首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stoute JA 《Cellular microbiology》2011,13(10):1441-1450
Plasmodium falciparum malaria is an intracellular parasite that is transmitted by Anopheles mosquitoes. It is responsible for approximately 1 million deaths per year. Most deaths occur as a result of complications such as severe anaemia or cerebral malaria (coma). The complement receptor 1 is a key complement regulator found on the surface of red cells and most leucocytes. A growing body of evidence suggests that this molecule plays a critical role in the pathogenesis of P. falciparum malaria. Initial reports showed that CR1 enables the binding of infected red cells to uninfected red cells to form rosettes, which can potentially obstruct small capillaries. However, further evidence suggests that CR1 is also important in the control of complement activation and immune complex formation during malaria infection. Most recently, CR1 has also been shown to be a receptor for the invasion of red cells by the parasite. Its polymorphic nature almost certainly has allowed the selection of variants that have helped humankind survive the scurge of malaria. The finding of conflicting reports about the exact role of these variants in severe disease underlies the complexity of the parasite-host interactions and highlights the need for further studies.  相似文献   

2.
CD36 is a scavenger receptor that has been implicated in malaria pathogenesis as well as innate defense against blood-stage infection. Inflammatory responses to Plasmodium falciparum GPI (pfGPI) anchors are believed to play an important role in innate immune response to malaria. We investigated the role of CD36 in pfGPI-induced MAPK activation and proinflammatory cytokine secretion. Furthermore, we explored the role of this receptor in an experimental model of acute malaria in vivo. We demonstrate that ERK1/2, JNK, p38, and c-Jun became phosphorylated in pfGPI-stimulated macrophages. In contrast, pfGPI-induced phosphorylation of JNK, ERK1/2, and c-Jun was reduced in Cd36(-/-) macrophages and Cd36(-/-) macrophages secreted significantly less TNF-alpha in response to pfGPI than their wild-type counterparts. In addition, we demonstrate a role for CD36 in innate immune response to malaria in vivo. Compared with wild-type mice, Cd36(-/-) mice experienced more severe and fatal malaria when challenged with Plasmodium chabaudi chabaudi AS. Cd36(-/-) mice displayed a combined defect in cytokine induction and parasite clearance with a dysregulated cytokine response to infection, earlier peak parasitemias, higher parasite densities, and higher mortality rates than wild-type mice. These results provide direct evidence that pfGPI induces TNF-alpha secretion in a CD36-dependent manner and support a role for CD36 in modulating host cytokine response and innate control of acute blood-stage malaria infection in vivo.  相似文献   

3.
补体系统是先天免疫系统的重要组成部分,在宿主抗感染防御过程中起着关键作用.补体成分C3(complement component 3)是补体激活途径的中心成分,其通过3条补体激活途径参与免疫监督和免疫应答过程.虽然补体成分C3的基因和蛋白已在许多不同物种中被克隆和鉴定,对其基因的结构、功能和表达也进行了很多研究,但对C3分子的演化进程目前还不清楚. 本文对近年来补体成分C3系统发生进行了分析,同时对C3的结构、作用机制和功能进行了综述.  相似文献   

4.
Manipulation of host innate immune responses by the malaria parasite   总被引:2,自引:0,他引:2  
It has long been known that malaria infection causes host immune modulation by various mechanisms. However, the role of Toll-like receptors (TLRs) in mediating innate immune responses to parasite-derived components during the blood stages of malaria has only recently been described. TLRs might have an important role in pathogenesis during malaria infection, as supported by genetic analyses in mice and humans. Moreover, recent findings revealed that sporozoites can partially differentiate in lymph nodes and that liver stages induce the formation of previously unknown parasite-filled vesicles (merosomes) that could function as immune escape machinery. Elucidation of the mechanisms by which the host innate immune system responds to, and/or is manipulated by, Plasmodium infection will hopefully lead to discoveries of potential targets that will ultimately prevent and/or intervene in malaria infection.  相似文献   

5.
Although generally thought of as a T cell-driven autoimmune disease, recent studies in experimental allergic encephalomyelitis (EAE), the animal model of multiple sclerosis, suggest a significant role for innate immune mechanisms. To address the possibility that the complement system plays a central role in these diseases, we developed a transgenic mouse with astrocyte-targeted production of a soluble inhibitor of complement activation, complement receptor-related protein y (sCrry). Here, we show that sCrry transgenic mice are either fully protected against EAE or develop significantly delayed clinical signs. These results indicate that complement activation may have an essential role in the pathogenesis of the disease and that complement-mediated events may occur early during the effector phase of EAE. Furthermore, this work underscores the importance of humoral immunity in amplifying a T cell-initiated pathogenic process.  相似文献   

6.
Advances in genetics and new understanding of the molecular pathways that mediate innate and adaptive immune system activation, along with renewed focus on the role of the complement system as a mediator of inflammation, have stimulated elaboration of a scheme that might explain key mechanisms in the pathogenesis of systemic lupus erythematosus. Clinical observations identifying important comorbidities in patients with lupus have been a recent focus of research linking immune mechanisms with clinical manifestations of disease. While these advances have identified rational and promising targets for therapy, so far the therapeutic trials of new biologic agents have not met their potential. Nonetheless, progress in understanding the underlying immunopathogenesis of lupus and its impact on clinical disease has accelerated the pace of clinical research to improve the outcomes of patients with systemic lupus erythematosus.  相似文献   

7.
The complement system defences against pathogenic microbes and modulates immune homeostasis by interacting with the innate and adaptive immune systems. Dysregulation, impairment or inadvertent activation of complement system contributes to the pathogenesis of some autoimmune diseases and cardiovascular diseases (CVD). Vascular calcification is the pivotal pathological basis of CVD, and contributes to the high morbidity and mortality of CVD. Increasing evidences indicate that the complement system plays a key role in chronic kidney diseases, atherosclerosis, diabetes mellitus and aging-related diseases, which are closely related with vascular calcification. However, the effect of complement system on vascular calcification is still unclear. In this review, we summarize current evidences about the activation of complement system in vascular calcification. We also describe the complex network of complement system and vascular smooth muscle cells osteogenic transdifferentiation, systemic inflammation, endoplasmic reticulum stress, extracellular matrix remodelling, oxidative stress, apoptosis in vascular calcification. Hence, providing a better understanding of the potential relationship between complement system and vascular calcification, so as to provide a direction for slowing the progression of this burgeoning health concern.  相似文献   

8.
Excessive alcohol consumption is a leading cause of chronic liver disease in the Western world. Alcohol-induced hepatotoxicity and oxidative stress are important mechanisms contributing to the pathogenesis of alcoholic liver disease. However, emerging evidence suggests that activation of innate immunity involving TLR4 and complement also plays an important role in initiating alcoholic steatohepatitis and fibrosis, but the role of adaptive immunity in the pathogenesis of alcoholic liver disease remains obscure. Activation of a TLR4-mediated MyD88-independent (TRIF/IRF-3) signaling pathway in Kupffer cells contributes to alcoholic steatohepatitis, whereas activation of TLR4 signaling in hepatic stellate cells promotes liver fibrosis. Alcohol consumption activates the complement system in the liver by yet unidentified mechanisms, leading to alcoholic steatohepatitis. In contrast to activation of TLR4 and complement, alcohol consumption can inhibit natural killer cells, another important innate immunity component, contributing to alcohol-mediated acceleration of viral infection and liver fibrosis in patients with chronic viral hepatitis. Understanding of the role of innate immunity in the pathogenesis of alcoholic liver disease may help us identify novel therapeutic targets to treat this disease.  相似文献   

9.
Recent evidence highlighted the role of Toll-like receptors (TLRs) as key recognition structures of the innate immune system. The activation of TLRs initiates the production of inflammatory cytokines, chemokines, tissue destructive enzymes, and type I interferons. In addition, TLR signalling plays an important role in the activation and direction of the adaptive immune system by the upregulation of costimulatory molecules of antigen presenting cells. Considering the important role of TLR signalling as a critical link between innate and adaptive immunity it has been proposed that a dysregulation in TLR signalling might be associated with autoimmunity. In this review, recent studies on TLR signal transduction pathways activated by corresponding ligands are summarized and evidence for a possible role of TLR signalling in the pathogenesis of rheumatoid arthritis is discussed.  相似文献   

10.
Discrimination between self and non-self by lectins (carbohydrate-binding proteins) is a strategy of innate immunity that is found in both vertebrates and invertebrates. In vertebrates, immune recognition mediated by ficolins (lectins that consist of a fibrinogen-like and a collagen-like domain), as well as by mannose-binding lectins, triggers the activation of the complement system, which results in the activation of novel serine proteases. The presence of a similar lectin-based complement system in ascidians, our closest invertebrate relatives, indicates that the complement system probably had a pivotal role in innate immunity before the evolution of an adaptive immune system in jawed vertebrates.  相似文献   

11.
Highly pathogenic H5N1 influenza infections are associated with enhanced inflammatory and cytokine responses, severe lung damage, and an overall dysregulation of innate immunity. C3, a member of the complement system of serum proteins, is a major component of the innate immune and inflammatory responses. However, the role of this protein in the pathogenesis of H5N1 infection is unknown. Here we demonstrate that H5N1 influenza virus infected mice had increased levels of C5a and C3 activation byproducts as compared to mice infected with either seasonal or pandemic 2009 H1N1 influenza viruses. We hypothesized that the increased complement was associated with the enhanced disease associated with the H5N1 infection. However, studies in knockout mice demonstrated that C3 was required for protection from influenza infection, proper viral clearance, and associated with changes in cellular infiltration. These studies suggest that although the levels of complement activation may differ depending on the influenza virus subtype, complement is an important host defense mechanism.  相似文献   

12.
Malaria is an infectious disease that causes serious morbidity and mortality worldwide. The disease is associated with a variety of clinical syndromes ranging from asymptomatic to lethal infections involving anaemia, organ failure, pulmonary and cerebral disease. The molecular and cellular factors responsible for the differences in disease severity are poorly understood but parasite-specific immune responses are thought to play a critical role in pathogenesis. Dendritic cells have an essential role in linking innate and adaptive immune responses and here we review their role in the context of malaria.  相似文献   

13.
Complement activation is an important component of the innate immune response against viral infection and also shapes adaptive immune responses. Despite compelling evidence that complement activation enhances T cell and antibody (Ab) responses during viral infection, it is unknown whether inhibition of complement by pathogens alters these responses. Vaccinia virus (VACV) modulates complement activation by encoding a complement regulatory protein called the vaccinia virus complement control protein (VCP). Although VCP has been described as a virulence factor, the mechanisms by which VCP enhances VACV pathogenesis have not been fully defined. Since complement is necessary for optimal adaptive immune responses to several viruses, we hypothesized that VCP contributes to pathogenesis by modulating anti-VACV T cell and Ab responses. In this study, we used an intradermal model of VACV infection to compare pathogenesis of wild-type virus (vv-VCPwt) and a virus lacking VCP (vv-VCPko). vv-VCPko formed smaller lesions in wild-type mice but not in complement-deficient mice. Attenuation of vv-VCPko correlated with increased accumulation of T cells at the site of infection, enhanced neutralizing antibody responses, and reduced viral titers. Importantly, depleting CD8(+) T cells together with CD4(+) T cells, which also eliminated T helper cell-dependent Ab responses, restored vv-VCPko to wild-type levels of virulence. These results suggest that VCP contributes to virulence by dampening both antibody and T cell responses. This work provides insight into how modulation of complement by poxviruses contributes to virulence and demonstrates that a pathogen-encoded complement regulatory protein can modulate adaptive immunity.  相似文献   

14.
Immune responses to asexual blood-stages of malaria parasites   总被引:6,自引:0,他引:6  
The blood stage of the malaria parasite's life cycle is responsible for all the clinical symptoms of malaria. The development of clinical disease is dependent on the interplay of the infecting parasite with the immune status and genetic background of the host. Following repeated exposure to malaria parasites, individuals residing in endemic areas develop immunity. Naturally acquired immunity provides protection against clinical disease, especially severe malaria and death from malaria, although sterilizing immunity is never achieved. Given the absence of antigen processing in erythrocytes, immunity to blood stage malaria parasites is primarily conferred by humoral immune responses. Cellular and innate immune responses play a role in controlling parasite growth but may also contribute to malaria pathology. Here, we analyze the natural humoral immune responses acquired by individuals residing in P. falciparum endemic areas and review their role in providing protection against malaria. In addition, we review the dual potential of cellular and innate immune responses to control parasite multiplication and promote pathology.  相似文献   

15.
动脉粥样硬化是由脂质和纤维在动脉内膜下的过度沉积造成的,脂代谢紊乱和免疫功能失衡是其最重要的发病机制.补体系统是固有免疫的重要组成部分,是炎症反应的关键启动因子,补体系统介导的免疫应答在动脉粥样硬化的发生中发挥着重要作用.众多研究表明,动脉粥样硬化斑块中存在多种补体成分以及活化产物,提示补体系统的活化和后续的级联反应是...  相似文献   

16.
The central role of the alternative complement pathway in human disease   总被引:11,自引:0,他引:11  
The complement system is increasingly recognized as important in the pathogenesis of tissue injury in vivo following immune, ischemic, or infectious insults. Within the complement system, three pathways are capable of initiating the processes that result in C3 activation: classical, alternative, and lectin. Although the roles that proinflammatory peptides and complexes generated during complement activation play in mediating disease processes have been studied extensively, the relative contributions of the three activating pathways is less well understood. Herein we examine recent evidence that the alternative complement pathway plays a key and, in most instances, obligate role in generating proinflammatory complement activation products in vivo. In addition, we discuss new concepts regarding the mechanisms by which the alternative pathway is activated in vivo, as recent clinical findings and experimental results have provided evidence that continuous active control of this pathway is necessary to prevent unintended targeting and injury to self tissues.  相似文献   

17.
Children under the age of 5 years living in areas of moderate to high malaria transmission are highly susceptible to clinical malaria with fever that prompts treatment of blood stage infection with anti-malarial drugs. In contrast, older school age children frequently experience subclinical malaria, i.e. chronic Plasmodium falciparum parasitemia without fever or other clinical symptoms. The role of innate immune cells in regulating inflammation at a level that is sufficient to control the parasite biomass, while at the same time maintaining a disease-tolerant clinical phenotype, i.e., subclinical malaria, is not well understood. Recent studies suggest that host epigenetic mechanisms underlie the innate immune homeostasis associated with subclinical malaria. This Current Opinion article presents evidence supporting the notion that modifications of the host monocyte/macrophage epigenome regulate innate immune functions pertinent to subclinical malaria.  相似文献   

18.
《Cytotherapy》2022,24(7):711-719
Complements and neutrophils are two key players of the innate immune system that are widely implicated as drivers of severe COVID-19 pathogenesis, as evident by the direct correlation of respiratory failure and mortality with elevated levels of terminal complement complex C5b-9 and neutrophils. In this study, we identified a feed-forward loop between complements and neutrophils that could amplify and perpetuate the cytokine storm seen in severe SARS-CoV-2–infected patients. We observed for the first time that the terminal complement activation complex C5b-9 directly triggered neutrophil extracellular trap (NET) release and interleukin (IL)-17 production by neutrophils. This is also the first report that the production of NETs and IL-17 induced by C5b-9 assembly on neutrophils could be abrogated by mesenchymal stem cell (MSC) exosomes. Neutralizing anti-CD59 antibodies abolished this abrogation. Based on our findings, we hypothesize that MSC exosomes could alleviate the immune dysregulation in acute respiratory failure, such as that observed in severe COVID-19 patients, by inhibiting complement activation through exosomal CD59, thereby disrupting the feed-forward loop between complements and neutrophils to inhibit the amplification and perpetuation of inflammation during SARS-CoV-2 infection.  相似文献   

19.
Interleukin-17 (IL-17)-mediated immune responses play a crucial role in the mucosal host defence against microbial and fungal pathogens. However, the chronic activation of IL-17-producing T helper cells can cause autoimmune disease. In addition, recent studies have highlighted key roles of innate cell-mediated IL-17 responses in various inflammatory settings. Besides inflammation, there have also been intriguing findings regarding the involvement of IL-17 responses in the pathogenesis of cardiovascular diseases and tumour formation. Here, we discuss the latest discoveries in regulation and function of innate and adaptive IL-17-producing cells.  相似文献   

20.
Abdominal fat-related activation of the innate immune system and insulin resistance (IR) are implicated in the pathogenesis of cardiovascular diseases. Recent data support an important role of the adaptive immune system as well. In this study, we investigate the association between waist circumference and markers of systemic adaptive immune activation, and the potential mediating role of innate immune activation and/or IR herein. The study population consisted of 477 (304 men) individuals (mean age: 59.4 ± 7.0 years) in whom waist circumference, HOMA2-IR (IR derived from homeostasis model assessment), and markers of innate (C-reactive protein (CRP), interleukin (IL)-6, serum amyloid A (SAA)) and adaptive (neopterin, soluble CD25 (sCD25)) immune activation were measured. These markers were compiled into an adaptive and innate immune activation score by averaging the respective z-scores. After adjustments for age, sex, glucose metabolism, smoking status, prior cardiovascular disease, and other risk factors, waist circumference was associated with the adaptive (standardized regression coefficient β = 0.12 (95% confidence intervals: 0.04-0.20)) and the innate immune activation scores (β = 0.24 (0.17-0.31)), and with HOMA2-IR (β = 0.49 (0.42-0.56)). The innate immune activation score and HOMA2-IR were also positively associated with the adaptive immune activation score (β = 0.31 (0.21-0.40) and β = 0.11 (0.02-0.21), respectively). The association between waist circumference and the adaptive immune activation score was completely abolished when further adjusted for innate immune activation and HOMA2-IR (to β = -0.01 (-0.10-0.08)), and the specific mediation "effects" attributable to each of these variables were 58% and 42%, respectively. We conclude that abdominal obesity is associated with systemic adaptive immune activation and that innate immune activation and IR constitute independent and equally important pathways explaining this association.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号