首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The non-heterocystous cyanobacterium Oscillatoria sp. strain 23 fixes nitrogen under aerobic conditions. If nitrate-grown cultures were transferred to a medium free of combined nitrogen, nitrogenase was induced within about 1 day. The acetylene reduction showed a diurnal variation under conditions of continuous light. Maximum rates of acetylene reduction steadily increased during 8 successive days. When grown under alternating light-dark cycles, Oscillatoria sp. fixes nitrogen preferably in the dark period. For dark periods longer than 8 h, nitrogenase activity is only present during the dark period. For dark periods of 8 h and less, however, nitrogenase activity appears before the beginning of the dark period. This is most pronounced in cultures grown in a 20 h light – 4 h dark cycle. In that case, nitrogenase activity appears 3–4 h before the beginning of the dark period. According to the light-dark regime applied, nitrogenase activity was observed during 8–11 h. Oscillatoria sp. grown under 16 h light and 8 h dark cycle, also induced nitrogenase at the usual point of time, when suddenly transferred to conditions of continuous light. The activity appeared exactly at the point of time where the dark period used to begin. No nitrogenase activity was observed when chloramphenicol was added to the cultures 3 h before the onset of the dark period. This observation indicated that for each cycle, de novo nitrogenase synthesis is necessary.  相似文献   

2.
Pure cultures of the symbiotic cyanobacterium-bryophyte association with Anthoceros punctatus were reconstituted by using Nostoc sp. strain UCD 7801 or its 3-(3,4-dichlorophenol)-1,1-dimethylurea (DCMU)-resistant mutant strain, UCD 218. The cultures were grown under high light intensity with CO2 as the sole carbon source and then incubated in the dark to deplete endogenous reductant pools before measurements of nitrogenase activities (acetylene reduction). High rates of light-dependent acetylene reduction were obtained both before starvation in the dark and after recovery from starvation, regardless of which of the two Nostoc strains was reconstituted in the association. Rates of acetylene reduction by symbiotic tissue with the wild-type Nostoc strain decreased 99 and 96% after 28 h of incubation in the dark and after reexposure to light in the presence of 5 microM DCMU, respectively. Supplementation of the medium with glucose restored nitrogenase activity in the dark to a rate that was 64% of the illuminated rate. In the light and in the presence of 5 microM DCMU, acetylene reduction could be restored to 91% of the uninhibited rate by the exogenous presence of various carbohydrates. The rate of acetylene reduction in the presence of DCMU was 34% of the uninhibited rate of tissue in association with the DCMU-resistant strain UCD 218. This result implies that photosynthates produced immediately by the cyanobacterium can supply at least one-third of the reductant required for nitrogenase activity on a short-term basis in the symbiotic association. However, high steady-state rates of nitrogenase activity by symbiotic Nostoc strains appear to depend on endogenous carbohydrate reserves, which are presumably supplied as photosynthate from both A. punctatus tissue and the Nostoc strain.  相似文献   

3.
The ability of the benthic cyanobacterium Lyngbya wollei to fix nitrogen was studied using field samples and axenic cultures. L. wollei was collected and isolated from Lake Okeechobee, Florida, where it forms extensive mats. Rates of acetylene reduction up to 39.1 nmol mg dry wt−1 h−1 were observed for field samples. The maximum observed rate of acetylene reduction in axenic laboratory cultures was 200 nmol mg dry wt−1 h−1. Aerobic conditions limited nitrogen fixation activity, but dark/light cycles promoted the development of activity. Reduced oxygen levels appeared to be required for the development of significant levels of nitrogenase activity. The level of irradiance also had a significant impact on the level of activity. The potential significance of nitrogen fixation to Lyngbya production is discussed.  相似文献   

4.
All oxygen levels are detrimental to the nitrogenase activity ofSynechococcus RF-1 cells. In continuous light, cultures maintain a high dissolved oxygen concentration and a continuous but usually low rate of nitrogenase activity.Cultures adapted to a light-dark regimen will reduce acetylene almost exclusively during the dark periods. When switched to continuous light, they continue to exhibit a diurnal rhythm in nitrogenase activity. While in continuous light, each upsurge of nitrogenase activity coincides with a marked drop in the net oxygen production rate; this drop is due largely to a concomitant increase in the dark respiration rate of the culture.The endogenous nitrogenase activity rhythm can be induced in continuous light by periodically lowering the oxygen concentration of the culture by either bubbling nitrogen through it or by treating the culture with 3(3,4-dichlorophenol)-1,1-dimethylurea (DCMU or diuron).  相似文献   

5.
Cyanobacteria capable of fixing dinitrogen exhibit various strategies to protect nitrogenase from inactivation by oxygen. The marine Crocosphaera watsonii WH8501 and the terrestrial Gloeothece sp. PCC6909 are unicellular diazotrophic cyanobacteria that are capable of aerobic nitrogen fixation. These cyanobacteria separate the incompatible processes of oxygenic photosynthesis and nitrogen fixation temporally, confining the latter to the dark. Although these cyanobacteria thrive in fully aerobic environments and can be cultivated diazotrophically under aerobic conditions, the effect of oxygen is not precisely known due to methodological limitations. Here we report the characteristics of nitrogenase activity with respect to well‐defined levels of oxygen to which the organisms are exposed, using an online and near real‐time acetylene reduction assay combined with sensitive laser‐based photoacoustic ethylene detection. The cultures were grown under an alternating 12–12 h light–dark cycle and acetylene reduction was recorded continuously. Acetylene reduction was assayed at 20%, 15%, 10%, 7.5%, 5% and 0% oxygen and at photon flux densities of 30 and 76 μmol m?2 s?1 provided at the same light–dark cycle as during cultivation. Nitrogenase activity was predominantly but not exclusively confined to the dark. At 0% oxygen nitrogenase activity in Gloeothece sp. was not detected during the dark and was shifted completely to the light period, while C. watsonii did not exhibit nitrogenase activity at all. Oxygen concentrations of 15% and higher did not support nitrogenase activity in either of the two cyanobacteria. The highest nitrogenase activities were at 5–7.5% oxygen. The highest nitrogenase activities in C. watsonii and Gloeothece sp. were observed at 29°C. At 31°C and above, nitrogenase activity was not detected in C. watsonii while the same was the case at 41°C and above in Gloeothece sp. The differences in the behaviour of nitrogenase activity in these cyanobacteria are discussed with respect to their presumed physiological strategies to protect nitrogenase from oxygen inactivation and to the environment in which they thrive.  相似文献   

6.
The relationship between the abundance of nitrogenase and its activity was studied in the marine unicellular cyanobacterium Gloeothece sp. 68DGA cultured under different light/dark regimens. The Fe‐ and MoFe‐protein of nitrogenase and nitrogen (N2)‐fixing (acetylene reduction) activity were detected only during the dark phase when the cells were grown under a 12 h light/12 h dark cycle (12L/12D). Nitrogenase activity appeared about 4 h after entering the dark phase. Maximum nitrogenase activity occurred at around the middle of the dark phase, and the activity rapidly decreased to zero before the start of the light phase. The rapid decrease of nitrogenase activity and the Fe‐protein of nitrogenase near the end of the dark phase in 12L/12D were partly recovered by the addition of l ‐methionine‐sulfoximine, an inhibitor of glutamine synthetase. Diurnal oscillation of the abundance of nitrogenase was maintained in the first subjective dark phase (i.e. the period corresponding to the dark phase) after the cells were transferred from 12L/12D to continuous illumination. However, enzyme activity was detected only when photosynthetic oxygen (O2) evolution was completely suppressed by reducing the light intensity or by the addition of 3‐(3,4‐dichlorophenyl)‐1,1‐dimethylurea. Nitrogenase always appeared in the cells about 16 h after starting the light phase, even when the 12L/12D cycle was modified by the addition or subtraction of a single 6 h period of light or dark. These results suggest the following: (i) N2‐fixation by Gloeothece sp. 68DGA is primarily regulated by an endogenous circadian oscillator at the level of nitrogenase synthesis. (ii) The endogenous circadian rhythm resets on a shift of the timing of the light phase. (iii) Nitrogenase activity is not always reflected in the presence of nitrogenase. (iv) The activity of nitrogenase is negatively regulated by fixed nitrogen and the concentration of ambient O2.  相似文献   

7.
Summary The effects of oxygen, light and photosynthesis inhibitors on nitrogenase activities in Anabaena cylindrica batch cultures were followed as a function of time after inoculation. During the early rapid growth period the nitrogenase activities of cultures grown under air/CO2 or N2/CO2 were relatively resistant to oxygen and DCMU inhibition. These cultures also exhibited oxygen-dependent nitrogenase activity in the dark of up to 50% of that measured in the light. After active growth ceased the cultures continued to slowly grow for a prolonged period of time. The nitrogenase activities of these old cultures were very sensitive to oxygen and DCMU inhibition. These cultures also had little or no dark nitrogenase activities. The photosynthesis inhibitor DBMIB was not a specific inhibitor of light-driven electron transport since it inhibited both light and dark nitrogenase activities. Nitrogenase activities induced under oxygen-free/CO2 gas mixtures initially were significantly more sensitive to oxygen inhibition than those induced under air/CO2. We discuss these results in relation to heterocyst function.  相似文献   

8.
Hydrogen-supported nitrogenase activity was demonstrated in Anabaena cylindrica cultures limited for reductant. Nitrogen-fixing Anabaena cylindrica cultures sparged in the light with anaerobic gases in the presence of the photosynthesis inhibitor DCMU slowly lost their ability to reduce acetylene in the light under argon but exhibited near normal activities in the presence of 11% H2 (balance argon). The hydrogen-supported nitrogenase activity was half-saturated between 2 and 3% H2 and was strongly inhibited by oxygen (50% inhibition at about 5–6% O2). Batch cultures of Anabaena cylindrica approaching stationary growth phase (“old” cultures) lost nitrogenase-dependent hydrogen evolution almost completely. In these old cultures hydrogen relieved the inhibitory effects of DCMU and O2 on acetylene reduction. Our results suggest that heterocysts contain an uptake hydrogenase which supplies an electron transport chain to nitrogenase but which couples only poorly with the respiratory chain in heterocysts and does not function in CO2 fixation by vegetative cells.  相似文献   

9.
Nitrogenase Activity and Photosynthesis in Plectonema boryanum   总被引:3,自引:1,他引:2       下载免费PDF全文
Nitrogen-starved Plectonema boryanum 594 cultures flushed with N(2)/CO(2) or A/CO(2) (99.7%/0.3%, vol/vol) exhibited nitrogenase activity when assayed either by acetylene reduction or hydrogen evolution. Oxygen evolution activities and phycocyanin pigments decreased sharply before and during the development of nitrogenase activity, but recovered in the N(2)/CO(2) cultures after a period of active nitrogen fixation. Under high illumination, the onset of nitrogenase activity was delayed; however, the presence of 3-(3, 4-dichlorophenyl)-1, 1-dimethylurea (DCMU) eliminated this lag. Oxygen was a strong and irreversible inhibitor of nitrogenase activity at low (>0.5%) concentrations. In the dark, low oxygen tensions (0.5%) stimulated nitrogenase activity (up to 60% of that in the light), suggesting a limited but significant respiratory protection of nitrogenase at low oxygen tensions. DCMU was not a strong inhibitor of nitrogenase activity. A decrease in nitrogenase activity after a period of active nitrogen fixation was observed in the N(2)/CO(2-), but not in the A/CO(2-), flushed cultures. We suggest that this decrease in nitrogenase activity is due to exhaustion of stored substrate reserves as well as inhibition by the renewed oxygen evolution of the cultures. Repeated peaks of alternating nitrogenase activity and oxygen evolution were observed in some experiments. Our results indicate a temporal separation of these basically incompatible reactions in P. boryanum.  相似文献   

10.
Nitrogenase (=acetylene-reducing activity) was followed during photoautotrophic growth of Anabaena variabilis (ATCC 29413). When cell density increased during growth, (1) inhibition of light-dependent activity by DCMU, an inhibitor of photosynthesis, increased, and (2) nitrogenase activity in the dark decreased. Addition of fructose stabilized dark activity and alleviated the DCMU effect in cultures of high cell density.The resistance of nitrogenase towards oxygen inactivation decreased after transfer of autotrophically grown cells into the dark at subsequent stages of increasing culture density. The inactivation was prevented by addition of fructose. Recovery of acetylene-reducing activity in the light, and in the dark with fructose present, was suppressed by ammonia or chloramphenicol. In the light, also DCMU abolished recovery.To prove whether the observed effects were related to a lack of photosynthetic storage products, glycogen of filaments was extracted and assayed enzymatically. The glycogen content of cells was highest 10 h after inoculation, while light-dependent nitrogenase activity was at its maximum about 24 h after inoculation. Glycogen decreased markedly as growth proceeded and dropped sharply when the cells were transferred to darkness. Thus, when C-supply (by photosynthesis or added fructose) was not effective, the glycogen content of filaments determined the activity of nitrogenase and its stability against oxygen. In cells lacking glycogen, nitrogenase activity recovered only when carbohydrates were supplied by exogenously added fructose or by photosynthesis.Abbreviations Chl chlorophyll a - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea  相似文献   

11.
Nitrogenase of the non-heterocystous nitrogen-fixing cyanobacterium Oscillatoria limosa was subjected to western blot analysis and immunogold electron microscopy using antisera raised against dinitrogenase (MoFe-protein, Component I) and dinitrogenase reductase (Fe-protein, Component II). O. limosa was grown diazotrophically under an alternating light-dark cycle (16–8h light-dark). Although nitrogenase activity (acetylene reduction) was found predominantly during the dark phase, being absent during most of the light period, immunogold electron microscopy revealed label of both subunits of nitrogenase in samples taken throughout the light-dark cycle. It was also shown that the nitrogenase label was distributed homogeneously in the cell and that it was present in every cell of every trichome whether fixing nitrogen or not. On average, 34 (± 6) gold particles μm?2 thin section were detected. Nitrate-grown cells did not contain nitrogenase label. Western blot analysis of the Fe-protein in samples taken during the light phase, revealed a single band with an apparent molecular weight of 37 kDa. At the end of the light period, and during the dark phase when high nitrogenase activities were observed, an additional band of 36 kDa was found. The anti-MoFe-protein antiserum revealed a single band of 56 kDa which was present throughout the light-dark cycle. Nitrate-grown cells were not recognized by either antiserum. It is concluded that nitrogenase enzyme is present in O. limosa throughout the light-dark cycle but that the Fe-protein is modified (inactive form) during the light period when nitrogenase activity is absent.  相似文献   

12.
Abstract The effect og glyoxylate on nitrogenase activity (C2H2 reduction) and photosynthesis (H14CO3 fixation and O2 evolution) was in vestigated in the three heterocystous cyanobacteria Anabaena cylindrica, A. variabiltis and N. muscorum. Glyoxylate had virtually no effect on the rate of dark respiration and was unable to sustain photoheterotrophic growth, though some slight stimulation (= 30%) of photorophic growth was noted. A considerable stimulation of both nitrogenase and photosynthetic activities was observed in presence of glyoxylate. In the light the stimulation increased with time up to about 15-25 h after adding optimal concentrations of 4–6 mM glyoxylate. Placing glyoxylate treated samples in the dark or adding DCMU (30 μM) in the light, showed that glyoxylate initially supported significantly higher nitrogenase activity than did samples in absence of glyoxylate. However, after a prolonged incubation in the dark or in presence of DCMU glyoxylate is unable to relieve the adverse effects of such conditions. The stimulation of the nitrogenase activity was even more pronounced when the glyoxylate was added to cells preincubated in the dark (“carbon starved”) than for cells kept constantly in light. The results suggest that glyoxylate, or a metabolite, may act as an inhibitor of cyanobacterial photorespiration and this hypothesis is discussed.  相似文献   

13.
Summary Blending Anabaena cylindrica cultures results in a loss of nitrogenase activity which is correlated with the breakage of the filaments at the junctions between heterocysts and vegetative cells. Oxygen inhibition of nitrogen fixation was significant only above atmospheric concentrations. Nitrogen-fixation activities in the dark were up to 50% of those observed in the light and were dependent on oxygen (10 to 20% was optimal). Nitrogenase activity was lost in about 3 h when cells were incubated aerobically in the dark. Re-exposure to light resulted in recovery of nitrogenase activity within 2 h. Blending, oxygen, or dark pre-incubation had similar effects upon cultures grown under air or nitrogen and did not inhibit light-dependent CO2 fixation. We conclude that heterocysts are the sites of nitrogenase activity and propose a model for nitrogen fixation by Anabaena cylindrica.  相似文献   

14.
Nitrogen fixation as well as structural and functional properties of the photosynthetic apparatus were studied with phototrophically grown chemostat cultures of Rhodobacter capsulatus strain 37b4. Illumination was varied between 3,000 and 30,000 lx at a constant dilution rate of D=0.075 h-1. Steady state parameters of growth revealed two forms of limitation, i.e. energy limitation in the range of 3,000 to about 10,000 lx and nitrogen limitation at higher illuminations. Over the entire range of illumination, the specific bacteriochlorophyll content and the amount of total bacteriochlorophyll per photochemical reaction center remained essentially constant. Photophosphorylation activity remained constant up to 20,000 lx but was slightly increased at 30,000 lx. Hydrogen evolution and acetylene reduction activities of cellular nitrogenase were assayed under saturating light conditions with samples taken from cultures growing under steady state conditions. In spite of the apparent constancy of the composition and activity of the photosynthetic apparatus under energy limitation, maximal specific acetylene reduction and hydrogen evolution activities increased by factors of 3 and 8, respectively, when illumination of the culture was raised from 3,000 to about 15,000 lx. Above 15,000 lx, both activities of nitrogenase approached constancy.We, therefore, conclude that neither under energy limitation nor under nitrogen limitation the function of nitrogenase depended on the photosynthetic activities. Moreover, it is suggested that light did not influence nitrogenase activity under conditions of nitrogen limitation, while under conditions of energy limitation light seemed to influence nitrogenase activities indirectly via glutamate consumption of the cells.  相似文献   

15.
A. L. Huber 《Hydrobiologia》1986,133(3):193-202
The effects of changes in diurnal light patterns, salinity, and phosphorus on nitrogen fixation (as measured by acetylene reduction) by Nodularia spumigena Mertens were examined. As well, the effects of added inorganic nitrogen on growth, nitrogen fixation and heterocyt frequencies, and changes in nitrogen fixation and heterocyst frequencies during the growth cycle of Nodularia in cultures were determined.The diurnal pattern of nitrogenase activity in Nodularia was primarily light-induced, though dark activity did occur. Nitrogenase activity following a period of darkness exceeded the normal light rate (> 90 compared to 50 nmol · C2H2 reduced · ml–1 · h–1). Nitrogen fixation was reduced by high and very low salinities (5 to 10 was the optimum range), and added phosphorus stimulated nitrogenase in P-starved cells. Added nitrogen (ammonium or nitrate) had no effect on the growth of Nodularia, but in short term studies, ammonium completely inhibited nitrogenase activity. Heterocyst frequencies were greatest in the log phase of growth (to 40 per mm). During stationary phase, nitrogenase activity was negligable.  相似文献   

16.
17.
Summary An in situ device for assaying biological nitrogen fixation in flooded rice soils, using the acetylene reduction method, was developed. Diurnal variations in acetylene reduction by an inoculated field plot and by laboratory-grown cultures of nitrogen-fixing algae showed a prominent single-peak pattern of nitrogenase activity. The peak occurred at mid-day for laboratory-grown algae and at late afternoon for the algae grown in the field plot. Some nitrogenase activity was noted during the night. Acetylene reduction studies in rice fields of Albay province, Philippines, showed an estimated fixation of 18.5 to 33.3 kg N/ha each cropping season for the fields of Puro soil and 2.3 to 5.7 kg N/ha each cropping season for the fields of Santo Domingo soil. re]19751202  相似文献   

18.
M. Potts 《Oecologia》1979,39(3):359-373
Summary High rates of nitrogen fixation (acetylene reduction) are associated with communities of heterocystous and non-heterocystous blue-green algae, which are widespread and abundant in the coastal mangrove forests of the Sinai Peninsula.Heterocystous forms, particularly representatives of the Rivulariaceae, grow in aerobic environments, where nitrogenase activity may be limited by the availability of nutrients such as Fe and PO4–P. Desiccated communities of Scytonema sp. reduce acetylene within ten minutes of wetting by tidal sea water. Communities dominated by the non-heterocystous Hydrocoleus sp., Hyella balani, Lyngbya aestuarii, Phormidium sp. and Schizothrix sp., occur in close contact with anaerobic sediments and reduce acetylene in the dark as well as in the light.Nitrogen fixation in all these communities is light dependant and may be supplemented by an alternative source of reductant in the dark. The indications are that nitrogen fixation by these communities of blue-green algae, makes a significant contribution to the overall nitrogen input of the mangrove ecosystem.  相似文献   

19.
Conditioned medium was obtained from suspension cultures of soybean (Glycine max L. Merrit) cells after incubating them for 4 to 8 days with rhizobia which were separated from the soybean cells by two dialysis bags, one within another. This conditioned medium from the plant cell side (PCM) of the two membranes was used to elicit and influence nitrogenase activity (acetylene reduction) in rhizobia. When conditions for obtaining PCM from the soybean cell suspension cultures were varied, it could be shown that freshly grown rhizobia were able to induce active compounds in the PCM. These compounds caused acetylene reduction activity in test rhizobia under conditions where control rhizobia, containing various substrates, showed little or no acetylene reduction activity. Rhizobia that were already capable of acetylene reduction could not induce such compounds in the PCM when this was included with test rhizobia. The PCM from soybean cultures was also found to aid the expression of nitrogenase activity in suspension cultures of rhizobia normally associated with either peas, lupins, broad beans, or clovers. This is the first communication indicating nitrogenase activity in freeliving cultures for various species of rhizobia.  相似文献   

20.
Lyngbya majuscula Harvey ex Gomont is a common marine cyanobacterium in tropical and subtropical near‐shore waters. A few reports have indicated that L. majuscula fixes nitrogen only in the light. Because this feature is uncommon among non‐heterocystous cyanobacteria, we attempted a reevaluation. Nitrogenase activity, regulation, and localization were examined over diel cycles on natural populations of L. majuscula growing in subtidal zones off Zanzibar in the western Indian Ocean. The data show that L. majuscula fixed nitrogen and synthesized nitrogenase in all cells during the dark phase of a diel cycle. During the light phase, nitrogenase was degraded to undetectable levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号