication repair in Neurospora crassa   总被引:1,自引:0,他引:1  
Summary Changes in the molecular weight of nascent DNA made after ultraviolet (UV) irradiation have been studied in the excision-defective Neurospora mutant uvs-2 using isotopic pulse labeling, alkaline gradient centrifugation and alkaline filter elution. Both the size of nascent DNA and the rate of incorporation of label into DNA was reduced by UV light in a dose dependent manner. However, this DNA repair mutant did recover the ability to synthesize control-like high molecular weight DNA 3 hours after UV treatment, although the rate of DNA synthesis remained depressed after the temporary block to elongation (or ligation) had been overcome. Photoreactivation partially eliminated the depression of DNA synthesis rate and UV light killing of cells, providing strong evidence that the effects on DNA synthesis and killing were caused by pyrimidine cyclobutane dimers. The caffeine inhibition repair studies performed were difficult to quantitate but did suggest either partial inhibition of a single repair pathway or alternate postreplication DNA repair pathways in Neurospora. No enhancement in killing was detected after UV irradiation when cells were grown on caffeine containing plates.  相似文献   

6.
《Mutation research》1987,179(2):143-149
Ultraviolet light (UV) induced mutations in the lacI gene of Escherichia coli are thought to be targeted by DNA photoproducts. A number of reports suggest that both cyclobutyl pyrimidine dimers and pyrimidine (6−4) pyrimidone photoproducts may be involved. To investigate the potential contribution of each of these DNA photoproducts to mutagenesis in the lacI gene, we held UV-irradiated cells at a temperature of 44°C for 75 min and then exposed them to photoreactivating light (PR). This protocol is expected to preferentially deaminate specifically those cytosines that are contained in cyclobutyl dimers and subsequently monomerize the dimers to yield uracils in the DNA. In a strain deficient for uracil-DNA glycosylase (Ung), these uracils would not be removed and a G : C → A : T transition would result at the site of the dimer. This protocol resulted in the enhancement of amber nonsense mutations that result from transitions at potential cytosine-containing dimer sites. The enhanced mutation frequencies resulting from this procedure were used to estimate the probability of dimer formation at the individual sites. A comparison of the dimer distribution with the mutation frequencies following UV alone suggests that both cyclobutyl dimers and (6−4) photoproducts contribute to UV-mutagenesis in the lacI gene. In addition, we conclude that the frequency of mutation at any particular site not only reflects the occurrence of DNA damage, but also the action of metabolic processes that are responsible for DNA repair and mutagenesis.  相似文献   

7.
UV inactivation, photoreactivation, and dark repair of Escherichia coli and Cryptosporidium parvum were investigated with the endonuclease sensitive site (ESS) assay, which can determine UV-induced pyrimidine dimers in the genomic DNA of microorganisms. In a 99.9% inactivation of E. coli, high correlation was observed between the dose of UV irradiation and the number of pyrimidine dimers induced in the DNA of E. coli. The colony-forming ability of E. coli also correlated highly with the number of pyrimidine dimers in the DNA, indicating that the ESS assay is comparable to the method conventionally used to measure colony-forming ability. When E. coli were exposed to fluorescent light after a 99.9% inactivation by UV irradiation, UV-induced pyrimidine dimers in the DNA were continuously repaired and the colony-forming ability recovered gradually. When kept in darkness after the UV inactivation, however, E. coli showed neither repair of pyrimidine dimers nor recovery of colony-forming ability. When C. parvum were exposed to fluorescent light after UV inactivation, UV-induced pyrimidine dimers in the DNA were continuously repaired, while no recovery of animal infectivity was observed. When kept in darkness after UV inactivation, C. parvum also showed no recovery of infectivity in spite of the repair of pyrimidine dimers. It was suggested, therefore, that the infectivity of C. parvum would not recover either by photoreactivation or by dark repair even after the repair of pyrimidine dimers in the genomic DNA.  相似文献   

8.
AdeC is a Chinese hamster ovary cell line auxotrophic for purines because of a mutation in the de novo synthetic pathway. We now show that, in the absence of exogenous hypoxanthine, replicative DNA synthesis is rapidly shut down. Various aspects of DNA repair have been studied in purine-starved cells. Incision, the first step of excision repair of UV damage, appears normal, as do the later steps, repair synthesis (demonstrated following chemical damage as well as UV-irradiation) and ligation. However, removal of UV-induced pyrimidine dimers is not detected, and it seems that the repair that occurs is aberrant. This behaviour is associated with an increase in cell killing by UV light, and a several-fold increase in the frequency of mutations induced by UV.  相似文献   

9.
The induction of cyclobutane pyrimidine dimers (CPDs) by ultraviolet‐B radiation (UV‐B, 280–315 nm) and repair mechanisms were studied in the lichen Cladonia arbuscula ssp. mitis exposed to different temperatures and water status conditions. In addition, the development and repair of CPDs were studied in relation to the different developmental stages of the lichen thallus podetial branches. Air‐dried lichen thalli exposed to UV‐B radiation combined with relatively high visible light (HL, 800 μmol m?2 s?1; 400–700 nm) for 7 days showed a progressive increase of CPDs with no substantial repair, although HL was present during and after irradiation with UV‐B. Fully hydrated lichen thalli, that had not been previously exposed to UV‐B radiation for 7 days, were given short‐term UV‐B radiation treatment at 25°C, and accumulated DNA lesions in the form of CPDs, with repair occurring when they were exposed to photoreactivating conditions (2 h of 300 μmol m?2 s?1, 400–700 nm). A different pattern was observed when fully hydrated thalli were exposed to short‐term UV‐B radiation at 2°C, in comparison with exposure at 25°C. High levels of CPDs were induced at 2°C under UV‐B irradiation, without significant repair under subsequent photoreactivating light. Likewise, when PAR (300 μmol m?2 s?1) and UV‐B radiation were given simultaneously, the CPD levels were not lowered. Throughout all experiments the youngest, less differentiated parts of the lichen thallus – namely ‘tips’, according to our arbitrary subdivision – were the parts showing the highest levels of CPD accumulation and the lowest levels of repair in comparison with the older thallus tissue (‘stems’). Thus the experiments showed that Cladonia arbuscula ssp. mitis is sensitive to UV‐B irradiation in the air‐dried state and is not able to completely repair the damage caused by the radiation. Furthermore, temperature plays a role in the DNA damage repairing capacity of this lichen, since even when fully hydrated, C. arbuscula ssp. mitis did not repair DNA damage at the low temperatures.  相似文献   

10.
Summary The ruv operon of Escherichia coli consists of two genes, orfl1 and ruv, which encode 22 and 37 kilodalton proteins, respectively, and are regulated by the SOS system. Although the distal gene, ruv, is known to be involved in DNA repair, the function of orf1 has not been studied. To examine whether orf1 is also involved in DNA repair, we constructed a strain with a deletion of the entire ruv operon. The strain was sensitive to UV even after introduction of low copy number plasmids carrying either orf1 or ruv, but UV resistance was restored by introduction of a plasmid carrying both orfl and ruv. These results suggest that orf1 as well as ruv is involved in DNA repair. Therefore, orf1 and ruv should be renamed ruvA and ruvB, respectively.  相似文献   

11.
The ecosystems of Tierra del Fuego (in southern Patagonia, Argentina) are seasonally exposed to elevated levels of ultraviolet‐B radiation (UV‐B: 280–315 nm), due to the passage of the ‘ozone hole’ over this region. In the experiments reported in this article the effects of solar UV‐B and UV‐A (315–400 nm) on two UV‐B defence‐related processes: the accumulation of protective UV‐absorbing compounds and DNA repair, were tested. It was found that the accumulation of UV‐absorbing sunscreens in Gunnera magellanica leaves was not affected by plant exposure to ambient UV radiation. Photorepair was the predominant mechanism of cyclobutane‐pyrimidine dimer (CPD) removal in G. magellanica. Plants exposed to solar UV had higher CPD repair capacity under optimal conditions of temperature (25 °C) than plants grown under attenuated UV. There was no measurable repair at 8 °C. The rates of CPD repair in G. magellanica plants were modest in comparison with other species and, under equivalent conditions, were about 50% lower than the repair rates of Arabidopsis thaliana (Ler ecotype). Collectively our results suggest that the susceptibility of G. magellanica plants to current ambient levels of solar UV‐B in southern Patagonia may be related to a low DNA repair capacity.  相似文献   

12.
Summary Cells defective in uracil-DNA glycosylase (ung:: Tn10) were used in two ways to reveal differences in select point mutations (GC to AT transitions) within the seven-tRNA operon of E. coli. The mutations were indicated as de novo or converted glutamine tRNA suppressor mutations in the genes glnU and/or glnV: (1) the kinetics of photoenzymatic monomerization of pyrimidine dimers quantitated by ung-dependent UV mutagenesis indicated more rapid repair of dimers at sites for converted suppressor mutation than of dimers at sites for de novo suppressor mutation, and (2) spontaneous deamination of cytosine was considerably more frequent at sites for converted suppressor mutation than at sites for de novo suppressor mutation. To explain these results we suggest the physical structure of the DNA in vivo is different at different sites in the seven-tRNA operon. The non-transcribed strand including specifically the anticodon region of the site for converted suppressor mutation may frequently be looped out in a single strand so that a T=C dimer is more accessible to DNA photolyase or a free cytosine residue of non-irradiated DNA is in an aqueous environment conducive to deamination. In addition, we analysed the spontaneous de novo suppressor mutation data to determine an estimate for the in vivo rate of cytosine deamination in double strand DNA of 3.2×1013/sec.  相似文献   

13.
The effect of a 12:12-h light:dark (LD) cycle on the phasing of several cell parameters was explored in a variety of marine picophytoplanktonic strains. These included the photosynthetic prokaryotes Prochlorococcus (strains MED 4, PCC 9511, and SS 120) and Synechococcus (strains ALMO 03, ROS 04, WH 7803, and WH 8103) and five picoeukaryotes (Bathycoccus prasinos Eikrem et Throndsen, Bolidomonas pacifica Guillou et Chrétiennot-Dinet, Micromonas pusilla Manton et Parke, Pelagomonas calceolata Andersen et Saunders, and Pycnococcus provasolii Guillard et al.). Flow cytometric analysis was used to determine the relationship between cell light scatter, pigment fluorescence, DNA (when possible), and the LD cycle in these organisms. As expected, growth and division were tightly coupled to the LD cycle for all of these strains. For both Prochlorococcus and picoeukaryotes, chl and intracellular carbon increased throughout the light period as estimated by chl fluorescence and light scatter, respectively. In response to cell division, these parameters decreased regularly during the early part of the dark period, a decrease that either continued throughout the dark period or stopped for the second half of the dark period. For Synechococcus, the decrease of chl and scatter occurred earlier (in the middle of the light period), and for some strains these cellular parameters remained constant throughout the dark period. The timing of division was very similar for all picoeukaryotes and occurred just before the subjective dusk, whereas it was more variable between the different Prochlorococcus and Synechococcus strains. The burst of division for Prochlorococcus SS 120 and PCC 9511 was recorded at the subjective dusk, whereas the MED 4 strain divided later at night. Synechococcus ALMO 03, ROS 04, and WH 7803, which have a low phycourobilin to phycoerythrobilin (PUB:PEB) ratio, divided earlier, and their division was restricted to the light period. In contrast, the high PUB:PEB Synechococcus strain WH 8103 divided preferentially at night. There was a weak linear relationship between the FALSmax:FALSmin ratio and growth rate calculated from cell counts (r = 0.83, n = 11, P < 0.05). Because of the significance of picoplanktonic populations in marine systems, these results should help to interpret diel variations in oceanic optical properties in regions where picoplankton dominates.  相似文献   

14.
Summary A radiation-sensitive mutant, TW8(radC), of Dictyostelium discoideum is more sensitive to ultraviolet light (UV) killing than the parental wild strain NC4(RAD +), but is resistant to 4-nitroquinoline 1-oxide (4NQO) at almost the same level as NC4. In TW8 amoebae, single-strand breaks of DNA molecules were hardly detectable immediately after UV irradiation, and the removal of pyrimidine dimers was depressed during the postirradiation incubation when compared with that of NC4 amoebae. After treatment with 4NQO, however, single-strand breaks were detected in TW8 amoebae. The almost complete rejoining of these breaks was also detected after the removal of 4HAQO-adducts. The TW8 amoebae have an efficient repair capacity against DNA damage caused by 4NQO, MMS, MMC and MNNG but not UV.Abbreviations 4NQO 4-nitroquinoline 1-oxide - MMS methyl methanesulphonate - MMC mitomycin C - MNNG N-methyl-N-nitro-N-nitrosoguanidine  相似文献   

15.
Reactive oxygen species induce oxidative damage in DNA precursors, i.e. dNTPs, leading to point mutations upon incorporation. Escherichia coli mutT strains, deficient in the activity hydrolysing 8‐oxo‐7,8‐dihydro‐2′‐deoxyguanosine 5′‐triphosphate (8‐oxo‐dGTP), display more than a 100‐fold higher spontaneous mutation frequency over the wild‐type strain. 8‐oxo‐dGTP induces A to C transversions when misincorporated opposite template A. Here, we report that DNA pol III incorporates 8‐oxo‐dGTP ≈ 20 times more efficiently opposite template A compared with template C. Single, double or triple deletions of pol I, pol II, pol IV or pol V had modest effects on the mutT mutator phenotype. Only the deletion of all four polymerases led to a 70% reduction of the mutator phenotype. While pol III may account for nearly all 8‐oxo‐dGTP incorporation opposite template A, it only extends ≈ 30% of them, the remaining 70% being extended by the combined action of pol I, pol II, pol IV or pol V. The unique property of pol III, a C‐family DNA polymerase present only in eubacteria, to preferentially incorporate 8‐oxo‐dGTP opposite template A during replication might explain the high spontaneous mutation frequency in E. coli mutT compared with the mammalian counterparts lacking the 8‐oxo‐dGTP hydrolysing activities.  相似文献   

16.
17.
Mutagenesis induced by bacterial UmuDC proteins and their plasmid homologues   总被引:19,自引:1,他引:18  
The popular image of a world full of pollutants mutating DNA is only partly true since there are relatively few agents which can subtly and directly change base coding; for example, some alkylating agents alter guanine so that it pairs like adenine. Many more mutagens are less subtle and simply destroy coding altogether rather than changing it. Such mutagens include ultraviolet light, X-rays, DNA cross-linkers and other agents which make DNA breaks or large adducts. In Escherichia coli, mutagenesis by these agents occurs during a DNA repair process which increases cell survival but with an inherent possibility of changing the original sequence. Such mutagenic DNA repair is, in part, encoded by the E. coli umuDC operon. This article reviews the structure, function, regulation and evolution of the umuDC operon and similar genes found both in other species and on naturally occurring plasmids.  相似文献   

18.

Background  

Previous studies have suggested that variations in DNA repair genes of W-Beijing strains may have led to transient mutator phenotypes which in turn may have contributed to host adaptation of this strain family. Single nucleotide polymorphism (SNP) in the DNA repair gene mutT1 was identified in MDR-prone strains from the Central African Republic. A Mycobacteriumtuberculosis H37Rv mutant inactivated in two DNA repair genes, namely ada/alkA and ogt, was shown to display a hypermutator phenotype. We then looked for polymorphisms in these genes in Central African Republic strains (CAR).  相似文献   

19.
Chloroplast DNA (cpDNA) encodes essential genes for chloroplast functions, including photosynthesis. Homologous recombination occurs frequently in cpDNA; however, its significance and underlying mechanism remain poorly understood. In this study, we analyzed the role of a nuclear‐encoded chloroplast‐localized homolog of RecA recombinase, which is a key factor in homologous recombination in bacteria, in the moss Physcomitrella patens. Complete knockout (KO) of the P. patens chloroplast RecA homolog RECA2 caused a modest growth defect and conferred sensitivity to methyl methanesulfonate and UV. The KO mutant exhibited low recovery of cpDNA from methyl methanesulfonate damage, suggesting that RECA2 knockout impairs repair of damaged cpDNA. The RECA2 KO mutant also exhibited reduced cpDNA copy number and an elevated level of cpDNA molecule resulting from aberrant recombination between short dispersed repeats (13–63 bp), indicating that the RECA2 KO chloroplast genome was destabilized. Taken together, these data suggest a dual role for RECA2 in the maintenance of chloroplast genome stability: RECA2 suppresses aberrant recombination between short dispersed repeats and promotes repair of damaged DNA.  相似文献   

20.
Prototrophic aneuploid and euploid derivatives of wild type Candida albicans strain 207 were produced by fusing protoplasts of complementing auxotrophs obtained from strain 207. Comparisons of cell survivals and incidences of mitotic recombinants ocurring after ultraviolet irradiation (UV) of these strains indicate that (i) aneuploids are categorically less efficient than euploids for repair of pyrimidine dimers induced in DNA by UV and that (ii) such repair is enhanced by growing irradiated cells at 25° C, on minimal medium or in the presence of ergosterol rather than at 37° C, on amino acid enriched medium or medium unsupplemented with ergosterol. In addition, the comparisons establish than one cannot discriminate between strains of C. albicans which differ in cellular DNA contents or genomic constitutions on the basis of their UV survival curves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号