首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
White pox disease (WPD) affects the threatened elkhorn coral, Acropora palmata. Owing in part to the lack of a rapid and simple diagnostic test, there have been few systematic assessments of the prevalence of acroporid serratiosis (caused specifically by Serratia marcescens) versus general WPD signs. Six reefs in the Florida Keys were surveyed between 2011 and 2013 to determine the disease status of A. palmata and the prevalence of S. marcescens. WPD was noted at four of the six reefs, with WPD lesions found on 8 to 40% of the colonies surveyed. S. marcescens was detected in 26.9% (7/26) of the WPD lesions and in mucus from apparently healthy colonies both during and outside of disease events (9%; 18/201). S. marcescens was detected with greater frequency in A. palmata than in the overlying water column, regardless of disease status (P = 0.0177). S. marcescens could not be cultured from A. palmata but was isolated from healthy colonies of other coral species and was identified as pathogenic pulsed-field gel electrophoresis type PDR60. WPD lesions were frequently observed on the reef, but unlike in prior outbreaks, no whole-colony death was observed. Pathogenic S. marcescens was circulating on the reef but did not appear to be the primary pathogen in these recent WPD episodes, suggesting that other pathogens or stressors may contribute to signs of WPD. Results highlight the critical importance of diagnostics in coral disease investigations, especially given that field manifestation of disease may be similar, regardless of the etiological agent.  相似文献   

2.
Serratia marcescens is the etiological agent of acroporid serratiosis, a distinct form of white pox disease in the threatened coral Acropora palmata. The pathogen is commonly found in untreated human waste in the Florida Keys, which may contaminate both nearshore and offshore waters. Currently there is no direct method for detection of this bacterium in the aquatic or reef environment, and culture-based techniques may underestimate its abundance in marine waters. A quantitative real-time PCR assay was developed to detect S. marcescens directly from environmental samples, including marine water, coral mucus, sponge tissue, and wastewater. The assay targeted the luxS gene and was able to distinguish S. marcescens from other Serratia species with a reliable quantitative limit of detection of 10 cell equivalents (CE) per reaction. The method could routinely discern the presence of S. marcescens for as few as 3 CE per reaction, but it could not be reliably quantified at this level. The assay detected environmental S. marcescens in complex sewage influent samples at up to 761 CE ml−1 and in septic system-impacted residential canals in the Florida Keys at up to 4.1 CE ml−1. This detection assay provided rapid quantitative abilities and good sensitivity and specificity, which should offer an important tool for monitoring this ubiquitous pathogen that can potentially impact both human health and coral health.  相似文献   

3.
Serratia marcescens is an enteric bacterium that causes white pox disease in elkhorn coral, Acropora palmata; however, it remains unclear if the pathogenic strain has adapted to seawater or if it requires a host or reservoir for survival. To begin to address this fundamental issue, the persistence of strain PDL100 was compared among seawater and coral mucus microcosms. Median survival time across all conditions ranged from a low of 15 h in natural seawater [with a first‐order decay constant (k) = ?0.173] at 30°C to a maximum of 120 h in glucose‐amended A. palmata mucus (k = ?0.029) at 30°C. Among seawater and mucus microcosms, median survival time was significantly greater within Siderastrea siderea mucus compared with seawater or mucus of Montastraea faveolata or A. palmata (P < 0.0001). In seawater, the addition of phosphate and especially glucose resulted in significant improvements in survival (P < 0.001), while only the addition of glucose resulted in significant improvement in survival in A. palmata mucus (P < 0.0001). Increasing the temperature of seawater to 35°C resulted in a significantly slower decay than that observed at 30°C (P < 0.0001). The results of this study indicate that PDL100 is not well‐adapted to marine water; however, survival can be improved by increasing temperature, the availability of coral mucus from S. siderea and most notably the presence of dissolved organic carbon.  相似文献   

4.
The discovery of the widespread occurrence of the remains of the reef coral Acropora palmata within the fabric of the fringing reefs on the west coast of Barbados requires a new interpretation of their Holocene development. Radiocarbon dating of the A. palmata framework suggests that reef construction by this species began as early as 2,300 years B.P. A. palmata probably flourished in Barbados into the present century but has now declined. The present fringing reefs are characterized by a core and base of A. palmata upon which subsequent colonization took place, especially by Montastrea annularis, Porites porites and coralline algae.  相似文献   

5.
The discovery of a population of elkhorn corals in the Central Pacific Ocean has important taxonomic implications, as this distinctive colony morphology was previously known only from the endemic and critically endangered Atlantic species Acropora palmata. Phylogenetic analyses confirmed that the Pacific elkhorn coral is genetically distant from A. palmata, and most likely represents a species previously synonymized with Acropora abrotanoides. The Pacific elkhorn coral is rare, and is of particular scientific interest because it represents one morphological extreme in the dominant genus of reef-building corals. The discovery of the Pacific elkhorn coral raises a number of important general issues in relation to biodiversity conservation, as this coral would not qualify for threatened species listing under current IUCN categories and criteria despite being demonstrably rare.  相似文献   

6.
We propose ‘the moving target hypothesis’ to describe the aetiology of a contemporary coral disease that differs from that of its historical disease state. Hitting the target with coral disease aetiology is a complex pursuit that requires understanding of host and environment, and may lack a single pathogen solution. White pox disease (WPX) affects the Caribbean coral Acropora palmata. Acroporid serratiosis is a form of WPX for which the bacterial pathogen (Serratia marcescens) has been established. We used long-term (1994–2014) photographic monitoring to evaluate historical and contemporary epizootiology and aetiology of WPX affecting A. palmata at eight reefs in the Florida Keys. Ranges of WPX prevalence over time (0–71.4%) were comparable for the duration of the 20-year study. Whole colony mortality and disease severity were high in historical (1994–2004), and low in contemporary (2008–2014), outbreaks of WPX. Acroporid serratiosis was diagnosed for some historical (1999, 2003) and contemporary (2012, 2013) outbreaks, but this form of WPX was not confirmed for all WPX cases. Our results serve as a context for considering aetiology as a moving target for WPX and other coral diseases for which pathogens are established and/or candidate pathogens are identified. Coral aetiology investigations completed to date suggest that changes in pathogen, host and/or environment alter the disease state and complicate diagnosis.  相似文献   

7.
Coral reefs are in severe decline. Infections by the human pathogen Serratia marcescens have contributed to precipitous losses in the common Caribbean elkhorn coral, Acropora palmata, culminating in its listing under the United States Endangered Species Act. During a 2003 outbreak of this coral disease, called acroporid serratiosis (APS), a unique strain of the pathogen, Serratia marcescens strain PDR60, was identified from diseased A. palmata, human wastewater, the non-host coral Siderastrea siderea and the corallivorous snail Coralliophila abbreviata. In order to examine humans as a source and other marine invertebrates as vectors and/or reservoirs of the APS pathogen, challenge experiments were conducted with A. palmata maintained in closed aquaria to determine infectivity of strain PDR60 from reef and wastewater sources. Strain PDR60 from wastewater and diseased A. palmata caused disease signs in elkhorn coral in as little as four and five days, respectively, demonstrating that wastewater is a definitive source of APS and identifying human strain PDR60 as a coral pathogen through fulfillment of Koch's postulates. A. palmata inoculated with strain PDR60 from C. abbreviata showed limited virulence, with one of three inoculated fragments developing APS signs within 13 days. Strain PDR60 from non-host coral S. siderea showed a delayed pathogenic effect, with disease signs developing within an average of 20 days. These results suggest that C. abbreviata and non-host corals may function as reservoirs or vectors of the APS pathogen. Our results provide the first example of a marine "reverse zoonosis" involving the transmission of a human pathogen (S. marcescens) to a marine invertebrate (A. palmata). These findings underscore the interaction between public health practices and environmental health indices such as coral reef survival.  相似文献   

8.
The mutualistic symbioses between reef‐building corals and micro‐algae form the basis of coral reef ecosystems, yet recent environmental changes threaten their survival. Diversity in host‐symbiont pairings on the sub‐species level could be an unrecognized source of functional variation in response to stress. The Caribbean elkhorn coral, Acropora palmata, associates predominantly with one symbiont species (Symbiodiniumfitti’), facilitating investigations of individual‐level (genotype) interactions. Individual genotypes of both host and symbiont were resolved across the entire species’ range. Most colonies of a particular animal genotype were dominated by one symbiont genotype (or strain) that may persist in the host for decades or more. While Symbiodinium are primarily clonal, the occurrence of recombinant genotypes indicates sexual recombination is the source of this genetic variation, and some evidence suggests this happens within the host. When these data are examined at spatial scales spanning the entire distribution of A. palmata, gene flow among animal populations was an order of magnitude greater than among populations of the symbiont. This suggests that independent micro‐evolutionary processes created dissimilar population genetic structures between host and symbiont. The lower effective dispersal exhibited by the dinoflagellate raises questions regarding the extent to which populations of host and symbiont can co‐evolve during times of rapid and substantial climate change. However, these findings also support a growing body of evidence, suggesting that genotype‐by‐genotype interactions may provide significant physiological variation, influencing the adaptive potential of symbiotic reef corals to severe selection.  相似文献   

9.
10.
In recent years, diseases of corals caused by opportunistic pathogens have become widespread. How opportunistic pathogens establish on coral surfaces, interact with native microbiota, and cause disease is not yet clear. This study compared the utilization of coral mucus by coral-associated commensal bacteria (“Photobacterium mandapamensis” and Halomonas meridiana) and by opportunistic Serratia marcescens pathogens. S. marcescens PDL100 (a pathogen associated with white pox disease of Acroporid corals) grew to higher population densities on components of mucus from the host coral. In an in vitro coculture on mucus from Acropora palmata, S. marcescens PDL100 isolates outgrew coral isolates. The white pox pathogen did not differ from other bacteria in growth on mucus from a nonhost coral, Montastraea faveolata. The ability of S. marcescens to cause disease in acroporid corals may be due, at least in part, to the ability of strain PDL100 to build to higher population numbers within the mucus surface layer of its acroporid host. During growth on mucus from A. palmata, similar glycosidase activities were present in coral commensal bacteria, in S. marcescens PDL100, and in environmental and human isolates of S. marcescens. The temporal regulation of these activities during growth on mucus, however, was distinct in the isolates. During early stages of growth on mucus, enzymatic activities in S. marcescens PDL100 were most similar to those in coral commensals. After overnight incubation on mucus, enzymatic activities in a white pox pathogen were most similar to those in pathogenic Serratia strains isolated from human mucosal surfaces.Serratia is a gammaproteobacterium frequently isolated from waters, plants, and animals (7). Some isolates of Serratia are well-characterized symbionts of invertebrates. Serratia marcescens and Serratia liquefaciens have been identified as vertically transmitted symbionts of the sugar beet maggot (9). Serratia colonizes male and female reproductive tracts of the maggots, eggs, and pharyngeal filter. There, the bacteria are hypothesized to aid in metamorphosis by digesting chitinous puparial walls (9). In the gut of another insect, the diamondback moth, strains of S. marcescens appear to live as commensals capable of modestly (5 to 8%) increasing growth rates of the host (8). Serratia strains have also been isolated from feces and cloacal swabs from clinically normal captive birds, but not from organs or carcasses of sick or diseased animals housed within the same facility (3, 20). Serratia spp. have also been linked to diseases of invertebrate animals and their larvae (for reviews, see references 7, 15, and 21). To cause diseases in nematodes and flies, S. marcescens first colonizes the intestines, degrades cells of the alimentary tract and then spreads to other organs (14, 21). There are, however, exceptions to this mode of infection. Serratia entomophila, the causal agent of amber disease in grubs, grows within the alimentary tract of the animal to >106 CFU. However, bacteria neither attach to nor colonize surfaces of the gut; rather, they adhere to gut contents (10) and cause the appearance of signs by producing the Sep toxin that inhibits accumulation of the insect''s digestive serine proteases and disrupts the cytoskeletal network (6). It appears, therefore, that various isolates of Serratia are capable of entering into a full range of interactions (from mutualistic to commensal to pathogenic) with their animal hosts (for reviews, see references 7, 15, and 21).A strain of S. marcescens, PDL100, was shown to be associated with white pox disease of the threatened Caribbean coral Acropora palmata (22, 27). White pox disease results in coral tissue necrosis, exposing carbonate skeleton at a rate of 2.5 cm2 day−1 (22). It is not yet clear how S. marcescens PDL100 colonizes and infects corals. It is likely that to cause disease, the pathogen first needs to colonize and establish within the coral surface mucus layer.The coral surface mucus layer contains polymers of mixed origin. Coral mucus is made in the mucocytes of the polyp, where the photosynthate produced by the coral symbiotic dinoflagellate Symbiodinium spp. is converted into polymers that are excreted onto the coral surface (for a review, see reference 2). A glycoprotein is the major component of coral mucus from both hard and soft corals (16, 17, 19). The composition of the glycoprotein differs among coral species (4, 17). The mucus polymer of Acropora formosa, for example, contains 36 to 38% of neutral sugars, 18 to 22% of amino sugars, and 19 to 30% of amino acids; lipids make up 4.2% of the polymer (17). In the mucus of A. formosa, the oligosaccharide decorations (two to four sugar residues long) are attached to the polypeptide backbone by an O-glycosidic link to serine or threonine through the carbon 1 of mannose (16). The glycoproteins from A. formosa and Pseudopterogorgia americana corals contain terminal arabinose residues linked by a β1→2 or β1→3 bond. In the mucus of acroporid corals, arabinose, N-acetyl-glucosamine, mannose, glucose, galactose, N-acetyl-galactosamine, and fucose were the major sugars; serine and threonine were the major amino acids (4, 17). The elucidation of the chemical structure of coral mucus is complicated by the fact that the mucus contains excretions of coral mucocytes, extracellular substances produced by the associated microbiota as well as oligomers that may result from the degradation of these polymers (for reviews, see references 2 and 24).In this study, we tested the hypothesis that S. marcescens PDL100 is capable of a more extensive utilization of A. palmata mucus than other environmental or pathogenic isolates of S. marcescens. This hypothesis is based on the recent discoveries that pathogenic and commensal host-associated bacteria differ in their patterns of carbon source utilization during growth on components of the mucus that lines host surfaces (5, 26). These different strategies of mucus utilization may allow pathogenic bacteria to outcompete native residents and establish within the host''s mucosa (5, 13, 26). To test this hypothesis, growth of the strain PDL100 on coral mucus and enzymatic activities induced during growth on mucus were assayed and compared to those of pathogenic and environmental isolates of S. marcescens and three native coral-associated bacteria.  相似文献   

11.
The rapid decline of Acropora cervicornis and Acropora palmata has often been linked with coral reef deterioration in the Caribbean; yet, it remains controversial whether these species are currently recovering or still declining. In this study, the status of ten populations of A. palmata in Los Roques National Park (LRNP), Venezuela is presented. Six of these populations showed signs of recovery. Ten 80 m2 belt-transects were surveyed at each of the ten reef sites. Within belt-transects, each colony was measured (maximum diameter and height) and its status (healthy, diseased or injured) was recorded. Populations in recovery were defined by a dominance of small to medium-sized colonies in densities >1 colony per 10 m2, together with 75% undamaged colonies, a low prevalence of diseases (<10%), and a low density of predators (0.25 snails per colony). Based on allozyme analysis of seven polymorphic loci in four populations (N = 30), a moderate to high-genetic connectivity among these populations (F ST = 0.048) was found with a predominance of sexual over asexual reproduction (N* : N = 1; N go : N = 0.93–1). Both ecological and molecular data support a good prognosis for the recovery of this species in Los Roques.  相似文献   

12.
The disappearance of Acropora palmata from reefs in the Florida Keys National Marine Sanctuary (FKNMS) represents a significant loss in the amount of structurally complex habitat available for reef-associated species. The consequences of such a widespread loss of complex structure on ecosystem processes are still unclear. We sought to determine whether the disappearance of complex structure has adversely affected grazing and invertebrate predation rates on a shallow reef in the FKNMS. Surprisingly, we found grazing rates and invertebrate predation rates were lower in the structurally complex A. palmata branches than on the topographically simple degraded reefs. We attribute these results to high densities of aggressively territorial damselfish, Stegastes planifrons, living within A. palmata. Our study suggests the presence of agonistic damselfish can cause the realized spatial patterns of ecosystem processes to deviate from the expected patterns. Reef ecologists must therefore carefully consider the assemblage of associate fish communities when assessing how the mortality of A. palmata has affected coral reef ecosystem processes.  相似文献   

13.
Outbreaks of coral diseases are one of the greatest threats to reef corals in the Caribbean, yet the mechanisms that lead to coral diseases are still largely unknown. Here we examined the spatial-temporal dynamics of white-pox disease on Acropora palmata coral colonies of known genotypes. We took a Bayesian approach, using Integrated Nested Laplace Approximation algorithms, to examine which covariates influenced the presence of white-pox disease over seven years. We showed that colony size, genetic susceptibility of the coral host, and high-water temperatures were the primary tested variables that were positively associated with the presence of white-pox disease on A. palmata colonies. Our study also showed that neither distance from previously diseased individuals, nor colony location, influenced the dynamics of white-pox disease. These results suggest that white-pox disease was most likely a consequence of anomalously high water temperatures that selectively compromised the oldest colonies and the most susceptible coral genotypes.  相似文献   

14.
The 125-ka sea level, which was approximately 6 m above present-day sea level, led to the partial flooding of many Caribbean islands. On Grand. Cayman, this event led to the formation of the large Ironshore Lagoon that covered most of the western half of the island and numerous, small embayments along the south, east, and north coasts. At that time, at least 33 coral species grew in waters around Grand Cayman. This fauna, like the modern coral fauna of Grand Cayman, was dominated byMontastrea annularis, Porites porites, Acropora polmata, andA. cervicornis. Scolymia cubensis andMycetophyllia ferox, not previously identified from the Late Pleistocene, are found in the Pleistocene patch reefs.Madracis mirabilis, Colpophyllia breviserialis, Agaricia tenuifolia, A. lamarcki, A. undata, Millepora spp., Mycetophyllia reesi, M. aliciae, andM. danaana, found on modern reefs, have not been identified from the Late Pleistocene reefs. Conversely,Pocillopora sp. cf.P. palmata, which is found in Late Pleistocene reefs, is absent on the modern reefs around Grand Cayman. The corals in the Ironshore Formation of Grand Cayman have been divided into 10 associations according to their dominant species, overall composition, and faunal diversity. Many of these associations are similar to the modern associations around Grand Cayman. Each of the Pleistocene coral associations, which can be accurately located on the known Late Pleistocene paleogeography of Grand Cayman, developed in distinct environmental settings. Overall trends identified in the modern settings are also apparent in the Late Pleistocene faunas. Thus, the diversity of the coral faunas increased from the interior of the Ironshore Lagoon to the reef crest. Similarly, the coral diversity in the Pleistocene patch reefs was related to the size of the reefs and their position relative to breaks in the barrier reef. The barrier reef included corals that are incapable of sediment rejection; whereas the patch reefs lacked such corals.  相似文献   

15.
A major oil spill (8,000,000 liters; 50,000 barrels) occurred in Bahía Las Minas on the Caribbean coast of Panama in April 1986, and oil slicks from the refinery landfill and mangroves were still common there after 21/2 years. We studied short-term effects of the spill on common shallow subtidal reef corals, at the individual, population, and community levels. Numbers of corals, total coral cover, and species diversity based on cover decreased significantly with increased amounts of oiling. Cover of the large branching coral Acropora palmata decreased most. Frequency and size of recent injuries on massive corals increased with level of oiling, particularly for Siderastrea siderea. Growth of three massive species (Porites astreoides, Diploria strigosa, and Montastrea annularis, but not S. siderea) was less at oiled reefs in the year of the spill than during the 9 previous years. Subtidal coral reefs, particularly those along protected coasts, may suffer extensive damage from chronic exposure after major oil spills. Mailing Address from the USA: Smithsonian Tropical Research Institute, APO Miami 34002-0011, USA  相似文献   

16.
Restoration of rare corals is desirable and restoration projects are fairly common, but scientific evaluation of this approach is limited. We tested several techniques for transplant and restabilization of Acropora palmata (the elkhorn coral), an ecologically important Caribbean coral whose populations have suffered severe declines. In rough weather, fragments break‐off colonies of branching corals like A. palmata as a normal form of asexual reproduction. We transplanted naturally produced coral fragments from remnant populations to nearby restoration sites. Untouched control fragments at the donor site died faster and grew slower than fragments attached to the reef, so attaching fragments to the reef is beneficial. Transplanted fragments grew and died at a rate similar to fragments left at the donor site (both groups were attached to the reef), so there were no effects of moving fragments or differences in habitat quality between donor and restoration sites. Growth and survival were similar using four methods of attaching fragments to the reef: cable ties, two types of epoxy resin, and hydrostatic cement. Corals sometimes compete with the macroalgae that dominate degraded reefs, and clearing surrounding algae improved the growth of fragments. After 4 years, transplanted fragments grew to 1,450 cm2 in area and so were potentially sexually active. Because the methods tested are simple and cheap, they could be used by volunteer recreational divers to restore locally extirpated A. palmata populations or to enhance reefs where natural recovery is slow.  相似文献   

17.
Coral diseases have been increasingly reported over the past few decades and are a major contributor to coral decline worldwide. The Caribbean, in particular, has been noted as a hotspot for coral disease, and the aptly named white syndromes have caused the decline of the dominant reef building corals throughout their range. White band disease (WBD) has been implicated in the dramatic loss of Acropora cervicornis and Acropora palmata since the 1970s, resulting in both species being listed as critically endangered on the International Union for Conservation of Nature Red list. The causal agent of WBD remains unknown, although recent studies based on challenge experiments with filtrate from infected hosts concluded that the disease is probably caused by bacteria. Here, we report an experiment using four different antibiotic treatments, targeting different members of the disease-associated microbial community. Two antibiotics, ampicillin and paromomycin, arrested the disease completely, and by comparing with community shifts brought about by treatments that did not arrest the disease, we have identified the likely candidate causal agent or agents of WBD. Our interpretation of the experimental treatments is that one or a combination of up to three specific bacterial types, detected consistently in diseased corals but not detectable in healthy corals, are likely causal agents of WBD. In addition, a histophagous ciliate (Philaster lucinda) identical to that found consistently in association with white syndrome in Indo-Pacific acroporas was also consistently detected in all WBD samples and absent in healthy coral. Treatment with metronidazole reduced it to below detection limits, but did not arrest the disease. However, the microscopic disease signs changed, suggesting a secondary role in disease causation for this ciliate. In future studies to identify a causal agent of WBD via tests of Henle–Koch''s postulates, it will be vital to experimentally control for populations of the other potential pathogens identified in this study.  相似文献   

18.
This is the first report of a ciliate of the genus Halofolliculina infecting hard coral species of six families (Acroporidae, Agaricidae, Astrocoeniidae, Faviidae, Meandrinidae and Poritidae) and milleporids in the Caribbean. Surveys conducted during 2004–2005 in Venezuela, Panama and México confirmed that this ciliate affects up to 25 scleractinian species. The prevalence of this ciliate at the coral community level was variable across sites, being most commonly found at Los Roques, Venezuela, and at Bocas del Toro, Panama (prevalence 0.2–2.5%), but rarely observed in the Mexican Caribbean. Ciliates were more prevalent within populations of acroporids (Acropora palmata, Acropora cervicornis and Acropora prolifera) in Los Roques. Recent observations also corroborate the presence of these ciliates in Curacao and Puerto Rico. Our observations indicate that ciliates affecting corals have a wider distribution than previously thought, and are no longer exclusively found in the Indo-Pacific and Red Sea.  相似文献   

19.
The condition of coral reefs in the Cuban Archipelago is poorly known. We aimed to analyse coral assemblages across 199 reef sites belonging to 12 localities. Crest and fore reefs were assessed using six metrics: species richness, density, coral cover, mortality, coral size and reef complexity. The condition of reefs varied across the archipelago from healthy to depleted reefs. The localities with best scores were Cienfuegos, Bahía de Cochinos and Cazones. These reefs have values of living coral cover (>20%) and complexity (>50?cm) similar to the best preserved Caribbean reefs. However, the majority of crest biotopes suffered important deterioration with old mortality of Acropora palmata populations and moderate coral cover (15%); although crest reefs still maintained their structural complexity. Despite moderate levels of coral cover in fore reefs (18%), their condition was alarming because 25% of the sites had cover below the recovery threshold of 10%, accumulated mortality and structural flattening. Compared with the 1980s, the species richness was roughly the same (42) for crest and fore reefs, although dominance has changed to widespread tolerant species. Coral reef assemblages varied at local and regional scales in similar magnitude, suggesting the combined effects of natural and anthropogenic drivers.  相似文献   

20.
White-band disease and the changing face of Caribbean coral reefs   总被引:24,自引:1,他引:23  
In recent decades, the cover of fleshy macroalgae has increased and coral cover has decreased on most Caribbean reefs. Coral mortality precipitated this transition, and the accumulation of macroalgal biomass has been enhanced by decreased herbivory and increased nutrient input. Populations of Acropora palmata (elkhorn coral) and A. cervicornis (staghorn coral), two of the most important framework-building species, have died throughout the Caribbean, substantially reducing coral cover and providing substratum for algal growth. Hurricanes have devastated local populations of Acropora spp. over the past 20–25 years, but white-band disease, a putative bacterial syndrome specific to the genus Acropora, has been a more significant source of mortality over large areas of the Caribbean region.Paleontological data suggest that the regional Acropora kill is without precedent in the late Holocene. In Belize, A. cervicornis was the primary ecological and geological constituent of reefs in the central shelf lagoon until the mid-1980s. After constructing reef framework for thousands of years, A. cervicornis was virtually eliminated from the area over a ten-year period. Evidence from other parts of the Caribbean supports the hypothesis of continuous Holocene accumulation and recent mass mortality of Acropora spp. Prospects are poor for the rapid recovery of A. cervicornis, because its reproductive strategy emphasizes asexual fragmentation at the expense of dispersive sexual reproduction. A. palmata also relies on fragmentation, but this species has a higher rate of sexual recruitment than A. cervicornis. If the Acropora spp. do not recover, macroalgae will continue to dominate Caribbean reefs, accompanied by increased abundances of brooding corals, particularly Agaricia spp. and Porites spp. The outbreak of white-band disease has been coincident with increased human activity, and the possibility of a causal connection should be further investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号