首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2013年12月中旬昆明出现严重的霜冻天气,导致植物大面积受害,造成了巨大的损失。若了解各类植物对极端低温危害的抵抗力,可为科学合理地预防和降低霜冻等冻害天气对园林植物的危害提供一定参考。作者抽样调查了昆明植物园90科225种植物的受害情况.并对受害程度与植物系统分类、形态特征和产地分布等方面的关系进行统计分析。结果表明蕨类植物抗冻性较差,裸子植物抗冻性较强,不同科的被子植物抗冻性差异较大:多年生草本比一年生草本抗冻性差,常绿木本植物比落叶木本植物抗冻性更强;本地物种比引进物种抗冻性较强。根据调查结果,对已有园林植物的保护和新的园林绿化建设提出了一定的建议。即根据不同植物的抗冻性强弱,一方面要对园林植物给予积极有效的保护和采取预防霜冻危害的措施,另一方面要结合环境条件和植物特征选择适宜种植的物种。  相似文献   

2.
High frost, a common natural disaster, means heavy damage to plants with temperature dropped below 0℃. In mid December 2013, Kunming suffered from severe frosts, resulting in large area damage of the plants, which brought huge losses. To provide a reference for scientifically and reasonably preventing and reducing frost freezing to garden plants, it is necessary to understand resistance of various plant catagories to extreme cold hazards. In this paper, a sample survey on 225 plant species from 90 families was performed for victimized plants in Kunming Botanical Garden. With the statistical analysis of the relationship between damage degree and plant systematics, morphology, distribution or other factors, we drew several conclusions. For example, ferns had a relatively poor frost resistance while gymnosperms mostly were strong, and angiosperms showed larger differences in frost resistance; annual herbaceous and evergreen woody had a stronger resistance than perennial herbaceous and deciduous woody respectively; native species exhibited greater resistance than introduced species. According to the results, some suggestions were given for protecting existing garden plants and constructing new landscapings. That is based on the strength of frost resistance of different plants, on one hand to give the garden plants a positive and effective protection and prevention measures against frost damage, on the other hand to select species suitable for planting combined environmental conditions with characters of plants.  相似文献   

3.
Salix paraplesia was used as an experimental model to investigate the effect of short day photoperiod (SD) and low temperature (LT) on development of freezing tolerance and on endogenous abscisic acid (ABA) contents. We characterized differences in SD and LT-induced cold acclimation in three ecotypes from different altitudes. The results demonstrated that cold acclimation could be triggered by exposing the plants to SD or LT alone, and that a combination of the different treatments had an additive effect on freezing tolerance in all ecotypes studied. However, the high altitudinal ecotype was more responsive to SD and LT than the low altitudinal ecotype. Development of freezing tolerance induced by SD and LT was accompanied by changes in ABA contents which were ecotype-dependent. Although the stem had higher initial freezing tolerance, the leaves developed freezing tolerance more quickly than the stem and thus leaves may provide an interesting experimental system for physiological and molecular studies of cold acclimation in woody plants.  相似文献   

4.
The maximum leaf surface temperatures (MLSTs) of 126 species of higher plants were measured by means of an infrared thermometer, in the Inland Sea area, southwest of Honshu-Island, Japan, where plants suffered from severe environmental conditions due to an abnormally small amount of precipitation during the summer of 1978. The MLSTs of plants in the summer of 1978 were greater than or equal to those of 1979, when the environmental conditions were not so severe. The MLST measured in this study was 50.4 C for a non-succulent plant (Liriodendron), and 53.1 C for a succulent plant (Agave). Plants with different life forms appeared to have different MLSTs. The average of the MLSTs of conifers deciduous trees, and evergreens were 36.4, 37.7, and 40.3 C, respectively. This order corresponds to the distribution of forests from high to low, latitudes. Also the MLSTs were higher for woody plants than for herbaceous plants. Relatively high leaf temperatures were observed for climbing plants, both herbaceous and woody. Plants with narrow leaves had lower leaf surface temperatures than those with borad leaves. Herbaceous dicotyledonous plants actively growing at the end of the summer of 1978, in full sun at Hiroshima Castle were exclusively those with relatively high leaf temperatures.  相似文献   

5.
Cold acclimation of plants is a complex process involving a number of biochemical and physiological changes. The ability to cold acclimate is under genetic control. The development of freezing tolerance in woody plants is generally triggered by non-freezing low temperatures but can also be induced by mild drought or exogenous abscisic acid, as well as by short photoperiod. In nature, the extreme freezing tolerance of woody plants is achieved during sequential stages of cold acclimation the first of which is initiated by short photoperiods and non-freezing low temperatures, and the second by freezing temperatures. Although recent breakthroughs have increased our knowledge on the physiological molecular basis of freezing tolerance in herbaceous species, which acclimate primarily in response to non-freezing low temperatures, very little is known about cold acclimation of woody plants. This article attempts to review our current understanding of the physiological aspects that underline cold acclimation in woody plants.  相似文献   

6.
河南省木本植物的多样性及其在园林中应用的前景   总被引:16,自引:0,他引:16  
本文对河南省所产的106科308属1 240种木本植物进行了系统的分析和研究,发现河南省木本植物的物种多样性和生活型多样性丰富,生态学特性多样性和园林用途多样性齐全.文中界定了各类园林树木的判定标准,并根据此标准初步筛选出适宜于在城市园林中栽植的各类观赏树木85科219属641种、2亚种、24变种和1变型,从而为河南省及其邻近地区城市园林及各类风景园林的绿化在树种选择上提供了科学依据.文章最后对河南省野生园林树木资源的开发利用前景进行了展望,对其开发利用途径提出了建议.  相似文献   

7.
The capacity to tolerate freezing temperatures limits the geographical distribution of many plants, including several species of agricultural importance. However, the genes involved in freezing tolerance remain largely unknown. Here, we describe the variation in constitutive freezing tolerance that occurs among worldwide accessions of Arabidopsis thaliana. We found that although plants from high latitudes tend to be more freezing tolerant than plants from low latitudes, the environmental factors that shape cold adaptation differ across the species range. Consistent with this, we found that the genetic architecture of freezing tolerance also differs across its range. Conventional genome‐wide association studies helped identify a priori and other promising candidate genes. However, simultaneously modelling climate variables and freezing tolerance together pinpointed other excellent a priori candidate genes. This suggests that if the selective factor underlying phenotypic variation is known, multi‐trait mixed models may aid in identifying the genes that underlie adaptation.  相似文献   

8.
Winter evergreens living in mountainous areas have to withstand a harsh combination of high light levels and low temperatures in wintertime. In response, evergreens can activate a photoprotective process that consists of the downregulation of photosynthetic efficiency, referred to as winter photoinhibition (WPI). WPI has been studied mainly in woody evergreens and crops even when, in many instances, other functional groups such as lichens or bryophytes dominate in alpine and boreal habitats. Thus, we aimed to (1) assess the occurrence of WPI within overwintering evergreens comprising woody species, herbs, mosses and lichens, (2) compare the recovery kinetics among those groups and (3) clarify the role of thylakoid proteins and pigments in both processes: WPI and recovery. With this aim, WPI was analyzed in 50 species in the field and recovery kineticcs were studied in one model species from each functional group. Results showed that high levels of WPI are much more frequent among woody plants than in any other group, but are also present in some herbs, lichens and mosses. Winter conditions almost always led to the de‐epoxidation of the xanthophyll cycle. Nevertheless, changes in the de‐epoxidation level were not associated with the activation/deactivation of WPI in the field and did not match changes in photochemical efficiency during recovery treatments. Seasonal changes in thylakoid proteins [mainly D1 (photosystem II core complex protein) and PsbS (essential protein for thermal dissipation)] were dependent on the functional group. The results highlight the diversity of physiological solutions and suggest a physical–mechanical reason for the more conservative strategy of woody species compared with other groups.  相似文献   

9.
本文对河南省所产的106科308属1 240种木本植物进行了系统的分析和研究,发现河南省木本植物的物种多样性和生活型多样性丰富,生态学特性多样性和园林用途多样性齐全。文中界定了各类园林树木的判定标准,并根据此标准初步筛选出适宜于在城市园林中栽植的各类观赏树木85科219属641种、2亚种、24变种和1变型,从而为河南省及其邻近地区城市园林及各类风景园林的绿化在树种选择上提供了科学依据。文章最后对河南省野生园林树木资源的开发利用前景进行了展望,对其开发利用途径提出了建议。  相似文献   

10.
Woody plant phenology in the West Africa savanna   总被引:5,自引:0,他引:5  
In the savanna of West Africa the seasonality of rainfall, with a drought period of at least four months, strongly influences the vegetation. Rainfall is a very critical abiotic variable and therefore plant species must be well adapted to survive in this habitat.
In our research, phenological patterns of 120 woody plant species have been examined based on the presence of green leaves. According to the patterns found, these species can be classified in phenological groups, which represent different strategies for survival. Two extreme strategies are found to resist drought: (1) by using the waterstorage in the deeper soil layers and river beds and by restricting drought-damage through scleromorphic features, and (2) by avoiding the drought through foliage shedding in the dry period.
The first strategy is represented by the riparian and upland evergreens , and the semi-evergreens . The evergreens bear leaves the whole year, gradually replacing old leaves by new ones. The riparian evergreens are strictly bound to riverbeds and grow in or immediately adjacent to them. The semi-evergreens shed their leaves and start sprouting during a short period (one-two weeks) once a year. Because the evergreens and the semi-evergreens are in leaf in the dry period they have to protect themselves to drought damage by scleromorphic features.
Contrary to these species are the deciduous species which are bare for at least some months per year. When the dry season starts their leaves dry out and are subsequently shed. They start sprouting before or at the beginning of the first rains. Although much less in number, some deciduous trees also have scleromorphic features to resist drought-damage. The strategy of sprouting just before the rainy season begins indicates that certain water resources remain available to these deep-rooting woody plants throughout the year, providing them with a fully operating photosynthetic apparatus when favourable conditions arrive.  相似文献   

11.
安徽野生木本观赏植物资源及其利用的研究   总被引:5,自引:0,他引:5  
列出了安徽具有代表性和较高观赏价值的野生木本观赏植物71科246种,重点评价了部分植物的观赏特性和园林用途对资源的进一步开发和保护提出了自己的看法。  相似文献   

12.
Enemy release is frequently posed as a main driver of invasiveness of alien species. However, an experimental multi‐species test examining performance and herbivory of invasive alien, non‐invasive alien and native plant species in the presence and absence of natural enemies is lacking. In a common garden experiment in Switzerland, we manipulated exposure of seven alien invasive, eight alien non‐invasive and fourteen native species from six taxonomic groups to natural enemies (invertebrate herbivores), by applying a pesticide treatment under two different nutrient levels. We assessed biomass production, herbivore damage and the major herbivore taxa on plants. Across all species, plants gained significantly greater biomass under pesticide treatment. However, invasive, non‐invasive and native species did not differ in their biomass response to pesticide treatment at either nutrient level. The proportion of leaves damaged on invasive species was significantly lower compared to native species, but not when compared to non‐invasive species. However, the difference was lost when plant size was accounted for. There were no differences between invasive, non‐invasive and native species in herbivore abundance. Our study offers little support for invertebrate herbivore release as a driver of plant invasiveness, but suggests that future enemy release studies should account for differences in plant size among species.  相似文献   

13.
Mountain systems throughout the globe are characterized by high levels of species richness and species endemism. Biodiversity, however, is not distributed evenly with altitude, but often declines from mid to high altitudes. Conversely, endemic species may be over‐represented at high altitudes. Upward elevational range shifts of mountain species have been reported in response to ongoing changes in climate, yet the reports are dominated by studies on woody species and mountains at high latitudes. We investigated spatial and temporal changes in the mountain biodiversity in the subtropical island of Taiwan, based on historical survey and resurvey data during the period 1906–2006. We found that upper altitudinal limits of mountain plant distributions have risen by ca 3.6 m yr?1 during the last century, in parallel with rising temperatures in the region. Although species, genus, and family richness decline with altitude, ca 55% of species at the highest altitudes are endemic to the island. Given the steep decline in land area with increasing elevation, these high altitude areas are disproportionately important for plant biodiversity when richness and endemism are standardized by available land area. We argue that the distributional shift that we report, in combination with the altitudinal distribution of plant diversity, is likely to pose a major threat to high mountain species of this highly biodiverse island, a threat that is becoming increasingly evident for high mountain plants throughout the globe.  相似文献   

14.
Aims (i) To explore variations in nutrient resorption of woody plants and their relationship with nutrient limitation and (ii) to identify the factors that control these variations in forests of eastern China.Methods We measured nitrogen (N) and phosphorus (P) concentrations in both green and senesced leaves of 172 woody species at 10 forest sites across eastern China. We compared the nutrient resorption proficiency (NuRP) and efficiency (NuRE) of N and P in plant leaves for different functional groups; we further investigated the latitudinal and altitudinal variations in NuRP and NuRE and the impacts of climate, soil and plant types on leaf nutrient resorptions.Important findings On average, the leaf N resorption proficiency (NRP) and P resorption proficiency (PRP) of woody plants in eastern China were 11.1mg g ? 1 and 0.65 mg g ? 1, respectively; and the corresponding N resorption efficiency (NRE) and P resorption efficiency (PRE) were 49.1% and 51.0%, respectively. Angiosperms have higher NRP (are less proficient) values and lower NRE and PRE values than gymnosperms, but there are no significant differences in NRP, PRP and PRE values between species with different leaf habits (evergreen vs. deciduous angiosperms). Trees have higher NRE and PRE than shrubs. Significant geographical patterns of plant nutrient resorption exist in forests of eastern China. In general, NRP and PRE decrease and PRP and NRE increase with increasing latitude/altitude for all woody species and for the different plant groups. Plant functional groups show more controls than environmental factors (climate and soil) on the N resorption traits (NRP and NRE), while site-related variables present more controls than plant types on PRP and PRE. NRP increases and PRP and NRE decrease significantly with increasing temperature and precipitation for the overall plants and for most groups, except that significant PRE–climate relationship holds for only evergreen angiosperms. Leaf nutrient resorption did not show consistent responses in relation to soil total N and P stoichiometry, probably because the resorption process is regulated by the relative costs of drawing nutrients from soil versus from senescing leaves. These results support our hypothesis that plants growing in P-limited habitats (low latitudes/altitudes or areas with high precipitation/temperature) should have lower PRP and higher PRE, compared with their counterparts in relatively N-limited places (high latitudes/altitudes or areas with low precipitation/temperature). Our findings can improve the understanding of variations in N and P resorption and their responses to global change, and thus facilitate to incorporate these nutrient resorption processes into future biogeochemical models.  相似文献   

15.
Despite advances in restoration of degraded lands around the world, native plants are still underutilized. Selection of appropriate plant materials is a critical factor in determining plant establishment and persistence. To better inform decision‐making, we examined cold‐hardiness dynamics, flowering phenology, and survival among five geographically distinct sulfur‐flower buckwheat (Polygonaceae: Eriogonum umbellatum Torr.) populations in a common garden. LT50 (a measure of freezing injury) was determined every 6 weeks across a complete year; one population was also evaluated at the source. Cold‐hardiness dynamics were similar across populations, with annual fluctuations in mean LT50 exceeding 40°C. Rate of deacclimation (i.e. loss of cold tolerance) in spring varied across populations and was not related to the elevation from which a population came. Plants were less cold hardy in October 2014 compared to October 2013, likely reflecting a response to colder local conditions in 2013. Although the range of LT50 was similar for a single comparison of common garden versus wild‐grown plants, wild‐grown plants acclimated and deacclimated earlier than common garden‐grown plants. Plants derived from a low‐elevation population showed delayed flowering phenology, while high‐elevation populations showed earlier flowering phenology, with one high‐elevation population having the lowest survival rate in the common garden. These results suggest that while considerable plasticity in seasonal cold‐hardiness dynamics occur, population variability in deacclimation and flowering phenology have implications for selection and movement of sulfur‐flower buckwheat for ecological restoration.  相似文献   

16.
In temperate-zone mountains, summer frosts usually occur during unpredictable cold spells with snow-falls. Earlier studies have shown that vegetative aboveground organs of most high-mountain plants tolerate extracellular ice in the active state. However, little is known about the impact of frost on reproductive development and reproductive success. In common plant species from the European Alps (Cerastium uniflorum, Loiseleuria procumbens, Ranunculus glacialis, Rhododendron ferrugineum, Saxifraga bryoides, S. moschata, S. caesia), differing in growth form, altitudinal distribution and phenology, frost resistance of reproductive and vegetative shoots was assessed in different reproductive stages. Intact plants were exposed to simulated night frosts between ?2 and ?14 °C in temperature-controlled freezers. Nucleation temperatures, freezing damage and subsequent reproductive success (fruit and seed set, seed germination) were determined. During all reproductive stages, reproductive shoots were significantly less frost resistant than vegetative shoots (mean difference for LT50 ?4.2 ± 2.7 K). In most species, reproductive shoots were ice tolerant before bolting and during fruiting (mean LT50 ?7 and ?5.7 °C), but were ice sensitive during bolting and anthesis (mean LT50 around ?4 °C). Only R. glacialis remained ice tolerant during all reproductive stages. Frost injury in reproductive shoots usually led to full fruit loss. Reproductive success of frost-treated but undamaged shoots did not differ significantly from control values. Assessing the frost damage risk on the basis of summer frost frequency and frost resistance shows that, in the alpine zone, low-statured species are rarely endangered as long as they are protected by snow. The situation is different in the subnival and nival zone, where frost-sensitive reproductive shoots may become frost damaged even when covered by snow. Unprotected individuals are at high risk of suffering from frost damage, particularly at higher elevations. It appears that ice tolerance in reproductive structures is an advantage but not an absolute precondition for colonizing high altitudes with frequent frost events.  相似文献   

17.
Freezing injury is a major factor limiting the geographical distribution of plant species and the growth and yield of crop plants. Plants from temperate climates are able to increase their freezing tolerance during exposure to low but non‐freezing temperatures in a process termed cold acclimation. Damage to cellular membranes is the major cause of freezing injury in plants, and membrane lipid composition is strongly modified during cold acclimation. Forward and reverse genetic approaches have been used to probe the role of specific lipid‐modifying enzymes in the freezing tolerance of plants. In the present paper we describe an alternative ecological genomics approach that relies on the natural genetic variation within a species. Arabidopsis thaliana has a wide geographical range throughout the Northern Hemisphere with significant natural variation in freezing tolerance that was used for a comparative analysis of the lipidomes of 15 Arabidopsis accessions using ultra‐performance liquid chromatography coupled to Fourier‐transform mass spectrometry, allowing the detection of 180 lipid species. After 14 days of cold acclimation at 4°C the plants from most accessions had accumulated massive amounts of storage lipids, with most of the changes in long‐chain unsaturated triacylglycerides, while the total amount of membrane lipids was only slightly changed. Nevertheless, major changes in the relative amounts of different membrane lipids were also evident. The relative abundance of several lipid species was highly correlated with the freezing tolerance of the accessions, allowing the identification of possible marker lipids for plant freezing tolerance.  相似文献   

18.
Aim To investigate evolutionary changes in the size of leaves, stems and seeds of plants inhabiting isolated islands surrounding New Zealand. Location Antipodes, Auckland, Campbell, Chatham, Kermadec, Three Kings and Poor Knights Islands. Methods First, we compared the size of leaves and stems produced by 14 pairs of plant taxa between offshore islands and the New Zealand mainland, which were grown in a common garden to control for environmental effects. Similar comparisons of seed sizes were made between eight additional pairs of taxa. Second, we used herbarium specimens from 13 species pairs to investigate scaling relationships between leaf and stem sizes in an attempt to pinpoint which trait might be under selection. Third, we used herbarium specimens from 20 species to test whether changes in leaf size vary among islands located at different latitudes. Lastly, we compiled published records of plant heights to test whether insular species in the genus Hebe differed in size from their respective subgenera on the mainland. Results Although some evidence of dwarfism was observed, most insular taxa were larger than their mainland relatives. Leaf sizes scaled positively with stem diameters, with island taxa consistently producing larger leaves for any given stem size than mainland species. Leaf sizes also increased similarly among islands located at different latitudes. Size changes in insular Hebe species were unrelated to the average size of the respective subgenera on the mainland. Main conclusions Consistent evidence of gigantism was observed, suggesting that plants do not obey the island rule. Because our analyses were restricted to woody plants, results are also inconsistent with the ‘weeds‐to‐trees’ hypothesis. Disproportionate increases in leaf size relative to other plant traits suggest that selection may favour the evolution of larger leaves on islands, perhaps due to release from predation or increased intra‐specific competition.  相似文献   

19.
Hydraulic traits were studied in temperate, woody evergreens in a high-elevation heath community to test for trade-offs between the delivery of water to canopies at rates sufficient to sustain photosynthesis and protection against disruption to vascular transport caused by freeze-thaw-induced embolism. Freeze-thaw-induced loss in hydraulic conductivity was studied in relation to xylem anatomy, leaf- and sapwood-specific hydraulic conductivity and gas exchange characteristics of leaves. We found evidence that a trade-off between xylem transport capacity and safety from freeze-thaw-induced embolism affects photosynthetic activity in overwintering evergreens. The mean hydraulically weighted xylem vessel diameter and sapwood-specific conductivity correlated with susceptibility to freeze-thaw-induced embolism. There was also a strong correlation of hydraulic supply and demand across species; interspecific differences in stomatal conductance and CO(2) assimilation rates were correlated linearly with sapwood- and leaf-specific hydraulic conductivity. Xylem vessel anatomy mediated an apparent trade-off between resistance to freeze-thaw-induced embolism and hydraulic and photosynthetic capacity during the winter. These results point to a new role for xylem functional traits in determining the degree to which species can maintain photosynthetic carbon gain despite freezing events and cold winter temperatures.  相似文献   

20.
湖南野生木本观赏植物资源及利用   总被引:4,自引:0,他引:4  
湖南有维管束植物5500余种(含变种,下同),其中野生木本观赏植物1200余种。笔者根据湖南木本观赏植物自然分布规律.将湖南野生木本观赏植物划分为4个类型.即中温型、低温型、耐寒型、广温型。对湖南主要的野生木本观赏植物如针叶类(39种)、茶属(31种).冬青属(68种)、兰花类(86种)、杜鹃花属(54种)、槭树属(42种)等种类较多的类群进行了探讨,并对它们的观赏特性、抗寒性和选育潜力也进行了研究.提出了开发利用的建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号