首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Attaching-effacing bacteria are major causes of infectious diarrhea in humans worldwide. Citrobacter rodentium is an attaching-effacing enteric pathogen that causes transmissible murine colonic mucosal hyperplasia. We characterized colonic inflammation and ion transport at 3, 7, 10, 30, and 60 d after infection of C57Bl/6 mice with C. rodentium. Macroscopic damage score was significantly increased 7 and 10 d after infection. Colonic wall thickness was increased at 7, 10, 30, and 60 d. Myeloperoxidase (MPO) activity was significantly increased at 3, 7, and 10 d and returned to control levels by days 30 and 60. The expressions of inducible nitric oxide synthase and cyclooxygenase-2 were increased by C. rodentium infection. Significant reductions in the epithelial secretory response to carbachol, but not to electrical field stimulation or forskolin, were observed at 3 and 10 d of infection. Translocation of enteric bacteria into the mesenteric lymph nodes was observed 10 d following infection. There was no difference in response to infection between animals deficient in inducible nitric oxide synthase and wild-type controls. The COX-2 inhibitor rofecoxib caused decreased wall thickness and MPO activity at day 10. However, COX-2 inhibition did not alter infection-induced changes in ion transport. Citrobacter rodentium infection causes colonic inflammation, mucosal hyperplasia, and nitric-oxide-independent epithelial dysfunction in association with increased permeability to luminal bacteria.  相似文献   

3.
Enteropathogenic Escherichia coli, enterohemorrhagic E. coli, and Citrobacter rodentium are classified as attaching and effacing pathogens based on their ability to adhere to intestinal epithelium via actin-filled membranous protrusions (pedestals). Infection of mice with C. rodentium causes breach of the colonic epithelial barrier, a vigorous Th1 inflammatory response, and colitis. Ultimately, an adaptive immune response leads to clearance of the bacteria. Whereas much is known about the adaptive response to C. rodentium, the role of the innate immune response remains unclear. In this study, we demonstrate for the first time that the TLR adaptor MyD88 is essential for survival and optimal immunity following infection. MyD88(-/-) mice suffer from bacteremia, gangrenous mucosal necrosis, severe colitis, and death following infection. Although an adaptive response occurs, MyD88-dependent signaling is necessary for efficient clearance of the pathogen. Based on reciprocal bone marrow transplants in conjunction with assessment of intestinal mucosal pathology, repair, and cytokine production, our findings suggest a model in which TLR signaling in hemopoietic and nonhemopoietic cells mediate three distinct processes: 1) induction of an epithelial repair response that maintains the protective barrier and limits access of bacteria to the lamina propria; 2) production of KC or other chemokines that attract neutrophils and thus facilitate killing of bacteria; and 3) efficient activation of an adaptive response that facilitates Ab-mediated clearance of the infection. Taken together, these experiments provide evidence for a protective role of innate immune signaling in infections caused by attaching and effacing pathogens.  相似文献   

4.
5.
Mammalian cells express an array of toll‐like receptors to detect and respond to microbial pathogens, including enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC). These clinically important attaching and effacing (A/E) pathogens infect the apical surface of intestinal epithelial cells, causing inflammation as well as severe diarrheal disease. Because EPEC and EHEC are human‐specific, the related murine pathogen Citrobacter rodentium has been widely used to define how hosts defend against A/E pathogens. This study explored the role of TLR9, a receptor that recognises unmethylated CpG dinucleotides present in bacterial DNA, in promoting host defence against C. rodentium. Infected Tlr9?/? mice suffered exaggerated intestinal damage and carried significantly higher (10–100 fold) pathogen burdens in their intestinal tissues as compared with wild type (WT) mice. C. rodentium infection also induced increased antimicrobial responses, as well as hyperactivation of NF‐κB signalling in the intestines of Tlr9?/? mice. These changes were associated with accelerated depletion of the intestinal microbiota in Tlr9?/? mice as compared with WT mice. Notably, antibiotic‐based depletion of the gut microbiota in WT mice prior to infection increased their susceptibility to the levels seen in Tlr9?/? mice. Our results therefore indicate that TLR9 signalling suppresses intestinal antimicrobial responses, thereby promoting microbiota‐mediated colonisation resistance against C. rodentium infection.  相似文献   

6.
7.
Antunes I  Kassiotis G 《Journal of virology》2010,84(24):12564-12575
The viral infection of higher vertebrates elicits potent innate and adaptive host immunity. However, an excessive or inappropriate immune response also may lead to host pathology that often is more severe than the direct effects of viral replication. Therefore, several mechanisms exist that regulate the magnitude and class of the immune response. Here, we have examined the potential involvement of regulatory T (Treg) cells in limiting pathology induced by influenza A virus (IAV) infection. Using lymphocyte-deficient mice as hosts, we showed that Treg cell reconstitution resulted in a significant delay in weight loss and prolonged survival following infection. The adoptively transferred Treg cells did not affect the high rate of IAV replication in the lungs of lymphocyte-deficient hosts, and therefore their disease-ameliorating effect was mediated through the suppression of innate immune pathology. Mechanistically, Treg cells reduced the accumulation and altered the distribution of monocytes/macrophages in the lungs of IAV-infected hosts. This reduction in lung monocytosis was associated with a specific delay in monocyte chemotactic protein-2 (MCP-2) induction in the infected lungs. Nevertheless, Treg cells failed to prevent the eventual development of severe disease in lymphocyte-deficient hosts, which likely was caused by the ongoing IAV replication. Indeed, using T-cell-deficient mice, which mounted a T-cell-independent B cell response to IAV, we further showed that the combination of virus-neutralizing antibodies and transferred Treg cells led to the complete prevention of clinical disease following IAV infection. Taken together, these results suggested that innate immune pathology and virus-induced pathology are the two main contributors to pathogenesis during IAV infection.  相似文献   

8.
9.
Iron metabolism and the innate immune response to infection   总被引:1,自引:0,他引:1  
Host antimicrobial mechanisms reduce iron availability to pathogens. Iron proteins influencing the innate immune response include hepcidin, lactoferrin, siderocalin, haptoglobin, hemopexin, Nramp1, ferroportin and the transferrin receptor. Numerous global health threats are influenced by iron status and provide examples of our growing understanding of the connections between infection and iron metabolism.  相似文献   

10.
A recombinant baculovirus expressing the hemagglutinin gene of the influenza virus, A/PR/8/34 (H1N1), under the control of the chicken beta-actin promoter, was constructed. To determine the induction of protective immunity in vivo, mice were inoculated with the recombinant baculovirus by intramuscular, intradermal, i.p., and intranasal routes and then were challenged with a lethal dose of the influenza virus. Intramuscular or i.p. immunization with the recombinant baculovirus elicited higher titers of antihemagglutinin Ab than intradermal or intranasal administration. However, protection from a lethal challenge of the influenza virus was only achieved by intranasal immunization of the recombinant baculovirus. Surprisingly, sufficient protection from the lethal influenza challenge was also observed in mice inoculated intranasally with a wild-type baculovirus, as evaluated by reductions in the virus titer, inflammatory cytokine production, and pulmonary consolidations. These results indicate that intranasal inoculation with a wild-type baculovirus induces a strong innate immune response, which protects mice from a lethal challenge of influenza virus.  相似文献   

11.
In two pups (A and B) naturally infected with canine parvovirus type 1 (CPV1) phagocytic responses were evaluated over a period of two weeks (day 0 = T0; day 3 = T1; day 7 = T2; day 14 = T3). CPV1 infection led to a marked reduction of monocyte (MO) phagocytosis in both pups. Also MO killing was impaired and in pup B this function was totally absent. Polymorphonuclear (PMN) phagocytosis values of both pups fluctuated within normal ranges, as well as PMN killing of pup A. In pup B, killing exerted by PMN was absent at T0, then increased but again dropped below normal ranges at T3. The described alterations of phagocytic functions may be regarded as possible viral mechanisms of immune evasion.  相似文献   

12.
This study examines innate immunity to oral Salmonella during primary infection and after secondary challenge of immune mice. Splenic NK and NKT cells plummeted early after primary infection, while neutrophils and macrophages (Mphi) increased 10- and 3-fold, respectively. In contrast, immune animals had only a modest reduction in NK cells, no loss of NKT cells, and a slight increase in phagocytes following secondary challenge. During primary infection, the dominant sources of IFN-gamma were, unexpectedly, neutrophils and Mphi, the former having intracellular stores of IFN-gamma that were released during infection. IFN-gamma-producing phagocytes greatly outnumbered IFN-gamma-producing NK cells, NKT cells, and T cells during the primary response. TNF-alpha production was also dominated by neutrophils and Mphi, which vastly outnumbered NKT cells producing this cytokine. Neither T cells nor NK cells produced TNF-alpha early during primary infection. The TNF-alpha response was reduced in a secondary response, but remained dominated by neutrophils and Mphi. Moreover, no significant IFN-gamma production by Mphi was associated with the secondary response. Indeed, only NK1.1(+) cells and T cells produced IFN-gamma in these mice. These studies provide a coherent view of innate immunity to oral Salmonella infection, reveal novel sources of IFN-gamma, and demonstrate that immune status influences the nature of the innate response.  相似文献   

13.
Macrophages restrict bacterial infection partly by stimulating phagocytosis and partly by stimulating release of cytokines and complement components. Here, we treat macrophages with LPS and a bacterial pathogen, and demonstrate that expression of cytokine IL-1β and bacterial phagocytosis increase to a transient peak 8 to 12 h post-treatment, while expression of complement component 3 (C3) continues to rise for 24 h post-treatment. Metabolomic analysis suggests a correlation between the cellular concentrations of succinate and IL-1β and of inosine and C3. This may involve a regulatory feedback mechanism, whereby succinate stimulates and inosine inhibits HIF-1α through their competitive interactions with prolyl hydroxylase. Furthermore, increased level of inosine in LPS-stimulated macrophages is linked to accumulation of adenosine monophosphate and that exogenous inosine improves the survival of bacterial pathogen-infected mice and tilapia. The implications of these data suggests potential therapeutic tools to prevent, manage or treat bacterial infections.  相似文献   

14.
Parasitic-infection studies on rhesus macaque monkeys have shown juvenile animals to be more susceptible to infection than adults, but the immunological mechanism for this is not known. In this study, we investigated the age-dependent genesis of helminth-induced type 2 immune responses using adult (6-8-wk-old) and juvenile (21-28-d-old) mice. Following infection with the parasitic nematode Nippostrongylus brasiliensis, juvenile mice had increased susceptibility to infection relative to adult mice. Juvenile mice developed a delayed type 2 immune response with decreased Th2 cytokine production, IgE Ab responses, mouse mast cell protease 1 levels, and intestinal goblet cell induction. This innate immune defect in juvenile mice was independent of TLR signaling, dendritic cells, or CD4(+) cell function. Using IL-4-eGFP mice, it was demonstrated that the numbers of IL-4-producing basophil and eosinophils were comparable in young and adult naive mice; however, following helminth infection, the early induction of these cells was impaired in juvenile mice relative to older animals. In nonhelminth models, there was an innate in vivo defect in activation of basophils, but not eosinophils, in juvenile mice compared with adult animals. The specific role for basophils in this innate defect in helminth-induced type 2 immunity was confirmed by the capacity of adoptively transferred adult-derived basophils, but not eosinophils, to restore the ability of juvenile mice to expel N. brasiliensis. The defect in juvenile mice with regard to helminth-induced innate basophil-mediated type 2 response is relevant to allergic conditions.  相似文献   

15.
Severe disease caused by Shiga toxin-producing Escherichia coli (STEC) has been associated with a pathogenicity island, O-Island 122, which encodes the type III secretion system-effector NleE. Here we show that full virulence of the related attaching and effacing mouse pathogen Citrobacter rodentium requires NleE. Relative to wild-type bacteria, nleE-mutant C. rodentium are attenuated for colonisation in mice in both single and mixed infections. Examination of the ability of nleE-mutant bacteria to induce pathologic change in vivo revealed that nleE-mutant bacteria induce significantly less pathologic change than wild-type bacteria in susceptible mice. Consistent with these results, mice infected with nleE-mutant bacteria exhibit delayed mortality. These results suggested that pathologic change during attaching and effacing pathogen infection may associate with the degree of pathogen colonisation. Using mutants of 23 type III secretion genes, including the type III effectors nleC, nleD, nleE and nleF, the association of pathologic change with the ability of these mutants to colonise mice was examined. The induction of in vivo disease correlates strongly with the degree of colonisation, suggesting that the colonisation advantage type III secretion genes afford the bacteria, contribute to, and are required for, full virulence.  相似文献   

16.
《Cell reports》2023,42(6):112549
  1. Download : Download high-res image (227KB)
  2. Download : Download full-size image
  相似文献   

17.
Citrobacter rodentium is an attaching and effacing pathogen used as a murine model for enteropathogenic Escherichia coli. The mucus layers are a complex matrix of molecules, and mucus swelling, hydration and permeability are affected by many factors, including ion composition. Here, we used the C. rodentium model to investigate mucus dynamics during infection. By measuring the mucus layer thickness in tissue explants during infection, we demonstrated that the thickness changes dynamically during the course of infection and that its thickest stage coincides with the start of a decrease of bacterial density at day 14 after infection. Although quantitative PCR analysis demonstrated that mucin mRNA increases during early infection, the increased mucus layer thickness late in infection was not explained by increased mRNA levels. Proteomic analysis of mucus did not demonstrate the appearance of additional mucins, but revealed an increased number of proteins involved in defense responses. Ussing chamber-based electrical measurements demonstrated that ion secretion was dynamically altered during the infection phases. Furthermore, the bicarbonate ion channel Bestrophin-2 mRNA nominally increased, whereas the Cftr mRNA decreased during the late infection clearance phase. Microscopy of Muc2 immunostained tissues suggested that the inner striated mucus layer present in the healthy colon was scarce during the time point of most severe infection (10 days post infection), but then expanded, albeit with a less structured appearance, during the expulsion phase. Together with previously published literature, the data implies a model for clearance where a change in secretion allows reformation of the mucus layer, displacing the pathogen to the outer mucus layer, where it is then outcompeted by the returning commensal flora. In conclusion, mucus and ion secretion are dynamically altered during the C. rodentium infection cycle.  相似文献   

18.
We have generated mice lacking the gene for beta interferon and report that they are highly susceptible to vaccinia virus infection. Furthermore, in cultured embryo fibroblasts, viral induction of alpha interferon and of 2-5A synthetase genes is impaired. We also show that beta interferon does not prime its own expression.  相似文献   

19.
The mouse pathogen Citrobacter rodentium is used to model infections with enterohaemorrhagic and enteropathogenic Escherichia coli (EHEC and EPEC). Pathogenesis is commonly modelled in mice developing mild disease (e.g., C57BL/6). However, little is known about host responses in mice exhibiting severe colitis (e.g., C3H/HeN), which arguably provide a more clinically relevant model for human paediatric enteric infection. Infection of C3H/HeN mice with C. rodentium results in rapid colonic colonisation, coinciding with induction of key inflammatory signatures and colonic crypt hyperplasia. Infection also induces dramatic changes to bioenergetics in intestinal epithelial cells, with transition from oxidative phosphorylation (OXPHOS) to aerobic glycolysis and higher abundance of SGLT4, LDHA, and MCT4. Concomitantly, mitochondrial proteins involved in the TCA cycle and OXPHOS were in lower abundance. Similar to observations in C57BL/6 mice, we detected simultaneous activation of cholesterol biogenesis, import, and efflux. Distinctly, however, the pattern recognition receptors NLRP3 and ALPK1 were specifically induced in C3H/HeN. Using cell‐based assays revealed that C. rodentium activates the ALPK1/TIFA axis, which is dependent on the ADP‐heptose biosynthesis pathway but independent of the Type III secretion system. This study reveals for the first time the unfolding intestinal epithelial cells' responses during severe infectious colitis, which resemble EPEC human infections.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号