首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of wild birds in the spread of highly pathogenic avian influenza H5N1 has been greatly debated and remains an unresolved question. However, analyses to determine involvement of wild birds have been hindered by the lack of basic information on their movements in central Asia. Thus, we initiated a programme to document migrations of waterfowl in Asian flyways to inform hypotheses of H5N1 transmission. As part of this work, we studied migration of waterfowl from Qinghai Lake, China, site of the 2005 H5N1 outbreak in wild birds. We examined the null hypothesis that no direct migratory connection existed between Qinghai Lake and H5N1 outbreak areas in central Mongolia, as suggested by some H5N1 phylogeny studies. We captured individuals in 2007 from two of the species that died in the Qinghai Lake outbreaks and marked them with GPS satellite transmitters: Bar-headed Geese Anser indicus ( n  =   14) and Ruddy Shelduck Tadorna ferruginea ( n  =   11). Three of 25 marked birds (one Goose and two Shelducks) migrated to breeding grounds near H5N1 outbreak areas in Mongolia. Our results describe a previously unknown migratory link between the two regions and offer new critical information on migratory movements in the region.  相似文献   

2.
Wild birds in the Orders Anseriformes and Charadriiformes are the natural reservoirs for avian influenza (AI) viruses. Although they are often infected with multiple AI viruses, the significance and extent of acquired immunity in these populations is not understood. Pre-existing immunity to AI virus has been shown to modulate the outcome of a highly pathogenic avian influenza (HPAI) virus infection in multiple domestic avian species, but few studies have addressed this effect in wild birds. In this study, the effect of pre-exposure to homosubtypic (homologous hemagglutinin) and heterosubtypic (heterologous hemagglutinin) low pathogenic avian influenza (LPAI) viruses on the outcome of a H5N1 HPAI virus infection in wood ducks (Aix sponsa) was evaluated. Pre-exposure of wood ducks to different LPAI viruses did not prevent infection with H5N1 HPAI virus, but did increase survival associated with H5N1 HPAI virus infection. The magnitude of this effect on the outcome of the H5N1 HPAI virus infection varied between different LPAI viruses, and was associated both with efficiency of LPAI viral replication in wood ducks and the development of a detectable humoral immune response. These observations suggest that in naturally occurring outbreaks of H5N1 HPAI, birds with pre-existing immunity to homologous hemagglutinin or neuraminidase subtypes of AI virus may either survive H5N1 HPAI virus infection or live longer than naïve birds and, consequently, could pose a greater risk for contributing to viral transmission and dissemination. The mechanisms responsible for this protection and/or the duration of this immunity remain unknown. The results of this study are important for surveillance efforts and help clarify epidemiological data from outbreaks of H5N1 HPAI virus in wild bird populations.  相似文献   

3.
Liu CM  Lin SH  Chen YC  Lin KC  Wu TS  King CC 《PloS one》2007,2(2):e191
Global influenza surveillance is one of the most effective strategies for containing outbreaks and preparing for a possible pandemic influenza. Since the end of 2003, highly pathogenic avian influenza viruses (HPAI) H5N1 have caused many outbreaks in poultries and wild birds from East Asia and have spread to at least 48 countries. For such a fast and wide-spreading virulent pathogen, prediction based on changes of micro- and macro-environment has rarely been evaluated. In this study, we are developing a new climatic approach by investigating the conditions that occurred before the H5N1 avian influenza outbreaks for early predicting future HPAI outbreaks and preventing pandemic disasters. The results show a temperature drop shortly before these outbreaks in birds in each of the Eurasian regions stricken in 2005 and 2006. Dust storms, like those that struck near China's Lake Qinghai around May 4, 2005, exacerbated the spread of this HPAI H5N1 virus, causing the deaths of a record number of wild birds and triggering the subsequent spread of H5N1. Weather monitoring could play an important role in the early warning of outbreaks of this potentially dangerous virus.  相似文献   

4.
A unique pattern of highly pathogenic avian influenza (HPAI) H5N1 outbreaks has emerged along the Central Asia Flyway, where infection of wild birds has been reported with steady frequency since 2005. We assessed the potential for two hosts of HPAI H5N1, the bar-headed goose (Anser indicus) and ruddy shelduck (Tadorna tadorna), to act as agents for virus dispersal along this 'thoroughfare'. We used an eco-virological approach to compare the migration of 141 birds marked with GPS satellite transmitters during 2005-2010 with: 1) the spatio-temporal patterns of poultry and wild bird outbreaks of HPAI H5N1, and 2) the trajectory of the virus in the outbreak region based on phylogeographic mapping. We found that biweekly utilization distributions (UDs) for 19.2% of bar-headed geese and 46.2% of ruddy shelduck were significantly associated with outbreaks. Ruddy shelduck showed highest correlation with poultry outbreaks owing to their wintering distribution in South Asia, where there is considerable opportunity for HPAI H5N1 spillover from poultry. Both species showed correlation with wild bird outbreaks during the spring migration, suggesting they may be involved in the northward movement of the virus. However, phylogeographic mapping of HPAI H5N1 clades 2.2 and 2.3 did not support dissemination of the virus in a northern direction along the migration corridor. In particular, two subclades (2.2.1 and 2.3.2) moved in a strictly southern direction in contrast to our spatio-temporal analysis of bird migration. Our attempt to reconcile the disciplines of wild bird ecology and HPAI H5N1 virology highlights prospects offered by both approaches as well as their limitations.  相似文献   

5.

Background

Qinghai Lake in central China has been at the center of debate on whether wild birds play a role in circulation of highly pathogenic avian influenza virus H5N1. In 2005, an unprecedented epizootic at Qinghai Lake killed more than 6000 migratory birds including over 3000 bar-headed geese (Anser indicus). H5N1 subsequently spread to Europe and Africa, and in following years has re-emerged in wild birds along the Central Asia flyway several times.

Methodology/Principal Findings

To better understand the potential involvement of wild birds in the spread of H5N1, we studied the movements of bar-headed geese marked with GPS satellite transmitters at Qinghai Lake in relation to virus outbreaks and disease risk factors. We discovered a previously undocumented migratory pathway between Qinghai Lake and the Lhasa Valley of Tibet where 93% of the 29 marked geese overwintered. From 2003–2009, sixteen outbreaks in poultry or wild birds were confirmed on the Qinghai-Tibet Plateau, and the majority were located within the migratory pathway of the geese. Spatial and temporal concordance between goose movements and three potential H5N1 virus sources (poultry farms, a captive bar-headed goose facility, and H5N1 outbreak locations) indicated ample opportunities existed for virus spillover and infection of migratory geese on the wintering grounds. Their potential as a vector of H5N1 was supported by rapid migration movements of some geese and genetic relatedness of H5N1 virus isolated from geese in Tibet and Qinghai Lake.

Conclusions/Significance

This is the first study to compare phylogenetics of the virus with spatial ecology of its host, and the combined results suggest that wild birds play a role in the spread of H5N1 in this region. However, the strength of the evidence would be improved with additional sequences from both poultry and wild birds on the Qinghai-Tibet Plateau where H5N1 has a clear stronghold.  相似文献   

6.
The mass destruction of domestic birds has been registered in July, 2005 in Novosibirsk region. Influenza virus H5N1 have been isolated from bodies of the lost birds on developing chicken embryos and identified by serological and molecular biological methods. M-gene and genes coding hemagglutinin and neurominidase were in part sequening. The phylogenetic analysis of hemagglutinin gene has shown, that the isolated viruses are forming a claster with strains, isolated from birds during outbreak of the bird's flu on lake Tsinghai (Qinghai) in China in 2005, in Japan in 2004, and also with H5N1 strains, isolated from the person and birds in the countries of Southeast Asia during ipizootia in 2003-2004. The site of the restriction which associated with pathogenicity of isolated avian influenza viruses H5 serogroup, corresponds to sequence of high pathogenic strains, circulating in the countries of Southeast Asia. The test for pathogenicity with use of chickens has confirmed, that researched strains were high pathogenic for birds.  相似文献   

7.
Brown-headed gulls (Larus brunnicephalus), winter visitors of Thailand, were tracked by satellite telemetry during 2008–2011 for investigating their roles in the highly pathogenic avian influenza (HPAI) H5N1 virus spread. Eight gulls negative for influenza virus infection were marked with solar-powered satellite platform transmitters at Bang Poo study site in Samut Prakarn province, Thailand; their movements were monitored by the Argos satellite tracking system, and locations were mapped. Five gulls completed their migratory cycles, which spanned 7 countries (China, Bangladesh, India, Myanmar, Thailand, Cambodia, and Vietnam) affected by the HPAI H5N1 virus. Gulls migrated from their breeding grounds in China to stay overwinter in Thailand and Cambodia; while Bangladesh, India, Myanmar, and Vietnam were the places of stopovers during migration. Gulls traveled an average distance of about 2400 km between Thailand and China and spent 1–2 weeks on migration. Although AI surveillance among gulls was conducted at the study site, no AI virus was isolated and no H5N1 viral genome or specific antibody was detected in the 75 gulls tested, but 6.6% of blood samples were positive for pan-influenza A antibody. No AI outbreaks were reported in areas along flyways of gulls in Thailand during the study period. Distance and duration of migration, tolerability of the captive gulls to survive the HPAI H5N1 virus challenge and days at viral shedding after the virus challenging suggested that the Brown-headed gull could be a potential species for AI spread, especially among Southeast Asian countries, the epicenter of H5N1 AI outbreak.  相似文献   

8.
In late April of 2009, a global outbreak of human influenza was reported. The causative agent is a highly unusual reassortant H1N1 influenza virus carrying genetic segments derived from swine, human and avian influenza viruses. In this study, we compared the HA, NA and other gene segments of a swine H3N2 influenza A virus, A/Swine/Guangdong/z5/2003, which was isolated from pigs in 2003 in Guangdong Province, China, to the predominant human and swine H3N2 viruses. We found that the similarity of gene segments of A/Swine/Guangdong/z5/2003 was closer to Moscow/99-like human H3N2 virus than Europe swine H3N2 viruses during 1999-2002. These results suggest that A/Swine/Guangdong/z5/2003 may be porcine in origin, possibly being driven by human immune pressure induced by either natural H3N2 virus infection or use of A/Moscow/10/99 (H3N2)-based human influenza vaccine. The results further confirm that swine may play a dual role as a “shelter” for hosting influenza virus from humans or birds and as a “mixing vessel” for generating reassortant influenza viruses, such as the one causing current influenza pandemic.  相似文献   

9.
Since 2002, H5N1 highly pathogenic avian influenza (HPAI) viruses have caused mortality in numerous species of wild birds; this is atypical for avian influenza virus (AIV) infections in these avian species, especially for species within the order Anseriformes. Although these infections document the susceptibility of wild birds to H5N1 HPAI viruses and the spillover of these viruses from infected domestic birds to wild birds, it is unknown whether H5N1 HPAI viruses can persist in free-living avian populations. In a previous study, we established that wood ducks (Aix sponsa) are highly susceptible to infection with H5N1 HPAI viruses. To quantify this susceptibility and further evaluate the likelihood of H5N1 HPAI viral maintenance in a wild bird population, we determined the concentration of virus required to produce infection in wood ducks. To accomplish this, 25 wood ducks were inoculated intranasally at 12-16 wk of age with decreasing concentrations of a H5N1 HPAI virus (A/Whooper Swan/Mongolia/244/05 [H5N1]). The median infectious dose and the lethal dose of H5N1 HPAI virus in wood ducks were very low (10(0.95) and 10(1.71) median embryo infectious dose [EID(50)]/ml, respectively) and less than that of chickens (10(2.80) and 10(2.80) EID(50)/ml). These results confirm that wood ducks are highly susceptible to infection with H5N1 HPAI virus. The data from this study, combined with what is known experimentally about H5N1 HPAI virus infection in wood ducks and viral persistence in aquatic environments, suggest that the wood duck would represent a sensitive indicator species for H5N1 HPAI. Results also suggest that the potential for decreased transmission efficiency associated with reduced viral shedding (especially from the cloaca) and a loss of environmental fitness (in water), may be offset by the ability of this virus to be transmitted through a very low infectious dose.  相似文献   

10.
Recent outbreaks of highly pathogenic avian influenza A virus (H5N1 subtype) infections in poultry and humans (through direct contact with infected birds) have raised concerns that a new influenza pandemic might occur in the near future. Effective vaccines against H5N1 virus are, therefore, urgently needed. Reverse-genetics-based inactivated vaccines have been prepared according to World Health Organization (WHO) recommendations and are now undergoing clinical evaluation in several countries. Here, we review the current strategies for the development of H5N1 influenza vaccines, and future directions for vaccine development.  相似文献   

11.
Highly pathogenic avian influenza (HPAI) H5N1 viruses are now endemic in many Asian countries, resulting in repeated outbreaks in poultry and increased cases of human infection. The immediate precursor of these HPAI viruses is believed to be A/goose/Guangdong/1/96 (Gs/GD)-like H5N1 HPAI viruses first detected in Guangdong, China, in 1996. From 2000 onwards, many novel reassortant H5N1 influenza viruses or genotypes have emerged in southern China. However, precursors of the Gs/GD-like viruses and their subsequent reassortants have not been fully determined. Here we characterize low-pathogenic avian influenza (LPAI) H5 subtype viruses isolated from poultry and migratory birds in southern China and Europe from the 1970s to the 2000s. Phylogenetic analyses revealed that Gs/GD-like virus was likely derived from an LPAI H5 virus in migratory birds. However, its variants arose from multiple reassortments between Gs/GD-like virus and viruses from migratory birds or with those Eurasian viruses isolated in the 1970s. It is of note that unlike HPAI H5N1 viruses, those recent LPAI H5 viruses have not become established in aquatic or terrestrial poultry. Phylogenetic analyses revealed the dynamic nature of the influenza virus gene pool in Eurasia with repeated transmissions between the eastern and western extremities of the continent. The data also show reassortment between influenza viruses from domestic and migratory birds in this region that has contributed to the expanded diversity of the influenza virus gene pool among poultry in Eurasia.  相似文献   

12.
Monthly surveys of Bewick's Swans Cygnus columbianus bewickii , Whooper Swans Cygnus cygnus and Mute Swans Cygnus olor in Britain and Ireland were made during the 1990–1991 winter to determine factors affecting the swans' selection of feeding sites. Geographic location and habitat both influenced site selection. Whooper Swans occurred in greatest numbers at sites in Scotland, northeastern England and Northern Ireland, whereas Bewick's Swans had a more southerly distribution, reflecting differences in the migratory routes used by these two species. The resident Mute Swans were more widespread, with large flocks occurring in southeastern England and in parts of Scotland. Whooper and Mute Swans were found mainly on permanent inland waters (68% and 61%, respectively), but the majority of Bewick's Swans (60%) were on arable land. The percentage of Bewick's Swan flocks found on permanent inland waters (42%) was higher than that found on arable fields (23%), indicating that the large number recorded on arable land was a result of the birds congregating at a comparatively small number of sites. Overall, less than 15% of Whooper Swans and 3% of Mute Swans were on arable crops during the winter, but the largest flocks were associated with arable land for all three species. Thus, although the occurrence of large flocks at particular arable sites may give an impression that swans feed mainly on farmland, the swans are in fact more widely dispersed. Regional variation in the percentage of juveniles present was recorded for all three species. Changes during the winter in the distribution of juveniles, and of the swans as a whole, are considered in relation to food supply and to migratory routes for the Bewick's and Whooper Swans.  相似文献   

13.
Highly pathogenic avian influenza H5N1 viruses are found chiefly in birds and have caused severe disease and death in infected humans. Development of influenza vaccines capable of inducing heterosubtypic immunity against a broad range of influenza viruses is the best option for the preparedness, since vaccination remains the principal method in controlling influenza viral infections. Here, a mOMV-adjuvanted recombinant H5N2 (rH5N2) whole virus antigen vaccine with A/Environment/Korea/W149/06(H5N1)-derived H5 HA and A/Chicken/Korea/ma116/04(H9N2)-derived N2 NA in the backbone of A/Puerto Rico/8/34(H1N1) was prepared and generated by reverse genetics. Groups of mice were vaccinated by a prime-boost regime with the rH5N2 vaccine (1.75 μg of HA with/without 10 μg mOMV or aluminum hydroxide adjuvant for comparison). At two weeks post-immunizations, vaccinated mice were challenged with lethal doses of 103.5 EID50/ml of H5N1 or H9N2 avian influenza viruses, and were monitored for 15 days. Both mOMV- and alum-adjuvant vaccine groups had high survival rates after H5N1 infection and low levels of body weight changes compared to control groups. Interestingly, the mOMV-adjuvanted group induced better cross-reactive antibody responses serologically and promoted cross-protectivity against H5N1 and H9N2 virus challenges. Our results suggest that mOMV could be used as a vaccine adjuvant in the development of effective vaccines used to control influenza A virus transmission.  相似文献   

14.
H5N1 highly pathogenic avian influenza virus has been endemic in poultry in Egypt since 2008, notwithstanding the implementation of mass vaccination and culling of infected birds. Extensive circulation of the virus has resulted in a progressive genetic evolution and an antigenic drift. In poultry, the occurrence of antigenic drift in avian influenza viruses is less well documented and the mechanisms remain to be clarified. To test the hypothesis that H5N1 antigenic drift is driven by mechanisms similar to type A influenza viruses in humans, we generated reassortant viruses, by reverse genetics, that harbored molecular changes identified in genetically divergent viruses circulating in the vaccinated population. Parental and reassortant phenotype viruses were antigenically analyzed by hemagglutination inhibition (HI) test and microneutralization (MN) assay. The results of the study indicate that the antigenic drift of H5N1 in poultry is driven by multiple mutations primarily occurring in major antigenic sites at the receptor binding subdomain, similarly to what has been described for human influenza H1 and H3 subtype viruses.  相似文献   

15.
In February 2006, a highly pathogenic avian influenza (HPAI) H5N1 virus was isolated from Common Pochards (Aythia ferina) in the Dombes region of France, an important migrating and wintering waterfowl area. Thereafter, HPAI H5N1 virus was isolated from 39 swab pools collected from dead waterfowl found in the Dombes, but only from three pooled samples collected outside of this area but located on the same migration flyway. A single turkey farm was infected in the Dombes. The epizootic lasted 2 mo and was restricted to the Dombes area. Virus-positive pools were detected in 20 of 1,200 ponds and infected Mute Swans (Cygnus olor) represented 82% of the virus-positive pools. Other infected species included Common Pochard (n=4), Grey Heron (Ardea cinerea, n=1), Eurasian Buzzard (Buteo buteo, n=1), and Greylag Goose (Anser anser, n=1). Despite intensive monitoring during and after the outbreak, HPAI H5N1 virus was not isolated from healthy wild birds. Our results are consistent with an HPAI H5N1-virus introduction into the Dombes via migrating ducks. These birds could have been pushed west by a severe cold spell in central Europe where the virus had already been detected. The Mute Swan served as an excellent epidemiologic sentinel during this outbreak; swans appear to be highly sensitive to infection with these viruses and swan mortality was easy to detect. During the outbreak, the mortality rates for wild birds remained moderate and the virus affected a limited number of species.  相似文献   

16.
During the latter half of 2005 a widespread outbreak caused by influenza highly pathogenic H5N1 virus among wild and domestic birds occurred in Russia. As pathogenicity level is a polygenic feature and majority of individual genes of influenza A viruses contribute to pathogenicity of influenza viruses to birds, animals and humans. Nucleotide sequencing of the entire genome of influenza H5N1 virus isolates obtained in Kurgan region (Western Siberia) was performed. Structure of viral proteins was analyzed according to the predicted amino acid sequences. HA receptor-binding site of A/chicken/Kurgan/05/2005 and A/duck/Kurgan/08/2005 strains was typical for avian influenza viruses and contained Glu and Gly at positions 226 and 228, respectively. Structure of the cluster of positively charged amino acid residues at the cleavage site was identical for all isolates: QGERRRKKR. According to the data of neuraminidase structure analysis NA of the H5N1 isolates tested was suggested to belong to Z genotype. Amino acid residues typical for birds were revealed in 30 out of 32 positions of M1, M2, NP, PA and PB2 proteins determining host range specificity. One strain isolated in Kurgan contained lysine in position 627 of PB2 protein. Kurgan isolates was shown to have remantadine-sensitive genotype. Glutamic acid was found at position 92 of NS1 protein in both strains indicating virus resistance to interferon. Phylogenetic analyses allowed relating Kurgan isolates to subclade II of clade II of highly pathogenic H5N1 influenza viruses.  相似文献   

17.
Outbreaks of highly pathogenic avian influenza (HPAI) caused by H5N1 virus occurred during 2003 to 2004 in Korea and Japan. The H5N1 viruses isolated in both countries were genetically similar at > 99% identity in the nucleotide sequences of all eight RNA segments, indicating that they belong to genotype V and are distinct from HPAI viruses prevalent in southeast Asia that belong to genotype Z. These findings indicate that the H5N1 viruses that caused the HPAI outbreaks in both Korea and Japan were derived from a common ancestor.  相似文献   

18.
ABSTRACT From 2006 to 2009, we marked 198 Northern Pintails (Anas acuta) with satellite transmitters on their wintering areas in Japan to study their migration routes and habitat use in spring staging areas. We hypothesized that the distribution of pintails during spring staging was influenced by patterns of land use and expected that the most frequently used areas would have more agricultural habitat than lesser‐used areas. We obtained 3031 daily locations from 163 migrant pintails marked with satellite transmitters and identified 524 stopover sites. Based on a fixed kernel home range analysis of stopover utilization distribution (UD), core staging areas (areas within the 50% UD) were identified in northern Honshu and western Hokkaido, and were used by 71% of marked pintails. Core staging areas had a greater proportion of rice fields than peripheral (51–95% UD) and rarely used (outside the 95% UD) staging areas. Stopover sites also contained more rice fields and other agricultural land than were available at regional scales, indicating that pintails selected rice and other agricultural habitats at regional and local scales. Pintails remained at spring staging areas an average of 51 d. Prolonged staging in agricultural habitats of northern Japan was likely necessary for pintails to prepare for transoceanic migration to Arctic nesting areas in eastern Russia.  相似文献   

19.
Influenza A subtype H5N1 has represented a growing alarm since its recent identification in Asia. Previously thought to infect only wild birds and poultry, H5N1 has now infected humans, cats, pigs and other mammals in an ongoing outbreak, often with a fatal outcome. In order to evaluate the risk factors for human infection with influenza virus H5N1, here we summarize 53 case patients confirmed with H5N1 infection during 2006. The review also compares the mortality rate among human cases from late 2003 until 15 June 2006 in different countries. Neither how these viruses are transmitted to humans nor the most effective way to reduce the risk for infection is fully understood. The association between household contact with diseased poultry in human infection has been demonstrated. This association could possibly operate by 2 mechanisms. First, transmission may be by inhalation or conjunctival deposition of large infectious droplets which may travel only in short distances. Second, having infected poultry in the home and preparation of infected poultry for consumption may result in exposure to higher virus concentrations than other types of exposure. There is so far no significant evidence for repeated human to human transmission, yet some cases of human to human transmission among the family relatives in Indonesia, Azerbaijan, Iraq and Turkey have been described. Recent outbreaks of highly pathogenic avian influenza A virus (H5N1 subtype) infections in poultry and humans (through direct contact with infected birds) have raised concerns that a new influenza pandemic might occur in the near future.  相似文献   

20.
The Ecology of Influenza A Viruses in Wild Birds in Southern Africa   总被引:1,自引:0,他引:1  
Avian influenza viruses (AIVs) are pathogens of global concern, but there has been little previous research on avian influenza in southern Africa and almost nothing is known about the dynamics of AIVs in the region. We counted, captured and sampled birds regularly at five sites, two in South Africa (Barberspan and Strandfontein) and one in each of Botswana (Lake Ngami), Mozambique (Lake Chuali) and Zimbabwe (Lakes Manyame and Chivero) between March 2007 and May 2009. The South African and Zimbabwean sites were visited every 2 months and the sites in Botswana and Mozambique every 4 months. During each visit we undertook 5-7?days of standardised bird counts followed by 5-10?days of capturing and sampling water-associated birds. We sampled 4,977 birds of 165 different species and completed 2,503 half-hour point counts. We found 125 positive rRT-PCR cases of avian influenza across all sites. Two viruses (H1N8 and H3N8) were isolated and additional H5, H6 and H7 strains were identified. We did not positively identify any highly pathogenic H5N1. Overall viral prevalence (2.51%) was similar to the lower range of European values, considerable spatial and temporal variation occurred in viral prevalence, and there was no detectable influence of the annual influx of Palearctic migrants. Although waterbirds appear to be the primary viral carriers, passerines may link wild birds and poultry. While influenza cycles are probably driven by the bird movements that result from rainfall patterns, the epidemiology of avian influenza in wild birds in the subregion is complex and there appears to be the possibility for viral transmission throughout the year.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号