首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The enzymatic oxidation of Fe(II) by nitrate‐reducing bacteria was first suggested about two decades ago. It has since been found that most strains are mixotrophic and need an additional organic co‐substrate for complete and prolonged Fe(II) oxidation. Research during the last few years has tried to determine to what extent the observed Fe(II) oxidation is driven enzymatically, or abiotically by nitrite produced during heterotrophic denitrification. A recent study reported that nitrite was not able to oxidize Fe(II)‐EDTA abiotically, but the addition of the mixotrophic nitrate‐reducing Fe(II)‐oxidizer, Acidovorax sp. strain 2AN, led to Fe(II) oxidation (Chakraborty & Picardal, 2013). This, along with other results of that study, was used to argue that Fe(II) oxidation in strain 2AN was enzymatically catalyzed. However, the absence of abiotic Fe(II)‐EDTA oxidation by nitrite reported in that study contrasts with previously published data. We have repeated the abiotic and biotic experiments and observed rapid abiotic oxidation of Fe(II)‐EDTA by nitrite, resulting in the formation of Fe(III)‐EDTA and the green Fe(II)‐EDTA‐NO complex. Additionally, we found that cultivating the Acidovorax strains BoFeN1 and 2AN with 10 mm nitrate, 5 mm acetate, and approximately 10 mm Fe(II)‐EDTA resulted only in incomplete Fe(II)‐EDTA oxidation of 47–71%. Cultures of strain BoFeN1 turned green (due to the presence of Fe(II)‐EDTA‐NO) and the green color persisted over the course of the experiments, whereas strain 2AN was able to further oxidize the Fe(II)‐EDTA‐NO complex. Our work shows that the two used Acidovorax strains behave very differently in their ability to deal with toxic effects of Fe‐EDTA species and the further reduction of the Fe(II)‐EDTA‐NO nitrosyl complex. Although the enzymatic oxidation of Fe(II) cannot be ruled out, this study underlines the importance of nitrite in nitrate‐reducing Fe(II)‐ and Fe(II)‐EDTA‐oxidizing cultures and demonstrates that Fe(II)‐EDTA cannot be used to demonstrate unequivocally the enzymatic oxidation of Fe(II) by mixotrophic Fe(II)‐oxidizers.  相似文献   

2.
Neutrophilic, microaerobic Fe(II)‐oxidizing bacteria (FeOB) from marine and freshwater environments are known to generate twisted ribbon‐like organo‐mineral stalks. These structures, which are extracellularly precipitated, are susceptible to chemical influences in the environment once synthesized. In this paper, we characterize the minerals associated with freshwater FeOB stalks in order to evaluate key organo‐mineral mechanisms involved in biomineral formation. Micro‐Raman spectroscopy and Field Emission Scanning Electron Microscopy revealed that FeOB isolated from drinking water wells in Sweden produced stalks with ferrihydrite, lepidocrocite and goethite as main mineral components. Based on our observations made by micro‐Raman Spectroscopy, field emission scanning electron microscopy and scanning transmission electron microscope combined with electron energy‐loss spectroscopy, we propose a model that describes the crystal‐growth mechanism, the Fe‐oxidation state, and the mineralogical state of the stalks, as well as the biogenic contribution to these features. Our study suggests that the main crystal‐growth mechanism in stalks includes nanoparticle aggregation and dissolution/re‐precipitation reactions, which are dominant near the organic exopolymeric material produced by the microorganism and in the peripheral region of the stalk, respectively.  相似文献   

3.
The dissimilatory Fe(III)-reducing bacterium Geobacter sulfurreducens reduced and precipitated Tc(VII) by two mechanisms. Washed cell suspensions coupled the oxidation of hydrogen to enzymatic reduction of Tc(VII) to Tc(IV), leading to the precipitation of TcO(2) at the periphery of the cell. An indirect, Fe(II)-mediated mechanism was also identified. Acetate, although not utilized efficiently as an electron donor for direct cell-mediated reduction of technetium, supported the reduction of Fe(III), and the Fe(II) formed was able to transfer electrons abiotically to Tc(VII). Tc(VII) reduction was comparatively inefficient via this indirect mechanism when soluble Fe(III) citrate was supplied to the cultures but was enhanced in the presence of solid Fe(III) oxide. The rate of Tc(VII) reduction was optimal, however, when Fe(III) oxide reduction was stimulated by the addition of the humic analog and electron shuttle anthaquinone-2,6-disulfonate, leading to the rapid formation of the Fe(II)-bearing mineral magnetite. Under these conditions, Tc(VII) was reduced and precipitated abiotically on the nanocrystals of biogenic magnetite as TcO(2) and was removed from solution to concentrations below the limit of detection by scintillation counting. Cultures of Fe(III)-reducing bacteria enriched from radionuclide-contaminated sediment using Fe(III) oxide as an electron acceptor in the presence of 25 microM Tc(VII) contained a single Geobacter sp. detected by 16S ribosomal DNA analysis and were also able to reduce and precipitate the radionuclide via biogenic magnetite. Fe(III) reduction was stimulated in aquifer material, resulting in the formation of Fe(II)-containing minerals that were able to reduce and precipitate Tc(VII). These results suggest that Fe(III)-reducing bacteria may play an important role in immobilizing technetium in sediments via direct and indirect mechanisms.  相似文献   

4.
Peatlands are sources of relevant greenhouse gases such as CH4, but the temporal presence of Fe(III) may inhibit methanogenesis. Because excess of carbon during the vegetation period might allow concomitant electron-accepting processes, Fe(III) reduction and methanogenesis were studied during an annual season in an acidic fen. The upper peat layer displayed the highest Fe(II)- and CH4-forming activities. The rates of Fe(II) formation did not change during the year and methanogenesis started mostly when Fe(II) formation reached a plateau. Most of the Fe(III) pool seemed to be bioavailable, and addition of nitrilotriacetic acid stimulated only light Fe(II) formation, whereas EDTA and anthraquinone-2,6-disulfonate had no effect. In the presence of an inhibitor for methanogenesis (sodium 2-bromoethanesulfonate), Fe(II) formation was inhibited to 45%. Addition of Fe(III) during ongoing methanogenesis led only to a partial inhibition of CH4 formation. The proportion of acetoclastic methanogenesis varied between 42% and 90%, but no trend with time was observed. The number of acetate-, ethanol- or lactate-utilizing Fe(III) reducers approximated 10(5)-10(6) cells g (fresh wt peat)(-1). Fermentative glucose-utilizing Fe(III)-reducers were most abundant. Our results suggest that (1) methanogens used Fe(III) as an electron acceptor and (2) fermenting bacteria, which do not compete with methanogens for common electron donors, dominated the reduction of Fe(III) in this fen.  相似文献   

5.
6.
Iron (Fe)‐oxidizing bacteria have the potential to produce morphologically unique structures that may be used as biosignatures in geological deposits. One particular example is Mariprofundus ferrooxydans, which produces extracellular twisted ribbon‐like stalks consisting of ferrihydrite, co‐located with organic and inorganic elements. It is currently thought that M. ferrooxydans excrete and co‐precipitate polysaccharides and Fe simultaneously; however, the cellular production of these polysaccharides has yet to be confirmed. Here, we report on a time‐series study that used scanning transmission X‐ray microscopy and C 1s and Ca 2p near‐edge X‐ray adsorption fine structure spectroscopy to investigate production of polysaccharides over the growth cycle of M. ferrooxydans. The production and morphology of twisted iron stalks were consistent with previous observations, but unexpectedly, in the log phase, the carbon content of the stalks was extremely low. It was not until stationary growth phase that a significant component of carbon was detected on the stalks. During the log phase, low levels of carbon, only detectable when the stalks were thin, suggested that M. ferrooxydans produce an extracellular polysaccharide template onto which the Fe precipitates. By stationary phase, the increased carbon association with the stalks was a result of adsorption of organic compounds that were released during osmotic shock post‐stalk production. In the environment, elevated concentrations of DOC could adsorb onto the Fe stalks as well as a number of other elements, for example, Si, P, Ca, which, by preventing chemical interactions between the Fe nanoparticles, will prevent structural deformation during recrystallization and preserve the structure of these filaments in the rock record.  相似文献   

7.
嗜中性微好氧铁氧化菌研究进展   总被引:6,自引:0,他引:6  
林超峰  龚骏 《生态学报》2012,32(18):5889-5899
在弱酸至近中性微氧条件下,嗜中性微好氧铁氧化菌能够通过依赖氧气的呼吸机制将二价亚铁氧化成三价铁,并获得生长所需能量。这一生物铁氧化过程的主要产物之一是无定形羟基氧化铁——一种异化铁还原作用(铁呼吸)的理想底物,故可加速铁元素在氧化还原分界层的地质循环。有关嗜中性微好氧铁氧化菌的记载可追溯到19世纪30年代,但对其生理、生态与系统发育学的研究自20世纪90年代中期才取得显著进展,主要得益于专性铁氧化菌新种、属的成功培养与分离。已知微好氧铁氧化菌广泛分布于弱酸及近中性富铁地下水、湿地和深海等环境,其参与调控的铁氧化过程对铁及其他元素(如碳、氮、磷、锰和砷等)的生物地球化学循环具有重要意义。这类古老微生物在金属成矿、地壳演变、全球气候变化及其它生源要素地球化学过程中的作用研究已逐渐受到关注,正成为地质与环境微生物学领域的研究热点。主要总结国外近15a对嗜中性微好氧铁氧化菌的研究进展,包括其代谢机理、种类和分布、生态学研究方法和技术、以及细菌铁氧化作用的实际应用和环境意义等,并对今后研究方向提出展望。  相似文献   

8.
Despite the historical and economic significance of banded iron formations (BIFs), we have yet to resolve the formation mechanisms. On modern Earth, neutrophilic microaerophilic Fe‐oxidizing micro‐organisms (FeOM) produce copious amounts of Fe oxyhydroxides, leading us to wonder whether similar organisms played a role in producing BIFs. To evaluate this, we review the current knowledge of modern microaerophilic FeOM in the context of BIF paleoenvironmental studies. In modern environments wherever Fe(II) and O2 co‐exist, microaerophilic FeOM proliferate. These organisms grow in a variety of environments, including the marine water column redoxcline, which is where BIF precursor minerals likely formed. FeOM can grow across a range of O2 concentrations, measured as low as 2 μm to date, although lower concentrations have not been tested. While some extant FeOM can tolerate high O2 concentrations, many FeOM appear to prefer and thrive at low O2 concentrations (~3–25 μm ). These are similar to the estimated dissolved O2 concentrations in the few hundred million years prior to the ‘Great Oxidation Event’ (GOE). We compare biotic and abiotic Fe oxidation kinetics in the presence of varying levels of O2 and show that microaerophilic FeOM contribute substantially to Fe oxidation, at rates fast enough to account for BIF deposition. Based on this synthesis, we propose that microaerophilic FeOM were capable of playing a significant role in depositing the largest, most well‐known BIFs associated with the GOE, as well as afterward when global O2 levels increased.  相似文献   

9.
Manganese (II) and manganese‐oxidizing bacteria were used as an efficient biological system for the degradation of the xenoestrogen 17α‐ethinylestradiol (EE2) at trace concentrations. Mn2+‐derived higher oxidation states of Mn (Mn3+, Mn4+) by Mn2+‐oxidizing bacteria mediate the oxidative cleavage of the polycyclic target compound EE2. The presence of manganese (II) was found to be essential for the degradation of EE2 by Leptothrix discophora, Pseudomonas putida MB1, P. putida MB6 and P. putida MB29. Mn2+‐dependent degradation of EE2 was found to be a slow process, which requires multi‐fold excess of Mn2+ and occurs in the late stationary phase of growth, implying a chemical process taking place. EE2‐derived degradation products were shown to no longer exhibit undesirable estrogenic activity.  相似文献   

10.
The rate of oxidation of Fe(II) by atmospheric oxygen at pH 7.0 is significantly enhanced by low molecular weight Fe(III)-complexing agents in the order EDTA ≈ nitrilotriacetate > citrate > phosphate > oxalate. This simple effect of Fe(III) binding probably accounts for the “ferroxidase” activity exhibited by transferrin and ferritin.  相似文献   

11.
The discovery that all hyperthermophiles that have been evaluated have the capacity to reduce Fe(III) has raised the question of whether mechanisms for dissimilatory Fe(III) reduction have been conserved throughout microbial evolution. Many studies have suggested that c-type cytochromes are integral components in electron transport to Fe(III) in mesophilic dissimilatory Fe(III)-reducing microorganisms. However, Pyrobaculum islandicum, the hyperthermophile in which Fe(III) reduction has been most intensively studied, did not contain c-type cytochromes. NADPH was a better electron donor for the Fe(III) reductase activity in P. islandicum than NADH. This is the opposite of what has been observed with mesophiles. Thus, if previous models for dissimilatory Fe(III) reduction by mesophilic bacteria are correct, then it is unlikely that a single strategy for electron transport to Fe(III) is present in all dissimilatory Fe(III)-reducing microorganisms.  相似文献   

12.
Iron plaque occurs on the roots of most wetland and submersed aquatic plant species and is a large pool of oxidized Fe(III) in some environments. Because plaque formation in wetlands with circumneutral pH has been largely assumed to be an abiotic process, no systematic effort has been made to describe plaque-associated microbial communities or their role in plaque deposition. We hypothesized that Fe(II)-oxidizing bacteria (FeOB) and Fe(III)-reducing bacteria (FeRB) are abundant in the rhizosphere of wetland plants across a wide range of biogeochemical environments. In a survey of 13 wetland and aquatic habitats in the Mid-Atlantic region, FeOB were present in the rhizosphere of 92% of the plant specimens collected (n = 37), representing 25 plant species. In a subsequent study at six of these sites, bacterial abundances were determined in the rhizosphere and bulk soil using the most probable number technique. The soil had significantly more total bacteria than the roots on a dry mass basis (1.4 × 109 cells/g soil vs. 8.6 × 107 cells/g root; p < 0.05). The absolute abundance of aerobic, lithotrophic FeOB was higher in the soil than in the rhizosphere (3.7 × 106/g soil vs. 5.9 × 105/g root; p < 0.05), but there was no statistical difference between these habitats in terms of relative abundance (1% of the total cell number). In the rhizosphere, FeRB accounted for an average of 12% of all bacterial cells while in the soil they accounted for < 1% of the total bacteria. We concluded that FeOB are ubiquitous and abundant in wetland ecosystems, and that FeRB are dominant members of the rhizosphere microbial community. These observations provide a strong rationale for quantifying the contribution of FeOB to rhizosphere Fe(II) oxidation rates, and investigating the combined role of FeOB and FeRB in a rhizosphere iron cycle.  相似文献   

13.
Mariprofundus ferrooxydans PV-1 has provided the first genome of the recently discovered Zetaproteobacteria subdivision. Genome analysis reveals a complete TCA cycle, the ability to fix CO(2), carbon-storage proteins and a sugar phosphotransferase system (PTS). The latter could facilitate the transport of carbohydrates across the cell membrane and possibly aid in stalk formation, a matrix composed of exopolymers and/or exopolysaccharides, which is used to store oxidized iron minerals outside the cell. Two-component signal transduction system genes, including histidine kinases, GGDEF domain genes, and response regulators containing CheY-like receivers, are abundant and widely distributed across the genome. Most of these are located in close proximity to genes required for cell division, phosphate uptake and transport, exopolymer and heavy metal secretion, flagellar biosynthesis and pilus assembly suggesting that these functions are highly regulated. Similar to many other motile, microaerophilic bacteria, genes encoding aerotaxis as well as antioxidant functionality (e.g., superoxide dismutases and peroxidases) are predicted to sense and respond to oxygen gradients, as would be required to maintain cellular redox balance in the specialized habitat where M. ferrooxydans resides. Comparative genomics with other Fe(II) oxidizing bacteria residing in freshwater and marine environments revealed similar content, synteny, and amino acid similarity of coding sequences potentially involved in Fe(II) oxidation, signal transduction and response regulation, oxygen sensation and detoxification, and heavy metal resistance. This study has provided novel insights into the molecular nature of Zetaproteobacteria.  相似文献   

14.
Subunit heterogeneity within a particular subunit in hemoglobin A have been explored with electron paramagnetic resonance spectroscopy using the nitrosyl hemes in Ni-Fe hybrid Hb under various solution conditions. Our previous studies on the crystal structure of NiHb demonstrated the presence of subunit heterogeneity within alpha-subunit. To further cross check this hypothesis, we made a hybrid Hb in which either the alpha- or beta-subunit contains iron, which alone can bind to NO. By this way dynamic exchange between penta- and hexa-coordinated forms within a subunit was confirmed. Upon the addition of inositol hexa phosphate (IHP) to these hybrids, R to T state transition is observed for [alpha(2)(Fe-NO)beta(2)(Ni)] but such a direct transformation is less marked in [alpha(2)(Ni)beta(2)(Fe-NO)]. Hence the bond between N(epsilon) and Fe is fundamental to the structure-function relation in Hb, as the motion of this nitrogen triggers the vast transformation, which occurs in the whole molecule on attachment of NO.  相似文献   

15.
A receptor assembly composed of iron(II) triflate and pyridine‐2,6‐dicarbaldehyde was used to determine the enantiomeric excess (ee) of alpha‐chiral primary amines using circular dichroism spectroscopy. The alpha chiral amines condense with the dialdehyde to form a diimine, which forms a 2:1 octahedral complex with iron(II). The ee values of unknown concentrations of alpha‐chiral amines were determined by constructing calibration curves for each amine and then measuring the ellipticity at 600 nm. This improves our previously reported assay for ee determination of chiral primary amines by further increasing the wavelength at which CD is measured and reducing the absolute error of the assay. Chirality 27:294–298, 2015. 2015 Wiley Periodicals, Inc.  相似文献   

16.
A determination method for Co(II), Fe(II) and Cr(III) ions by luminol‐H2O2 system using chelating reagents is presented. A metal ion‐chelating ligand complex with a Co(II) ion and a chelating reagent like ethylenediaminetetraacetic acid (EDTA) produced highly enhanced chemiluminescence (CL) intensity as well as longer lifetime in the luminol‐H2O2 system compared to metals that exist as free ions. Whereas free Cu(II) and Pb(II) ions had a strong catalytic effect on the luminol‐H2O2 system, significantly, the complexes of Cu(II) and Pb(II) with chelating reagents lost their catalytic activity due to the chelating reagents acting as masking agents. Based on the observed phenomenon, it was possible to determine Co(II), Fe(II) and Cr(III) ions with enhanced sensitivity and selectivity using the chelating reagents of the luminol‐H2O2 system. The effects of ligand, H2O2 concentration, pH, buffer solution and concentrations of chelating reagents on CL intensity of the luminol‐H2O2 system were investigated and optimized for the determination of Co(II), Fe(II) and Cr(III) ions. Under optimized conditions, the calibration curve of metal ions was linear over the range of 2.0 × 10‐8 to 2.0 × 10‐5 M for Co(II), 1.0 × 10‐7 to 2.0 × 10‐5 M for Fe (II) and 2.0 × 10‐7 to 1.0 × 10‐4 M for Cr(III). Limits of detection (3σ/s) were 1.2 × 10‐8, 4.0 × 10‐8 and 1.2 × 10‐7 M for Co(II), Fe(II) and Cr(III), respectively. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
The survival of Aeromonas hydrophila AWWX1 in filter-sterilized phreatic groundwaters was studied by using viable counts. Aeromonas counts rapidly decreased 2 to 3 log units in oxidizing raw groundwaters from Snellegem and Beernem, Belgium (Snellegem-raw and Beernem-raw, respectively), containing high concentrations of Fe2+ (460 to 1,070 microM). The rapid decline in viable counts of Aeromonas cells in the oxidizing raw groundwater of Snellegem was prevented by the addition of an Fe2+ chelator (2,2'-dipyridyl) or compounds (i.e., ascorbic acid and catalase) that act on toxic oxygen species. The results suggest that free radicals, generated spontaneously in oxidizing Fe2+-containing groundwaters, caused the inactivation of A. hydrophila AWWX1. Evidence that free radicals are generated under the given conditions was provided by the observation that propylphosphonic acid, a compound which is very susceptible to radicals, was degraded upon addition to these waters. A. hydrophila PWBS, Pseudomonas fluorescens P17, Spirillum strain NOX, and heterotrophs showed decreases in culturability in filter-sterilized Snellegem-raw water similar to that shown by A. hydrophila AWWX1. These findings indicate that free radicals generated in Fe2+-containing groundwaters upon aeration are capable of inactivating various bacterial species.  相似文献   

18.
F. Hegler 《Cryobiology》2010,61(1):158-160
Preservation and storage of microbial stock cultures is desirable since the risk of contamination or loss of living cultures is immanent while over long periods mutations accumulate. Generally, it is rather difficult to preserve photosynthetic bacteria due to their sensitive photosynthetic membranes [1]. Phototrophic Fe(II)-oxidizing bacteria face an additional challenge; since they are exposed to light and Fe(II) during growth, they have to cope with radicals from Fenton reactions of Fe(II)-species, light and water. Therefore, phototrophic Fe(II)-oxidizing strains are thought to be especially susceptible to genetic modifications. Here, we provide a simple and fast protocol using glycerol as cryo-protectant to cryopreserve three strains of anoxygenic phototrophic Fe(II)-oxidizing bacteria from different taxa: α-proteobacteria, γ-proteobacteria and chloroflexi. All three strains investigated could be revived after 17 months at −72 °C. This suggests that a long-term storage of phototrophic Fe(II)-oxidizing strains is possible.  相似文献   

19.
In this report we study the effect of Fe(III) on lipid peroxidation induced by Fe(II)citrate in mitochondrial membranes, as assessed by the production of thiobarbituric acid-reactive substances and antimycin A-insensitive oxygen uptake. The presence of Fe(III) stimulates initiation of lipid peroxidation when low citrate:Fe(II) ratios are used ( 4:1). For a citrate:total iron ratio of 1:1 the maximal stimulation of lipid peroxidation by Fe(III) was observed when the Fe(II):Fe(III) ratio was in the range of 1:1 to 1:2. The lag phase that accompanies oxygen uptake was greatly diminished by increasing concentrations of Fe(III) when the citrate:total iron ratio was 1:1, but not when this ratio was higher. It is concluded that the increase of lipid peroxidation by Fe(III) is observed only when low citrate:Fe(II) ratios were used. Similar results were obtained using ATP as a ligand of iron. Monitoring the rate of spontaneous Fe(II) oxidation by measuring oxygen uptake in buffered medium, in the absence of mitochondria, Fe(III)-stimulated oxygen consumption was observed only when a low citrate:Fe(II) ratio was used. This result suggests that Fe(III) may facilitate the initiation and/or propagation of lipid peroxidation by increasing the rate of Fe(II)citrate-generated reactive oxygen species.  相似文献   

20.
Nitrate‐reducing, Fe(II)‐oxidizing bacteria were suggested to couple with enzymatic Fe(II) oxidation to nitrate reduction. Denitrification proceeds via intermediates (, NO) that can oxidize Fe(II) abiotically at neutral and particularly at acidic pH. Here, we present a revised Fe(II) quantification protocol preventing artifacts during acidic Fe extraction and evaluate the contribution of abiotic vs. enzymatic Fe(II) oxidation in cultures of the nitrate‐reducing, Fe(II) oxidizer Acidovorax sp. BoFeN1. Sulfamic acid used instead of HCl reacts with nitrite and prevents abiotic Fe(II) oxidation during Fe extraction. Abiotic experiments without sulfamic acid showed that acidification of oxic Fe(II) nitrite samples leads to 5.6‐fold more Fe(II) oxidation than in anoxic samples because the formed NO becomes rapidly reoxidized by O2, therefore leading to abiotic oxidation and underestimation of Fe(II). With our revised protocol using sulfamic acid, we quantified oxidation of approximately 7 mm of Fe(II) by BoFeN1 within 4 days. Without addition of sulfamic acid, the same oxidation was detected within only 2 days. Additionally, abiotic incubation of Fe(II) with nitrite in the presence of goethite as surface catalyst led to similar abiotic Fe(II) oxidation rates as observed in growing BoFeN1 cultures. BoFeN1 growth was observed on acetate with N2O as electron acceptor. When adding Fe(II), no Fe(II) oxidation was observed, suggesting that the absence of reactive N intermediates (, NO) precludes Fe(II) oxidation. The addition of ferrihydrite [Fe(OH)3] to acetate/nitrate BoFeN1 cultures led to growth stimulation equivalent to previously described effects on growth by adding Fe(II). This suggests that elevated iron concentrations might provide a nutritional effect rather than energy‐yielding Fe(II) oxidation. Our findings therefore suggest that although enzymatic Fe(II) oxidation by denitrifiers cannot be fully ruled out, its contribution to the observed Fe(II) oxidation in microbial cultures is probably lower than previously suggested and has to be questioned in general until the enzymatic machinery‐mediating Fe(II) oxidation is identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号