共查询到20条相似文献,搜索用时 15 毫秒
1.
Lloyd W. Morrison 《Journal of Biogeography》2010,37(11):2148-2157
Aim To document long‐term rates of immigration, extinction and turnover in insular ant faunas and evaluate the relative impacts of recent hurricane activity and climate change. Location Small islands in the Exuma Cays, Andros and Abaco archipelagos of the Bahamas. Methods I surveyed the ant faunas of > 140 small islands in three archipelagos of the Bahamas over several multi‐year periods, spanning up to 17 years, by recording species attracted to baits. Immigrations, extinctions and species turnover were documented, as were the relative abundances of species. Four major hurricanes affected the study archipelagos in the second decade of this study. Results Rates of ant turnover were generally low among archipelagos and time periods. Immigrations outnumbered extinctions in the first decade of this study, although this pattern was reversed in the second decade. General physical characteristics of the islands were not significant predictors of the occurrence of extinctions. The relative abundance (based on proportion of baits occupied) of persistent populations of the two most common species both declined in the second decade, indicating, along with higher extinction rates, a generalized decline in these insular ant faunas. Main conclusions The available evidence suggests that hurricanes were not directly responsible for the observed declines in the ant faunas. Regional changes in insular ant species richness, however, are correlated with generalized North Atlantic hurricane activity over the last half century. Indirect effects of hurricanes on the vegetation of these islands, such as increased herbivory and possible decreased nutrient availability, along with a long‐term (quarter century) increase in temperature and decline in rainfall, are possible contributing factors to the changing ant turnover dynamics. 相似文献
2.
3.
4.
5.
全球面临着生境破碎化的危机,物种保护已成为人类面临的重大课题,并不是所有的人对岛屿生物地理学理论的产生及其关注的海洋岛屿都很熟悉,但是越来越多生物赖以生存的自然栖息地的丧失和破碎化都是有目共睹的,岛屿生物地理学和集合种群理论是目前物种保护的两个基本理论,物种迁入率和绝灭率的动态变化决策岛屿上的物种丰富度是岛屿生物地理学理论的核心内容,而集合种群理论关注的是局部种群之间个体迁移的动态以及物种的续存条件,在概述两个理论形成、发展及其核心内容的基础上,着重比较它们的异同点以及在生态学理论和实践中的应用,并论述物种保护理论范式从岛屿生物地理学向集合种群理论转变的基本背景和原因。 相似文献
6.
Abstract. The commercial development that threatens the biodiversity of coastal habitats is particularly severe along the sandy shores of subtropical Florida. The objective of our study was to test the applicability of the equilibrium theory of island biogeography to Cayo-Costa Island, the largest protected barrier island remaining in peninsular Florida. Our null hypothesis was that there would be no change in the number and composition of native vascular plant species on Cayo-Costa 15 years after the first inventory of the island's flora. Our reinventory documents a total of 230 native species in 1990–92 compared to 255 native species in 1975–77. Immigrants were represented by twenty-eight new species, while extinctions totalled fifty-three species. These results indicate a turnover rate of approximately 2.7 species yr-1 with an extinction rate of 3.5 species yr-1 and an immigration rate of 1.9 species yr-1 . The net loss of 1.6 species yr-1 suggests a non-equilibrium condition that is not readily explained by changes in habitat diversity associated with the documented patterns of shoreline erosion and deposition. Cayo-Costa's net loss of twenty-five native species (including one tree species and four shrub species) was localized mainly in those habitats where there had been a significant increase in the relative abundance of the naturalized weedy exotic species Schinus terebinthifolius and Casuarina equisetifolia . We conclude that the spread of naturalized weedy species limits the applicability of the equilibrium theory of island biogeography to species-rich subtropical barrier islands, even in cases where the islands are protected from human disturbance. 相似文献
7.
Michael L. Logan M. C. Duryea Orsolya R. Molnar Benji J. Kessler Ryan Calsbeek 《Evolution; international journal of organic evolution》2016,70(10):2395-2403
High levels of gene flow among partially isolated populations can overwhelm selection and limit local adaptation. This process, known as “gene swamping,” can homogenize genetic diversity among populations and reduce the capacity of a species to withstand rapid environmental change. We studied brown anole lizards (Anolis sagrei) distributed across seven islands in The Bahamas. We used microsatellite markers to estimate gene flow among islands and then examined the correlation between thermal performance and island temperature. The thermal optimum for sprint performance was correlated with both mean and maximum island temperature, whereas performance breadth was not correlated with any measure of temperature variation. Gene flow between islands decreased as the difference between mean island temperatures increased, even when those islands were adjacent to one another. These data suggest that phenotypic variation is the result of either (1) local genetic adaptation with selection against immigrants maintaining variation in the thermal optimum, (2) irreversible forms of adaptive plasticity such that immigrants have reduced fitness, or (3) an interaction between fixed genetic differences and plasticity. In general, the patterns of gene flow we observed suggest that local thermal environments represent important ecological filters that can mediate gene flow on relatively fine geographic scales. 相似文献
8.
Most studies of community development in insular systems have investigated the colonization dynamics of only a portion of the biotic community using islands that have the benefit of prior biotic modification. Two experiments assessed the predictive ability of equilibrium island theory with regard to the development of the protistan community in temporary aquatic islands (100-1 plastic swimming pools) void of any prior biotic modification. The first experiment ran for 170 d (March–September 1985) and manipulated the access of islands to animals that represent potentially important dispersal pathways for microbes. A second experiment (May–June 1986) investigated in greater detail the early stages of species accrual in the absence of dispersal pathways other than via the atmosphere. Polyurethane foam substrates were used as sampling devices to increase the accuracy and replicability of sampling and provide habitat for colonists. Sampling was determined to be asymptotic. Species accrual was asymptotic in both experiments, although it initially lagged behind that predicted by theory. Autotrophs approached equilibrium faster than heterotrophs, but at a lower species richness. The predicted number of autotroph species at equilibrium was lower in islands that were excluded from contact with birds compared to less exclosed islands. The colonization dynamics of the entire community was not significantly different among islands having different degrees of exclosure. In both experiments, rates of species immigration were nonmonotonic with respect to time and species richness. This relationship appeared to reflect the importance of species interactions during the initial accrual phase before equilibrium. Rates of extinction were positively correlated with both these parameters, although they tended to decrease with time during the equilibrium period in less exclosed islands. Turnover at equilibrium was significant and resulted in directional changes in species composition over time. Assortative processes appeared to be important since later colonists exhibited greater persistence. Colonizing species generally fall into three autecological categories: 1) those that were ubiquitous and had temporally predictable patterns of immigration (successional species); 2) those possessing temporally predictable distributions but not spatially ubiquitous distributions (dispersal limited species); 3) those that showed little temporal or spatial predictability in immigration (transient or allochthonous species). Individual islands exhibited various degrees of fluctuation in species number during the predicted equilibrium which were poorly correlated with exogenous environmental variables and physicochemical habitat parameters. The presence of predacious mosquito larvae(Culex spp.) invariably resulted in a sharp decreases in microbial species richness, while documented contact with rodents was followed by an increase in species number in an island so contaminated. Several aspects of microbial colonization of temporary waters that contradict equilibrium predictions appear to be strongly influenced by microbe-microbe as well as macrobe-microbe interactions. 相似文献
9.
ADELA GONZÁLEZ-MEGÍAS ROSA MENÉNDEZ† DAVID ROY‡ TOM BRERETON§ CHRIS D. THOMAS¶ 《Global Change Biology》2008,14(7):1464-1474
Changes in the abundance and distribution of individual species have been widely documented in Britain and other countries in recent decades, but little has been done to determine changes in community composition over broad geographic areas. Here, we studied species turnover in 51 butterfly assemblages in Britain since 1976, examining extinction and colonisation events together with variation in the abundances of the species. We showed that the species turnover that occurred over 20 years in Britain was associated with colonisation and extinction events and also with variability in the abundance of the species. These changes in community composition differed according to the habitat requirements of the species and their previous distributions, being more evident for habitat specialists and for southerly distributed species. Colonising species often became abundant components of the communities they joined, although this was more evident for generalist than for specialist species. The abundance of species following their arrival, increased with time since colonisation. Species turnover associated with southerly species expanding northwards is consistent with being a response to climate change. The results suggest that climate- and habitat-driven changes in the identity and abundance of species within communities are widespread, and probably ubiquitous. Similar changes are likely to be occurring in other groups of organisms that are similarly undertaking major range shifts associated with climate change. 相似文献
10.
Maria Panitsa Dimitrios Tzanoudakis Spyros Sfenthourakis 《Journal of Biogeography》2008,35(6):1049-1061
Aim To estimate species turnover of plants on 32 small islands within a 20‐year period and to assess possible changes in community composition and properties, such as species richness and factors affecting it, nestedness, species co‐occurrence and overall community similarity. Additionally, to assess the possible effects of grazing, gull colonies and fire on turnover values. Location Thirty‐two islets in the eastern Aegean Sea (Greece). Methods Complete sampling of plants was performed in 1974 and in 1990–94 (mostly in 1994, which was used as the reference year). Species turnover rates were estimated using both per island and per species approaches. Multiple regression was used to evaluate factors affecting species richness. Chi‐square tests were applied to compare community composition among sampling periods. The effects of various factors on turnover rates and species richness were examined using one‐way anova and ancova . Mann–Whitney tests were applied in order to check for differences between frequencies of occurrence of extinct, immigrant and persisting species. Community nestedness was calculated using bitmatnest and the C‐score index for co‐occurrence was estimated using EcoSim7. Species similarities among islands in each of the 1974 and 1994 data sets were assessed using Jaccard’s index and the two similarity matrices were compared using a Mantel test. Results Of 391 species recorded on the islets, 334 were present in 1974, 301 in 1994 and 244 were common to both these periods. Species richness in the 1974 and 1994 data sets was significantly correlated with elevation and area, but not with distance from the nearest large island. Richness was positively affected by grazing, but not by fire or gull colonies. The slopes of species–area and species–elevation regressions were almost identical in 1974 and 1994. Mean relative turnover was 2.06 (species per islet) and 3.26 (islets per species). Turnover was not correlated with area, elevation or distance from the nearest large island. Nestedness and co‐occurrence levels were very similar. Tables of islet by islet floral similarity (Jaccard’s index) did not differ between the 1974 and 1994 data sets. Main conclusions The turnover rates found are among the highest recorded for plants; at the same time the islet communities exhibit notable stability in overall properties. Our results provide evidence for rapid shifts in species number that may nonetheless be considered as equilibrial dynamics, as these islets are able to respond rapidly to environmental change and disturbance. Human activities, notably the application of grazing, have a significant complicating effect on community dynamics, enhancing observed turnover rates. 相似文献
11.
12.
Lawrence R. Heaney 《Journal of Biogeography》2007,34(5):753-757
Following several decades during which two dissimilar and incompatible models (equilibrium and vicariance) dominated island biogeography, recent publications have documented patterns that point the way towards a new paradigm that includes elements of both models, as well as some novel aspects. Many of these seminal contributions have been made possible by the recent development of robust, temporally calibrated phylogenies used in concert with increasingly precise and reliable geological reconstructions of oceanic regions. Although a new general model of oceanic island biogeography has not yet been proposed, in this brief overview I present six hypotheses that summarize aspects of the emerging paradigm. These hypotheses deal with: the frequency of dispersal over oceanic water barriers by terrestrial organisms; the existence of substantial variation in the amount of dispersal (and gene flow) within a given set of related species within a given archipelago; the frequency, extent and impact on species richness of diversification within archipelagos; the frequent correlation of island age and the age of the species that live on the island; the long-term persistence of species on oceanic islands; and the occasional recolonization of continents by species from clades that diversified on islands. Identifying, testing, and seeking means of synthesizing these and other emerging hypotheses may allow a new conceptual paradigm to emerge. 相似文献
13.
Juan Valentín PliegoSnchez Christopher Blair Aníbal H. Díaz de la VegaPrez Víctor H. JimnezArcos 《Ecology and evolution》2021,11(11):6579
We compile a Mexican insular herpetofaunal checklist to estimate endemism, conservation status, island threats, net taxonomic turnover among six biogeographic provinces belonging to the Nearctic and Neotropical regions, and the relationships between island area and mainland distance versus species richness. We compile a checklist of insular herpetofaunal through performing a literature and collection review. We define the conservation status according to conservation Mexican law, the Red List of International Union for Conservation of Nature, and Environmental Vulnerability Scores. We determine threat percentages on islands according to the 11 major classes of threats to biodiversity. We estimate the net taxonomic turnover with beta diversity analysis between the Nearctic and Neotropical provinces. The Mexican insular herpetofauna is composed of 18 amphibian species, 204 species with 101 subspecies of reptiles, and 263 taxa in total. Endemism levels are 11.76% in amphibians, 53.57% in reptiles, and 27.91% being insular endemic taxa. Two conservation status systems classify the species at high extinction risk, while the remaining system suggests less concern. However, all systems indicate species lacking assessment. Human activities and exotic alien species are present on 60% of 131 islands. The taxonomic turnover value is high (0.89), with a clear herpetofaunal differentiation between the two biogeographic regions. The species–area and species–mainland distance relationships are positive. Insular herpetofauna faces a high percentage of threats, with the Neotropical provinces more heavily impacted. It is urgent to explore the remaining islands (3,079 islands) and better incorporate insular populations and species in ecological, evolutionary, and systematic studies. In the face of the biodiversity crisis, islands will play a leading role as a model to apply restoration and conservation strategies. 相似文献
14.
15.
Aim To investigate species compositions, rates of species turnover, species–area and species–distance relationships and patterns of nestedness in the floras of small Bahamian islands, by comparing two groups of islands that had been differentially affected by two hurricanes. Location Small islands occurring on either side of Great Exuma near Georgetown, Bahamas. Methods We surveyed the plant species of 44 small islands over a 5‐year period from 1998 to 2002. Hurricanes Lili and Michelle occurred in 1996 and 2001, respectively; both storms affected small islands on the more exposed south‐west side of Great Exuma to a greater degree than small islands on the more protected north‐east side. A set of 27 islands was surveyed in 1998 and 2002 to evaluate species turnover. Stepwise multiple linear regression analyses and an information‐theoretic approach (the Akaike information criterion) were used to elucidate the importance of area and distance as predictors of plant species number. We compared a piecewise linear regression model with a simple linear regression of species number against area to determine whether a small island effect existed. Nestedness patterns were evaluated by Wilcoxon two‐sample tests to analyse occurrence sequences. Results Species turnover was low in an absolute sense (overall = 0.74% year?1), yet was over three times higher than that documented in a nearby archipelago in the absence of hurricanes. Both vegetated area and distance were important predictor variables for exposed islands but not for protected islands. Some support was found for a small island effect for the exposed islands based on a piecewise linear regression model. Both island groups revealed significant nestedness at the level of the assemblage (both P < 0.001). On exposed islands, 65–79% (depending upon the method of calculation) of all species were significantly nested, but only 47% of all species were significantly nested on protected islands. Main conclusions Overall, these insular floras seem highly resistant to hurricane‐force disturbances. Species turnover was low (< 1% year?1) in an absolute sense, particularly in comparison with rates for other taxa. Higher degrees of nestedness and significant species–area and species–distance relationships for exposed islands indicated stronger patterns of community assembly. It is likely that disturbance is a major structuring force for the exposed islands, although the type of disturbances that mediate these patterns may not be primarily hurricane‐force storms. 相似文献
16.
岛屿生物地理学和集合种群理论是目前生物多样性保育所依赖的主要生态学理论。人们通常强调这两种理论的区别,对它们之间的关联却很少注意到。事实上,这两种理论是同根同源的。以经典集合种群理论的创始者R.Levim对他与岛屿生物地理学的创始者R.H.MaeArthur的合作过程以及岛屿生物地理学对他提出集合种群理论的影响的回顾为基础,分析比较了岛屿生物地理学、经典集合种群理论、以Hanski为代表的现代集合种群理论的基本假设、研究范式和核心思想的异同,简要介绍了多物种集合种群与集合群落研究的差异,最后分析了岛屿生物地理学和集合种群理论在生物多样性保育实践中的应用和存在问题。 相似文献
17.
Aim MacArthur and Wilson’s dynamic equilibrium model of island biogeography provides a powerful framework for understanding the ecological processes acting on insular populations. However, their model is known to be less successful when applied to systems and processes operating on evolutionary and geological timescales. Here, we present a general dynamic model (GDM) of oceanic island biogeography that aims to provide a general explanation of biodiversity patterns through describing the relationships between fundamental biogeographical processes – speciation, immigration, extinction – through time and in relation to island ontogeny. Location Analyses are presented for the Azores, Canaries, Galápagos, Marquesas and Hawaii. Methods We develop a theoretical argument from first principles using a series of graphical models to convey key properties and mechanisms involved in the GDM. Based on the premises (1) that emergent properties of island biotas are a function of rates of immigration, speciation and extinction, (2) that evolutionary dynamics predominate in large, remote islands, and (3) that oceanic islands are relatively short‐lived landmasses showing a characteristic humped trend in carrying capacity (via island area, topographic variation, etc.) over their life span, we derive a series of predictions concerning biotic properties of oceanic islands. We test a subset of these predictions using regression analyses based largely on data sets for native species and single‐island endemics (SIEs) for particular taxa from each archipelago, and using maximum island age estimates from the literature. The empirical analyses test the power of a simple model of diversity derived from the GDM: the log(Area) + Time + Time2 model (ATT2), relative to other simpler time and area models, using several diversity metrics. Results The ATT2 model provides a more satisfactory explanation than the alternative models evaluated (for example the standard diversity–area models) in that it fits a higher proportion of the data sets tested, although it is not always the most parsimonious solution. Main conclusions The theoretical model developed herein is based on the key dynamic biological processes (migration, speciation, extinction) combined with a simple but general representation of the life cycle of oceanic islands, providing a framework for explaining patterns of biodiversity, endemism and diversification on a range of oceanic archipelagos. The properties and predictions derived from the model are shown to be broadly supported (1) by the empirical analyses presented, and (2) with reference to previous phylogenetic, ecological and geological studies. 相似文献
18.
The role of introduced species in shaping the distribution and abundance of island reptiles 总被引:5,自引:0,他引:5
Summary Species interactions, as revealed by historical introductions of predators and competitors, affect population densities and sometimes result in extinctions of island reptiles. Mongoose introductions to Pacific islands have diminished the abundance of diurnal lizards and in some cases have led to extinctions. Through these population level effects, biogeographic patterns are produced, such as the reciprocal co-occurrence pattern seen with the tuatara and its predator, the Polynesian rat, and with the tropical gecko competitorsHemidactylus frenatus andLepidodactylus lugubris in urban habitats in the Pacific. Although competition has led to changes in abundance and has caused habitat displacement and reduced colonization success, extinctions of established reptile populations usually occur only as a result of predation.These introductions, along with many manipulative experiments, demonstrate that present day competition and predation are potent forces shaping community structure and geographic distributions. The human introduction of species to islands can be viewed as an acceleration of the natural processes of range expansion and colonization. The immediate biotic consequences of these natural processes should be of the same intensity as those of the human introductions. Coevolution may subsequently act to ameliorate these interactions and reduce the dynamical response of one species to the other. The role played by coevolution in mediating interactions between competitors and predator and prey is highlighted by the susceptibility of predator-naive endemic species to introduced predators and the invalidity of species-poor communities. 相似文献
19.
Two decades of interaction between the MacArthur-Wilson model and the complexities of mammalian distributions 总被引:1,自引:0,他引:1
James H. Brown 《Biological journal of the Linnean Society. Linnean Society of London》1986,28(1-2):231-251
More than two decades after its publication, MacArthur and Wilson's equilibrium model of insular biogeography continues to provide the conceptual foundation for investigating the distribution of species on islands and the composition of insular biotas. During this period, studies of the distributions of mammals among insular habitats have tested, modified, and extended MacArthur and Wilson's simple formalism to enhance greatly our understanding of the complexities of biogeographic patterns and processes. The papers in this symposium summarize many of the past contributions of mammalian biogeographers and introduce important new data and ideas. The diversity of biological characteristics and associated distributional patterns exhibited by mammals has facilitated this endeavour. Some insular mammalian faunas appear to represent approximate equilibria between opposing rates of contemporary colonization and extinction. Other faunas are currently decreasing in diversity because of extinctions, owing either to natural habitat fragmentation that has occurred since the Pleistocene or to human activities within the last few centuries. Still other faunas have been increasing in diversity (at least until recent human impacts) because limiting rates of origination, both colonization and speciation, have been extremely low. The questions and analyses of island biogeography can also be applied to continents with comparable overall results: the distributions of continental faunas reflect the consequences of similar processes of colonization, speciation and extinction. Analyses of insular distributions show unequivocally that probabilities of extinction, colonization and speciation are highly deterministic and vary in predictable ways among different taxa and archipelagos. These findings have important implications for applying the theory and data of insular biogeography to the pressing practical problems of designing natural reserves to preserve native species. 相似文献