首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Asymmetric cyclopropanation of styrenes by tert-butyl diazoacetate followed by ester hydrolysis and Curtius rearrangement gave a series of tranylcypromine analogues as single enantiomers. The o,- m- and p-bromo analogues were all more active than tranylcypromine in a LSD1 enzyme assay. The m- and p-bromo analogues were micromolar growth inhibitors of the LNCaP prostate cancer cell line as were the corresponding biphenyl analogues prepared from the bromide by Suzuki crosscoupling.  相似文献   

4.
5.
Abstract

Lysine-specific demethylase 1 (LSD1) has been reported to connect with a range of solid tumors. Thus, the exploration of LSD1 inhibitors has emerged as an effective strategy for cancer treatment. In this study, we constructed a pharmacophore model based on a series of flavin adenine dinucleotide (FAD)-competing inhibitors bearing triazole???dithiocarbamate scaffold combining docking, structure–activity relationship (SAR) study, and molecular dynamic (MD) simulation. Meanwhile, another pharmacophore model was also constructed manually, relying on several speculated substrate-competing inhibitors and reported putative vital interactions with LSD1. On the basis of the two pharmacophore models, multi-step virtual screenings (VSs) were performed against substrate-binding pocket and FAD-binding pocket, respectively, combining pharmacophore-based and structure-based strategy to exploit novel LSD1 inhibitors. After bioassay evaluation, four compounds among 21 hits with diverse and novel scaffolds exhibited inhibition activity at the range of 3.63–101.43?μM. Furthermore, substructure-based enrichment was performed, and four compounds with a more potent activity were identified. After that, the time-dependent assay proved that the most potent compound with IC50 2.21?μM inhibits LSD1 activity in a manner of time-independent. In addition, the compound exhibited a cellular inhibitory effect against LSD1 in MGC-803 cells and may inhibit cell migration and invasion by reversing EMT in cultured gastric cancer cells. Considering the binding mode and SAR of the series of compounds, we could roughly deem that these compounds containing 3-methylxanthine scaffold act through occupying substrate-binding pocket competitively. This study presented a new starting point to develop novel LSD1 inhibitors.  相似文献   

6.
Lysine-specific demethylase 1 (LSD1) is upregulated in many cancers, especially neuroblastoma. We set out to explore whether geranylgeranoic acid (GGA) inhibits LSD1 activity by using recombinant human LSD1. GGA inhibited LSD1 activity with IC50 similar to that of the clinically used drug tranylcypromine. In human neuroblastoma SH-SY5Y cells, GGA induced NTRK2 gene expression alongside upregulation of histone H3 with dimethylated lysine-4 in the regulatory regions of the NTRK2 gene. Dihydrogenation of GGA reinforced the LSD1-inhibitory effect in a position-dependent manner. The inhibitory effects of dihydro-derivatives of GGA on recombinant LSD1 strongly correlated with the induction of NTRK2 gene expression in SH-SY5Y cells. These data demonstrate for the first time the efficient LSD1-inhibitor activity of GGA and its derivatives, providing a novel prospect of preventing cancer onset by using GGA to regulate epigenetic modification.  相似文献   

7.
Lysine-specific demethylase 1 (LSD1) is a flavin-dependent enzyme that removes methyl groups from mono- or dimethylated lysine residues at the fourth position of histone H3. We have previously reported several histone H3 peptides containing an LSD1 inactivator motif at Lys-4. In this study, histone H3 peptides having a trans-2-phenylcyclopropylamine (PCPA), a 2,5-dihydro-1H-pyrrole, and a 1,2,3,6-tetrahydropyridine moiety at Lys-4 were prepared along with related compounds possessing a shorter side chain at the fourth position. Enzymatic assays showed that PCPA peptides containing a longer side chain, which can react with FAD in the active site, are potent LSD1-selective inhibitors.  相似文献   

8.
Histone lysine specific demethylase 1 (LSD1 or KDM1A) is a potential therapeutic target in oncology due to its overexpression in various human tumors. We report herein a new class of benzofuran acylhydrazones as potent LSD1 inhibitors. Among the 31 compounds prepared, 14 compounds exhibited excellent LSD1 inhibitory activity with IC50 values ranging from 7.2 to 68.8 nM. In cellular assays, several compounds inhibited the proliferations of various cancer cell lines, including PC-3, MCG-803, U87 MG, PANC-1, HT-29 and MCF-7. This opens up the opportunity for further optimization and investigation of this class compounds for potential cancer treatment.  相似文献   

9.
Herein we report the discovery of a series of new small molecule inhibitors of histone lysine demethylase 4D (KDM4D). Molecular docking was first performed to screen for new KDM4D inhibitors from various chemical databases. Two hit compounds were retrieved. Further structural optimization and structure-activity relationship (SAR) analysis were carried out to the more selective one, compound 2, which led to the discovery of several new KDM4D inhibitors. Among them, compound 10r is the most potent one with an IC50 value of 0.41 ± 0.03 μM against KDM4D. Overall, compound 10r could be taken as a good lead compound for further studies.  相似文献   

10.
Osimertinib (AZD9291) is a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) that has been approved for the treatment of EGFR-mutated non-small cell lung cancer (NSCLC). In this study, osimertinib was characterized as a LSD1 inhibitor for the first time with an IC50 of 3.98 ± 0.3 μM and showed LSD1 inhibitory effect at cellular level. These findings provide new molecular skeleton for dual inhibitor for LSD1 and EGFR. Osimertinib could serve as a lead compound for further development for anti-NSCLC drug discovery with dual targeting.  相似文献   

11.
组蛋白赖氨酸特异性去甲基化酶1A (Histone lysine-specific demethylase 1A,KDM1A)作为组蛋白赖氨酸特异性去甲基化酶(Histonelysine-specificdemethylase)家族的一员,在信号传导、染色体重构、胚胎发育、造血和糖脂代谢等生物学过程中起着重要的作用。近年来的研究及临床证据表明,KDM1A的表达与肿瘤的发生发展密不可分,通过与不同的复合物结合并介导不同的下游信号通路,对多种肿瘤的生长增殖起着关键的调节作用,例如前列腺癌、乳腺癌、肺癌和肝癌等。在大多数情况下,KDM1A在肿瘤的发生发展中扮演着促癌基因角色。文中结合近年来有关文献,阐述了KDM1A在多种肿瘤发生及发展中的研究进展,总结了其作用机制,并对以KDM1A为靶点的抑癌治疗的应用前景进行了展望。  相似文献   

12.
Kong X  Ouyang S  Liang Z  Lu J  Chen L  Shen B  Li D  Zheng M  Li KK  Luo C  Jiang H 《PloS one》2011,6(9):e25444
Lysine-specific demethylase 1 (LSD1), the first identified histone demethylase, is a flavin-dependent amine oxidase which specifically demethylates mono- or dimethylated H3K4 and H3K9 via a redox process. It participates in a broad spectrum of biological processes and is of high importance in cell proliferation, adipogenesis, spermatogenesis, chromosome segregation and embryonic development. To date, as a potential drug target for discovering anti-tumor drugs, the medical significance of LSD1 has been greatly appreciated. However, the catalytic mechanism for the rate-limiting reductive half-reaction in demethylation remains controversial. By employing a combined computational approach including molecular modeling, molecular dynamics (MD) simulations and quantum mechanics/molecular mechanics (QM/MM) calculations, the catalytic mechanism of dimethylated H3K4 demethylation by LSD1 was characterized in details. The three-dimensional (3D) model of the complex was composed of LSD1, CoREST, and histone substrate. A 30-ns MD simulation of the model highlights the pivotal role of the conserved Tyr761 and lysine-water-flavin motif in properly orienting flavin adenine dinucleotide (FAD) with respect to substrate. The synergy of the two factors effectively stabilizes the catalytic environment and facilitated the demethylation reaction. On the basis of the reasonable consistence between simulation results and available mutagenesis data, QM/MM strategy was further employed to probe the catalytic mechanism of the reductive half-reaction in demethylation. The characteristics of the demethylation pathway determined by the potential energy surface and charge distribution analysis indicates that this reaction belongs to the direct hydride transfer mechanism. Our study provides insights into the LSD1 mechanism of reductive half-reaction in demethylation and has important implications for the discovery of regulators against LSD1 enzymes.  相似文献   

13.
Fe(II)/α-ketoglutarate-dependent lysine demethylases (KDMs) are attractive drug targets for several diseases including cancer. In this study, we designed and screened ortho-substituted anilides that are expected to function as Fe(II) chelators, and identified ortho-hydroxy anilide as a novel scaffold for KDM5A inhibitors. Treatment of human lung cancer A549 cells with a prodrug form of 4-carboxy-2-hydroxy-formanilide (9c) increased trimethylated lysine 4 on histone H3 level, suggesting KDM5 inhibition in the cells.  相似文献   

14.
15.
Lysine-specific demethylase 1 (LSD1) has recently emerged as a therapeutic target for cancer. However, almost all LSD1 inhibitors developed to date are chemo-synthesised molecules. In this study, the LSD1 inhibitory activity of 12 natural flavones, including four aglycones and their corresponding monoglycosides and diglucosides, was evaluated. Based on the structure–activity relationships, LSD1 inhibition activity was greater for flavonoid monoglycosides than their aglycones lacking the sugar moiety. The effects of isoquercitrin, which exhibited optimal LSD1 inhibitory activity, on cancer cell properties were evaluated. Isoquercitrin induced the expression of key proteins in the mitochondrial-mediated apoptosis pathway and caused apoptosis in LSD1-overexpressing MDA-MB-231 cells via the inhibition of LSD1. These findings suggest that natural LSD1 inhibitors, and particularly isoquercitrin, are promising for cancer treatment.  相似文献   

16.
Histone lysine-specific demethylase 1 (LSD1) was the first discovered histone demethylase. Inactivating LSD1 or downregulating its expression inhibits cancer-cell development, and thus, it is an attractive molecular target for the development of novel cancer therapeutics. In this study, we worked on the structural optimization of natural products and identified 30 novel LSD1 inhibitors. Utilizing a structure-based drug design strategy, we designed and synthesized a series of curcumin analogues that were shown to be potent LSD1 inhibitors in the enzyme assay. Compound WB07 displayed the most potent LSD1 inhibitory activity, with an IC50 value of 0.8 μM. Moreover, WA20 showed an anticlonogenic effect on A549 cells with an IC50 value of 4.4 μM. Molecular docking simulations were also carried out, and the results indicated that the inhibitors bound to the protein active site located around the key residues of Asp555 and Asp556. These findings suggested that compounds WA20 and WB07 are the first curcumin analogue-based LSD1 inhibitors with remarkable A549 suppressive activity, providing a novel scaffold for the development of LSD1 inhibitors.  相似文献   

17.
18.
Acute promyelocytic leukemia (APL), a cytogenetically distinct subtype of acute myeloid leukemia (AML), characterized by the t(15;17)-associated PML-RARA fusion, has been successfully treated with therapy utilizing all-trans-retinoic acid (ATRA) to differentiate leukemic blasts. However, among patients with non-APL AML, ATRA-based treatment has not been effective. Here we show that, through epigenetic reprogramming, inhibitors of lysine-specific demethylase 1 (LSD1, also called KDM1A), including tranylcypromine (TCP), unlocked the ATRA-driven therapeutic response in non-APL AML. LSD1 inhibition did not lead to a large-scale increase in histone 3 Lys4 dimethylation (H3K4(me2)) across the genome, but it did increase H3K4(me2) and expression of myeloid-differentiation-associated genes. Notably, treatment with ATRA plus TCP markedly diminished the engraftment of primary human AML cells in vivo in nonobese diabetic (NOD)-severe combined immunodeficient (SCID) mice, suggesting that ATRA in combination with TCP may target leukemia-initiating cells. Furthermore, initiation of ATRA plus TCP treatment 15 d after engraftment of human AML cells in NOD-SCID γ (with interleukin-2 (IL-2) receptor γ chain deficiency) mice also revealed the ATRA plus TCP drug combination to have a potent anti-leukemic effect that was superior to treatment with either drug alone. These data identify LSD1 as a therapeutic target and strongly suggest that it may contribute to AML pathogenesis by inhibiting the normal pro-differentiative function of ATRA, paving the way for new combinatorial therapies for AML.  相似文献   

19.
LSD1 is implicated in a number of malignancies and has emerged as an exciting target. As part of our sustained efforts to develop novel reversible LSD1 inhibitors for epigenetic therapy of cancers, in this study, we reported a series of stilbene derivatives and evaluated their LSD1 inhibitory activities, obtaining several compounds as potent LSD1 inhibitors with IC50 values in submicromolar range. Enzyme kinetics studies and SPR assay suggested that compound 8c, the most active LSD1 inhibitor (IC50?=?283?nM), potently inhibited LSD1 in a reversible and FAD competitive manner. Consistent with the kinetics data, molecular docking showed that compound 8c can be well docked into the FAD binding site of LSD1. Flow cytometry analysis showed that compound 8c was capable of up-regulating the expression of the surrogate cellular biomarker CD86 in THP-1 human leukemia cells, suggesting the ability to block LSD1 activity in cells. Compound 8c showed good inhibition against THP-1 and MOLM-13 cells with IC50 values of 5.76 and 8.34?μM, respectively. Moreover, compound 8c significantly inhibited colony formation of THP-1 cells dose dependently.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号