首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The bacterial community in the activated sludge of a local wastewater treatment plant was studied in an effort to understand and exploit the metabolic versatility of microorganisms for the efficient biological treatment of food waste. Microorganisms capable of and efficient in degrading domestic food waste were screened based on their ability to produce areas of clearing on selective media containing protein, fat, cellulose and starch. Nine microbial species belonging to the genera Flavobacterium, Pseudomonas, Micrococcus, Aeromonas, Xanthomonas, Vibrio and Sphingomonas were found to degrade all components of food waste. These bacteria were added to domestic wastewater and shown to cause a 60% reduction in the biochemical oxygen demand (BOD) level of wastewater compared to a control in which no microorganisms were added. The ability of the microbial consortium to degrade domestic wastewater as evidenced by the decrease in BOD levels suggests its potential for use in the biological treatment of food waste.  相似文献   

2.
Degrading high-strength phenol using aerobic granular sludge   总被引:1,自引:0,他引:1  
Aerobic granules were adopted to degrade high-strength phenol wastewater in batch experiments. The acclimated granules effectively degraded phenol at a concentration of up to 5,000 mg l−1 without severe inhibitory effects. The biodegradation of phenol by activated sludge was inhibited at phenol concentrations >3,000 mg l−1. The granules were composed of cells embedded in a compact extracellular matrix. After acid or alkaline pretreatment, the granules continued to degrade phenol at an acceptable rate. The polymerase chain reaction-denaturing gradient gel electrophoresis technique was employed to monitor the microbial communities of the activated sludge and the aerobic granules following their being used to treat high concentrations of phenol in batch tests.  相似文献   

3.
The rational assembly of microbial communities to perform desired functions would be of great practical benefit to society. Broadly speaking, there are two major theoretical foundations for microbial community assembly: one based on island biogeography theory and another based on niche theory. In this study, we compared a parameter from each theory (immigration rate and sustainability, respectively) to ascertain which was more influential in establishing a functional bacterial population in phenol degrading activated sludge over a 30-day period. Two bacterial strains originally isolated from activated sludge, but differing in their ability to sustain a population in this environment, were repeatedly added to activated sludge reactors at different doses. The resulting size of each population was monitored by competitive polymerase chain reaction. Large, unexpected, yet reproducible fluctuations in population sizes were observed. Irrespective of this, difference in the ability to sustain a population in this environment, overshadowed the influence of 100-fold differences in immigration rate.  相似文献   

4.
代表活性污泥中苯酚降解菌群的ERIC-PCR产物片段的多态性   总被引:10,自引:1,他引:10  
高平平  王健  席玉英  赵立平 《生态学报》2003,23(6):1095-1100
对可能代表活性污泥中两个时期的主要苯酚降解菌群的:ERIC-PCR指纹图谱中的两条2.1kb的条带(P1和P8)中的DNA片段进行克隆、转化,得到193个转化子。.HinfⅠ物理图谱分析得到35种酶切类型,将两端各进行1次测序后,同源性大于90%的克隆归为一类,共得到10种序列类型。对各类型的代表克隆进行了全长测序,5种类型为P1条带所有,3种类型为P8所有,二者共享的类型为2种,丰度最高的片段为S3,P1条带中76.3%的转化子和P8条带中66.7%转化子属该类型。对所得序列进行检索分析,它们与GenBank中已知基因序列均无显著同源性。用S3特异性引物对活性污泥样品及其它在LB、dCGY、MP和FWM培养基上的回收菌进:行扩增,除LB上的回收菌没有显示目的条带外,活性污泥和其回收菌中均检测到带有该基因组片段的菌种的存在。研究为专一性分离降酚活性污泥中的优势菌提供了分子探针。  相似文献   

5.
为探究造纸废水活性污泥中微生物群落结构多样性以及对造纸废水处理效果的影响,利用Illumina MiSeq 高通量测序方法,分析在处理造纸废水过程中,同一运行阶段两个并联氧化沟内活性污泥的微生物群落与多样性组成。结果表明,系统中处理造纸废水的活性污泥在同一废水条件下微生物群落结构总体稳定,优势细菌为绿弯菌门(Chloroflexi)、拟杆菌门(Bacteroidota)、变形菌门(Proteobacteria)、Myxococcota、放线菌门(Actinobacteria)、厚壁菌门(Firmicutes)等。最重要的优势细菌类群为Chloroflexi,相对丰度占比为47.67%~48.22%,远远高于其他废水中Chloroflexi的占比,其中厌氧绳菌纲(Anaerolineae)是其主要成员,占比84.39%~88.34%,可针对性地去除造纸废水中的污染物。造纸废水活性污泥样品中存在大量特殊功能菌群,其在废水中污染物尤其是木质素的去除中发挥着重要作用。  相似文献   

6.
污水生物处理系统的性能和稳定性与微生物群落结构和动态密切相关。通过深入了解活性污泥中微生物群落结构及其影响因素,有助于提高污水厂污染物的去除效果。在不同污水活性污泥处理系统中细菌群落主要以变形菌、绿弯菌、放线菌、厚壁菌和拟杆菌为功能菌群;活性污泥中寄居的大多数真菌来自于子囊菌门,还有少量担子菌门;古菌以产甲烷菌为主;而病毒中分布最广的噬菌体和致病性病毒是最主要的关注点。本文通过对相关文献分析及总结,综述了进水组成、不同处理工艺、参数(理化参数和运行参数)、地理位置和气候条件等环境因子对活性污泥中细菌、真菌、古菌以及病毒群落组成的影响,尽可能全面地介绍污水厂微生物群落多样性及其对环境因子的响应。同时,对未来研究方向进行探讨,以期能够为活性污泥中功能微生物的应用及调控提供理论和应用基础。  相似文献   

7.
[目的]本研究旨在比较分析分别以喹啉和吲哚为底物,在相同条件下驯化的两个反硝化生物反应器的微生物群落结构.[方法]采用相同的种子污泥和相同的驯化条件,经过大约6周的驯化后,两个反应器均达到稳定而高效的污染物去除能力,通过16S rDNA克隆文库技术对两个反应器的微生物群落结构进行研究.[结果]研究发现,微生物群落结构表现出很大的差异.喹啉驯化的群落中所有的OTU都属于Betaproteobacteria,而吲哚驯化的群落中Betaproteobacteria占56.3%,吲哚驯化的群落具有更高的多样性.两个群落的优势OTU也不同,喹啉驯化群落中Thauera及其它Rhodocyclaceae科的微生物占整个群落的73%,而吲哚驯化群落中优势OTU为Comamonadaceae科、Alcaligenaceae科和Rhodocyclaceae科等类型的微生物,其中Comamonadaceae科的一个OTU占整个群落的28.7%.[结论]不同的驯化底物对微生物群落的组成具有较强的选择作用.首次报道并比较了可高效降解喹啉和吲哚的反硝化生物反应器的微生物群落结构.  相似文献   

8.
活性污泥中微生物群落内部关系非常复杂 ,及时对活性污泥中优势菌群和群落内部关系进行监测是污水处理中采取正确措施的关键。历史研究表明传统培养方法经常导致活性污泥优势菌群检测的失败 ,而r RNA- targeted寡核苷酸探针作为一种快速原位监测活性污泥微生物群落结构和功能的新工具被引入 ,使我们对参与污水净化的微生物群落结构和优势菌群能有较全面的了解。就该方法在识别除磷污泥、脱氮污泥、污泥泡沫和膨胀污泥中微生物群落结构和功能的典型应用进行综述 ,分析了该方法存在的优点和缺点 ,并对目前已建立且应用于活性污泥微生物检测的 r RNA- targeted寡核苷酸探针进行了详细总结  相似文献   

9.
Bacterial degradation of airborne phenol in the phyllosphere   总被引:4,自引:0,他引:4  
Despite the vast surface area of terrestrial plant leaves and the large microbial communities they support, little is known of the ability of leaf-associated microorganisms to access and degrade airborne pollutants. Here, we examined bacterial acquisition and degradation of phenol on leaves by an introduced phenol degrader and by natural phyllosphere communities. Whole-cell gfp-based Pseudomonas fluorescens bioreporter cells detected phenol on leaves that had previously been transiently exposed to gaseous phenol, indicating that leaves accumulated phenol; moreover, they accumulated it in sites that were accessible to epiphytic bacteria and to concentrations that were at least 10-fold higher than those in the air. After inoculated leaves were exposed to gaseous 14C-phenol, leaves harbouring the phenol-degrading Pseudomonas sp. strain CF600 released eight times more 14CO2 than did leaves harbouring a non-degrading mutant, demonstrating that CF600 actively mineralized phenol on leaves. We evaluated phenol degradation by natural microbial communities on green ash leaves that were collected from a field site rich in airborne organic pollutants. We found that significantly more phenol was mineralized by these leaves when the communities were present than by these leaves following surface sterilization. Thus, phenol-degrading organisms were present in these natural communities and were metabolically capable of phenol degradation. Collectively, these results provide the first direct evidence that bacteria on leaves can degrade an organic pollutant from the air, and indicate that bacteria on leaves could potentially contribute to the natural attenuation of organic air pollutants.  相似文献   

10.
ABSTRACT: BACKGROUND: The activated sludge process is one of the most widely used methods for treatment of wastewater and the microbial community composition in the sludge is important for the process operation. While the bacterial communities have been characterized in various activated sludge systems little is known about archaeal communities in activated sludge. The diversity and dynamics of the Archaea community in a full-scale activated sludge wastewater treatment plant were investigated by fluorescence in situ hybridization, terminal restriction fragment length polymorphism analysis and cloning and sequencing of 16S rRNA genes. RESULTS: The Archaea community was specialized and dominated by Methanosaeta-like species. During a 15 month period major changes in the community composition were only observed twice despite seasonal variations in environmental and operating conditions. Water temperature appeared to be the process parameter that affected the community composition the most. Several terminal restriction fragments also showed strong correlations with sludge properties and effluent water properties. The Archaea were estimated to make up 1.6-% of total cell numbers in the activated sludge and were present both as single cells and colonies of varying sizes. CONCLUSIONS: The results presented here show that Archaea can constitute a constant and integral part of the activated sludge and that it can therefore be useful to include Archaea in future studies of microbial communities in activated sludge.  相似文献   

11.
活性污泥微生物菌群研究方法进展   总被引:20,自引:0,他引:20  
活性污泥是活性污泥法处理污水系统的功能主体。人类对活性污泥微生物菌群的认识随着其研究方法的发展而逐步深入。传统培养方法只能检测到活性污泥中1%~15%的微生物。随着一系列基于免培养的分子生物学技术的出现,活性污泥中菌群的复杂性和多样性以惊人的速度被人们认识,大量依靠传统检测方法未能发现却在活性污泥中起关键作用的微生物逐渐被发现。许多模拟活性污泥菌群生存环境条件的现代培养技术开始发展,且已成功培养了一部分传统培养方法不能培养的细菌类群,这为研究基于免培养方法发现的大量新的微生物菌群的生理特性和作用机制提供了可能,也无疑将把人们对活性污泥菌群的认识推向一个新的层次.主要介绍活性污泥微生物菌群研究的一系列方法,从传统培养方法到基于免培养的现代分子生物学技术,再到现代培养技术,着重论述了现代分子生物学技术及其在活性污泥微生物菌群研究中的进展。  相似文献   

12.
The extensive use of phenol compounds and the inability to remove these compounds during wastewater treatment have resulted in the widespread occurrence of phenols in the natural environment. Phenols have been linked to serious risks to human and environmental health. Hence, the need to develop technologies that can effectively remove phenols from wastewater and source waters is a pressing challenge. In this study, light ceramic particles were immersed in activated sludge acclimated to degrade phenol, and microorganisms were allowed to attach to the particles surface to form biofilm. Then the ceramic particles with biofilm were moved into the photolytic circulating-bed biofilm reactor made of quartz glass, which was used for the degradation of phenol by three protocols: photolysis with UV light alone (P), biodegradation alone (B), and the two mechanisms operating simultaneously (photobiodegradation, P&B). The experimental results indicated that phenol removal rate was quickest by B experiment. However, P&B experiment gave more complete mineralization of phenol than that by other protocols. During P&B experiment, the microorganisms grown on porous ceramic carrier still kept the bioactivity degrading phenol, even under UV light irradiation. However, the dominant members of the bacterial community changed dramatically after the intimately coupled photobiodegradation, according to molecular biological analysis to the biofilm. Whereas Beijerinckia sp. was the dominant strain in the inoculum, it was replaced by Thauera sp. MZ1T that played a main role on degrading phenol during P&B experiment.  相似文献   

13.
Microorganisms will be an integral part of biologically based waste processing systems used for water purification or nutrient recycling on long-term space missions planned by the National Aeronautics and Space Administration. In this study, the function and stability of microbial inocula of different diversities were evaluated after inoculation into plant-based waste processing systems. The microbial inocula were from a constructed community of plant rhizosphere-associated bacteria and a complexity gradient of communities derived from industrial wastewater treatment plant-activated sludge. Community stability and community function were defined as the ability of the community to resist invasion by a competitor (Pseudomonas fluorescens 5RL) and the ability to degrade surfactant, respectively. Carbon source utilization was evaluated by measuring surfactant degradation and through Biolog and BD oxygen biosensor community level physiological profiling. Community profiles were obtained from a 16S–23S rDNA intergenic spacer region array. A wastewater treatment plant-derived community with the greatest species richness was the least susceptible to invasion and was able to degrade surfactant to a greater extent than the other complexity gradient communities. All communities resisted invasion by a competitor to a greater extent than the plant rhizosphere isolate constructed community. However, the constructed community degraded surfactant to a greater extent than any of the other communities and utilized the same number of carbon sources as many of the other communities. These results demonstrate that community function (carbon source utilization) and community stability (resistance to invasion) are a function of the structural composition of the community irrespective of species richness or functional richness.  相似文献   

14.
AIMS: The aim of this study is to evaluate the utility of aerobically grown microbial granules for the biological treatment of phenol-containing wastewater. METHODS AND RESULTS: A column-type sequential aerobic sludge blanket reactor was inoculated with activated sludge and fed with phenol as the sole carbon source, at a rate of 1.5 g phenol l-1 d-1. Aerobically grown microbial granules first appeared on day 9 of reactor operation and quickly grew to displace the seed flocs as the dominant form of biomass in the reactor. These granules were compact and regular in appearance, and consisted of bacterial rods and cocci and fungi embedded in an extracellular polymeric matrix. The granules had a mean size of 0.52 mm, a sludge volume index of 40 ml g-1 and a specific oxygen utilization rate of 110 mg oxygen g VSS-1 h-1 (VSS stands for volatile suspended solids). Specific phenol degradation rates increased with phenol concentration from 0 to 500 mg phenol l-1, peaked at 1.4 g phenol g VSS-1 d-1, and declined with further increases in phenol concentration as substrate inhibition effects became important. CONCLUSIONS: Aerobically grown microbial granules were successfully cultivated in a reactor maintained at a loading rate of 1.5 g phenol l-1 d-1. The granules exhibited a high tolerance towards phenol. Significant rates of phenol degradation were attained at phenol concentrations as high as 2 g l-1. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first study to demonstrate the ability of aerobically grown microbial granules to degrade phenol. These granules appear to represent an excellent immobilization strategy for microorganisms to biologically remove phenol and other toxic chemicals in high-strength industrial wastewaters.  相似文献   

15.
The effect of antibiotics sulfadiazine and trimethoprim on activated sludge operated at 8°C was investigated. Performance and microbial communities of sequencing batch reactors (SBRs) and Membrane Bioreactors (MBRs) were compared before and after the exposure of antibiotics to the synthetic wastewater. The results revealed irreversible negative effect of these antibiotics in environmentally relevant concentrations on nitrifying microbial community of SBR activated sludge. In opposite, MBR sludge demonstrated fast adaptation and more stable performance during the antibiotics exposure. Dynamics of microbial community was greatly affected by presence of antibiotics. Bacteria from classes Betaproteobacteria and Bacteroidetes demonstrated the potential to develop antibiotic resistance in both wastewater treatment systems while Actinobacteria disappeared from all of the reactors after 60 days of antibiotics exposure. Altogether, results showed that operational parameters such as sludge retention time (SRT) and reactor configuration had great effect on microbial community composition of activated sludge and its vulnerability to antibiotics. Operation at long SRT allowed archaea, including ammonium oxidizing species (AOA) such as Nitrososphaera viennensis to grow in MBRs. AOA could have an important role in stable nitrification performance of MBR-activated sludge as a result of tolerance of archaea to antibiotics. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2708, 2019  相似文献   

16.
The relationship between the abundance of three functional genes and their corresponding biochemical reaction rates was investigated in several activated sludge and mill effluent microbial communities. Gene probes were prepared for two key denitrification genes (nirS and nirK) and for one nitrogen-fixation gene (nifH) and were validated using a variety of strains of known nir and nif genotype. ATP-based measures of viable cell numbers were used to provide total population sizes. In certain microbial communities (activated sludge enrichment cultures and multiple samples taken from the same mill primary clarifier), a strong correlation was observed between gene abundance and biochemical activity rates. However, when comparing several different nonenriched activated sludge bioreactors and separate primary clarifier microbial communities, the ratio of specific gene abundance to biochemical activity rates varied widely. These results suggest that in cases where a microbial community is not fully induced for a given biochemical activity or when very different communities are compared, quantitative gene probing can give a better measure of a community's potential to carry out the encoded function than can the relevant biochemical assay. However, the gene quantitation method employed here probably underestimated the true number of probed genes present in the microbial communities due to nirS and nifH genes in the communities having reduced DNA sequence similarity with the probes used.  相似文献   

17.
Aims: Single‐walled carbon nanotubes (SWNTs) are likely to become increasingly widespread and yet their environmental impact is not well understood. The purpose of the current study was to evaluate the impact of SWNTs on microbial communities in a ‘sentinel’ environmental system, activated sludge batch‐scale reactors. Methods and Results: Triplicate batch reactors were exposed to SWNTs and compared to control reactors exposed to impurities associated with SWNTs. Automated ribosomal intergenic spacer analysis (ARISA) was used to assess bacterial community structure in each reactor. SWNT exposure was found to impact microbial community structure, while SWNT‐associated impurities had no effect, compared to controls. 16S rRNA gene sequence analysis indicated that dominant phylotypes detected by ARISA included members of the families Sphingomonadaceae and Cytophagacaceae and the genus Zoogloea. ARISA results indicated an adverse impact of SWNTs on the sphingomonad relative to other community members. Changes in community structure also occurred in both SWNT‐exposed and control reactors over the experimental time period and with the date on which activated sludge was obtained from a wastewater treatment facility. Conclusions: These results indicate that SWNTs differentially impact members of the activated sludge reactor bacterial community. Significance and Impact of the Study: The finding that community structure was affected by SWNTs indicates that this emerging contaminant differentially impacted members of the activated sludge bacterial community and raises the concern that SWNTs may also affect the services it provides.  相似文献   

18.
微生物降解磺胺甲恶唑的研究进展   总被引:1,自引:0,他引:1  
闫雷  梁斌  王爱杰  刘双江  刘志培 《微生物学报》2020,60(12):2747-2762
抗生素是一类难降解、低浓度就有高生态毒性效应的化合物,近年来被归为新型环境污染物,其环境残留与去除备受关注。作为广泛使用的抗生素之一,磺胺甲恶唑在水土环境中的残留量不断增加,检出率也越来越高。研究表明,磺胺甲恶唑是少数几种可被微生物降解的抗生素之一,微生物降解法是最具潜力的残留磺胺甲恶唑去除手段。本文总结了磺胺甲恶唑在土壤、沉积物、活性污泥、混合菌群、酶等条件下的降解及已分离的具有降解能力的单菌株对磺胺甲恶唑的降解情况,包括其降解效率、降解条件等,归纳了目前磺胺甲恶唑微生物降解的主要分类,并讨论了影响磺胺甲恶唑降解的两个特有因素。指出从分子生物学及生物信息学角度研究其降解途径,降解菌、降解菌群的人工构建及其在含磺胺甲恶唑污水处理中的应用与效果评价等应为今后磺胺甲恶唑生物降解与应用研究的重点。  相似文献   

19.
Contamination of aquifers by organic pollutants threatens groundwater supplies and the environment. In situ biodegradation of organic pollutants by microbial communities is important for the remediation of contaminated sites, but our understanding of the relationship between microbial development and pollutant biodegradation is poor. A particular challenge is understanding the in situ status of microorganisms attached to solid surfaces, but not accessible via conventional sampling of groundwater. We have developed novel flow-through microcosms and examined dynamic changes in microbial community structure and function in a phenol-degrading system. Inoculation of these microcosms with a complex microbial community from a plume in a phenol-contaminated aquifer led to the initial establishment of a population dominated by a few species, most attached to the solid substratum. Initially, phenol biodegradation was incomplete, but as the microbial community structure became more complex, phenol biodegradation was more extensive and complete. These results were replicated between independent microcosms, indicating a deterministic succession of species. This work demonstrates the importance of examining community dynamics when assessing the potential for microbial biodegradation of organic pollutants. It provides a novel system in which such measurements can be made readily and reproducibly to study the temporal development and spatial succession of microbial communities during biodegradation of organic pollutants at interfaces within such environments.  相似文献   

20.
从含酚废水处理池污泥中驯化分离得到一株能以苯酚为唯一碳源的菌株FD-1。经18SrDNA和ITS序列的BLAST比对及系统发育分析,鉴定FD-1为热带假丝酵母(Candida tropicalis)的近缘种。FD-1对苯酚的降解能力较强,能够完全降解浓度为1 000mg·L-1的苯酚溶液。初步确定了FD-1在降解苯酚溶液时的最适温度为30~35℃,pH为6.0~7.0,并且通过探讨加入无机盐、培养基原料以及改变接种量三个因素对苯酚降解的影响,其耐受盐的浓度可达5%,对实践中应用微生物降解含酚废水具有积极的意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号