首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
2.
Bacteria use biofilm structures to colonize surfaces and to survive in hostile conditions, and numerous bacteria produce cellulose as a biofilm matrix polymer. Hence, expression of the bcs operon, responsible for cellulose biosynthesis, must be finely regulated in order to allow bacteria to adopt the proper surface‐associated behaviours. Here we show that in the phytopathogenic bacterium, Dickeya dadantii, production of cellulose is required for pellicle–biofilm formation and resistance to chlorine treatments. Expression of the bcs operon is growth phase‐regulated and is stimulated in biofilms. Furthermore, we unexpectedly found that the nucleoid‐associated protein and global regulator of virulence functions, Fis, directly represses bcs operon expression by interacting with an operator that is absent from the bcs operon of animal pathogenic bacteria and the plant pathogenic bacterium Pectobacterium. Moreover, production of cellulose enhances plant surface colonization by D. dadantii. Overall, these data suggest that cellulose production and biofilm formation may be important factors for surface colonization by D. dadantii and its subsequent survival in hostile environments. This report also presents a new example of how bacteria can modulate the action of a global regulator to co‐ordinate basic metabolism, virulence and modifications of lifestyle.  相似文献   

3.
Dickeya dadantii (Erwinia chrysanthemi) is a phytopathogenic bacterium causing soft rot diseases on many crops. The sequencing of its genome identified four genes encoding homologues of the Cyt family of insecticidal toxins from Bacillus thuringiensis, which are not present in the close relative Pectobacterium carotovorum subsp. atrosepticum. The pathogenicity of D. dadantii was tested on the pea aphid Acyrthosiphon pisum, and the bacterium was shown to be highly virulent for this insect, either by septic injury or by oral infection. The lethal inoculum dose was calculated to be as low as 10 ingested bacterial cells. A D. dadantii mutant with the four cytotoxin genes deleted showed a reduced per os virulence for A. pisum, highlighting the potential role of at least one of these genes in pathogenicity. Since only one bacterial pathogen of aphids has been previously described (Erwinia aphidicola), other species from the same bacterial group were tested. The pathogenic trait for aphids was shown to be widespread, albeit variable, within the phytopathogens, with no link to phylogenetic positioning in the Enterobacteriaceae. Previously characterized gut symbionts from thrips (Erwinia/Pantoea group) were also highly pathogenic to the aphid, whereas the potent entomopathogen Photorhabdus luminescens was not. D. dadantii is not a generalist insect pathogen, since it has low pathogenicity for three other insect species (Drosophila melanogaster, Sitophilus oryzae, and Spodoptera littoralis). D. dadantii was one of the most virulent aphid pathogens in our screening, and it was active on most aphid instars, except for the first one, probably due to anatomical filtering. The observed difference in virulence toward apterous and winged aphids may have an ecological impact, and this deserves specific attention in future research.  相似文献   

4.
The identification of the virulence factors of plant-pathogenic bacteria has relied on the testing of individual mutants on plants, a time-consuming process. Transposon sequencing (Tn-seq) is a very powerful method for the identification of the genes required for bacterial growth in their host. We used this method in a soft-rot pathogenic bacterium to identify the genes required for the multiplication of Dickeya dadantii in chicory. About 100 genes were identified showing decreased or increased fitness in the plant. Most had no previously attributed role in plant–bacterium interactions. Following our screening, in planta competition assays confirmed that the uridine monophosphate biosynthesis pathway and the purine biosynthesis pathway were essential to the survival of D. dadantii in the plant, as the mutants ∆carA, ∆purF, ∆purL, ∆guaB and ∆pyrE were unable to survive in the plant in contrast with the wild-type (WT) bacterium. This study also demonstrated that the biosynthetic pathways of leucine, cysteine and lysine were essential for bacterial survival in the plant and that RsmC and GcpA were important in the regulation of the infection process, as the mutants ∆rsmC and ∆gcpA were hypervirulent. Finally, our study showed that D. dadantii flagellin was glycosylated and that this modification conferred fitness to the bacterium during plant infection. Assay by this method of the large collections of environmental pathogenic strains now available will allow an easy and rapid identification of new virulence factors.  相似文献   

5.
Bacillus thuringiensis bacteria produce different insecticidal proteins known as Cry and Cyt toxins. Among them the Cyt toxins represent a special and interesting group of proteins. Cyt toxins are able to affect insect midgut cells but also are able to increase the insecticidal damage of certain Cry toxins. Furthermore, the Cyt toxins are able to overcome resistance to Cry toxins in mosquitoes. There is an increasing potential for the use of Cyt toxins in insect control. However, we still need to learn more about its mechanism of action in order to define it at the molecular level. In this review we summarize important aspects of Cyt toxins produced by Bacillus thuringiensis, including current knowledge of their mechanism of action against mosquitoes and also we will present a primary sequence and structural comparison with related proteins found in other pathogenic bacteria and fungus that may indicate that Cyt toxins have been selected by several pathogenic organisms to exert their virulence phenotypes.  相似文献   

6.
7.
8.
9.
蜡样芽孢杆菌属于革兰氏阳性菌,分布广泛,具有一定的致病性。不同的蜡样芽孢杆菌携带有不同的毒力因子,这直接决定了蜡样芽孢杆菌株致病性的差异。研究和探讨毒力因子分布以及具体毒素的生物活性有助于对蜡样芽孢杆菌病采取更科学的防控。本研究通过原核表达系统将溶血素BL三亚基重组表达,并对表达蛋白进行了纯化和部分生物学活性的检测。研究结果表明,牛源致病性蜡样芽孢杆菌溶血素BL可以在原核表达系统中成功表达和纯化,牛源致病性蜡样芽孢杆菌溶血素BL拥有溶血性、细胞毒性、很好的免疫原性以及对小鼠具有一定的免疫保护性。本研究表达了溶血素BL三亚基,并探究了牛源致病性蜡样芽孢杆溶血素BL的生物学活性。本研究为进一步揭示蜡样芽孢杆菌溶血素BL的致病作用机制和建立针对牛源致病性蜡样芽孢杆菌病的检测方法奠定了理论基础。  相似文献   

10.
11.
12.
Xenorhabdus and Photorhabdus species are entomopathogenic bacteria with a wide insect host range, that belong to the family Enterobacteriaceae. Xenorhabdus and Photorhabdus species symbiotically associate with nematodes of the families Steinernematidae and Heterorhabditidae respectively. The factor(s) determining the symbiotic interaction between nematodes and bacteria are yet to be identified. Xenorhabdus and Photorhabdus species exist in two main phenotypic forms, a phenomenon known as phase variation. The phase I (or primary form) varies from phase II (or secondary form) in certain physiological and morphological characteristics. There is no variation in the DNA integrity of phase I and phase II and this supports epigenetic regulatory mechanism in phase variation. Certain pathogenic determinants such as pili, lipopolysaccharides and toxins contribute to the pathogenicity of Xenorhabdus and Photorhabdus species, and both appear to be equally pathogenic to insects. The observed similarity in their virulence to insect hosts may reflect possible in vivo conversion of phase II to phase I, however the host cellular invasion and virulence is yet to be properly understood. The virulence of Xenorhabdus variants varies among insects apparently due to factors which include the feeding habits of the insects. The molecular mechanism and biological significance of phase variation are presently unknown.  相似文献   

13.
Yu J  Xu W  Zeng S  Zhang X  Liu J  Xie R  Pang Y 《Current microbiology》2002,45(5):309-314
Bacillus thuringiensis (Bt) cyt genes coding hemolytic and cytolytic toxins constitute a gene family, which are divided into two groups: cyt1 and cyt2. A novel cyt2 gene was detected from a soil-isolated Bt strain T301, which was highly homologous to cyt2Ba1 and finally designated cyt2Ba7. Until now, Cyt2Ba has not been expressed alone in Bt or other hosts. In this study, the cyt2Ba7 gene was cloned into the vector pQE30 and expressed as a fusion protein with 6×Histidine residues in Escherichia coli. Unlike cyt1A, cyt2Ba7 was freely expressed and formed cytoplasmic inclusions without the need for a “helper” protein. The 6×His-tagged Cyt2Ba7 was purified in one step by Ni-NTA affinity chromatography, examined cytolytic activity on Sf9 cells, and developed as an antigen to obtain the antiserum against Cyt2Ba by subcutaneous injection into rabbits. This gene was also cloned into the Bt–E. coli shuttle vector pHT3101 and expressed in Bt strain 4Q7. Immunoblotting analysis revealed that the antiserum was remarkably selective and specific to Cyt2Ba. Received: 21 December 2001 / Accepted: 28 January 2002  相似文献   

14.
The catabolism of pectin from plant cell walls plays a crucial role in the virulence of the phytopathogen Dickeya dadantii. In particular, the timely expression of pel genes encoding major pectate lyases is essential to circumvent the plant defense systems and induce massive pectinolytic activity during the maceration phase. Previous studies identified the role of a positive feedback loop specific to the pectin-degradation pathway, whereas the precise signals controlling the dynamics of pectate lyase expression were unclear. Here, we show that the latter is controlled by a metabolic switch involving both glucose and pectin. We measured the HPLC concentration profiles of the key metabolites related to these two sources of carbon, cAMP and 2-keto-3-deoxygluconate, and developed a dynamic and quantitative model of the process integrating the associated regulators, cAMP receptor protein and KdgR. The model describes the regulatory events occurring at the promoters of two major pel genes, pelE and pelD. It highlights that their activity is controlled by a mechanism of carbon catabolite repression, which directly controls the virulence of D. dadantii. The model also shows that quantitative differences in the binding properties of common regulators at these two promoters resulted in a qualitatively different role of pelD and pelE in the metabolic switch, and also likely in conditions of infection, justifying their evolutionary conservation as separate genes in this species.  相似文献   

15.
16.
17.
Abstract — Hrp(hypersensitivity response and pathogenicity) genes encode signal-peptide independent transporter molecules that function in the Type III secretion pathway and are present in a number of plant pathogenic bacterial species. These Hrp transporter molecules largely export harpin and other virulence factors across the bacterial membrane and onto theHrploci are part of a largerlcrD family which encode the low calcium response proteins. Members of this family serve to transport a number of diverse virulence factors in a variety of enteric and other purple bacteria species both pathogenichrp-induced pathogenicity by different plant pathogenic bacterial species is the result of a single evolutionary event or evolved independently, cladistic analyses were performedlcrD gene family. The results of these studieslcrD orhrpgeneslcrD homologues which comprised the other twohrptransporter genes do not capture the phylogenetic history of their host bacteriallcrD gene was horizontally introduced into each of four different plant pathogenic species which may have resulted from four independent transfer events. This monophyletic partitioning ofhrpgenes precludes their use as reliable taxonomic markers while further supporting the current notion thathrptransport  相似文献   

18.
19.
Chemotaxis enables bacteria to move towards an optimal environment in response to chemical signals. In the case of plant‐pathogenic bacteria, chemotaxis allows pathogens to explore the plant surface for potential entry sites with the ultimate aim to prosper inside plant tissues and to cause disease. Chemoreceptors, which constitute the sensory core of the chemotaxis system, are usually transmembrane proteins which change their conformation when sensing chemicals in the periplasm and transduce the signal through a kinase pathway to the flagellar motor. In the particular case of the soft‐rot pathogen Dickeya dadantii 3937, jasmonic acid released in a plant wound has been found to be a strong chemoattractant which drives pathogen entry into the plant apoplast. In order to identify candidate chemoreceptors sensing wound‐derived plant compounds, we carried out a bioinformatics search of candidate chemoreceptors in the genome of Dickeya dadantii 3937. The study of the chemotactic response to several compounds and the analysis of the entry process to Arabidopsis leaves of 10 selected mutants in chemoreceptors allowed us to determine the implications of at least two of them (ABF‐0020167 and ABF‐0046680) in the chemotaxis‐driven entry process through plant wounds. Our data suggest that ABF‐0020167 and ABF‐0046680 may be candidate receptors of jasmonic acid and xylose, respectively.  相似文献   

20.
Plant pathogenic bacteria utilize complex signalling systems to control the expression of virulence genes at the cellular level and within populations. Quorum sensing (QS), an important intercellular communication mechanism, is mediated by different types of small molecules, including N‐acyl homoserine lactones (AHLs), fatty acids and small proteins. AHL‐mediated signalling systems dependent on the LuxI and LuxR family proteins play critical roles in the virulence of a wide range of Gram‐negative plant pathogenic bacteria belonging to the Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria. Xanthomonas spp. and Xylella fastidiosa, members of the Gammaproteobacteria, however, possess QS systems that are mediated by fatty acid‐type diffusible signal factors (DSFs). Recent studies have demonstrated that Ax21, a 194‐amino‐acid protein in Xanthomonas oryzae pv. oryzae, plays dual functions in activating a rice innate immune pathway through binding to the rice XA21 pattern recognition receptor and in regulating bacterial virulence and biofilm formation as a QS signal molecule. In xanthomonads, DSF‐mediated QS systems are connected with the signalling pathways mediated by cyclic diguanosine monophosphate (c‐di‐GMP), which functions as a second messenger for the control of virulence gene expression in these bacterial pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号