首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Magnetite (FeIIFeIII2O4) is often considered as a stable end product of the bioreduction of FeIII minerals (e.g., ferrihydrite, lepidocrocite, hematite) or of the biological oxidation of FeII compounds (e.g., siderite), with green rust (GR) as a mixed FeII‐FeIII hydroxide intermediate. Until now, the biotic transformation of magnetite to GR has not been evidenced. In this study, we investigated the capability of an iron‐reducing bacterium, Shewanella putrefaciens, to reduce magnetite at circumneutral pH in the presence of dihydrogen as sole inorganic electron donor. During incubation, GR and/or siderite (FeIICO3) formation occurred as secondary iron minerals, resulting from the precipitation of FeII species produced via the bacterial reduction of FeIII species present in magnetite. Taking into account the exact nature of the secondary iron minerals and the electron donor source is necessary to understand the exergonic character of the biotic transformation of magnetite to GR, which had been considered to date as thermodynamically unfavorable at circumneutral pH. This finding reinforces the hypothesis that GR would be the cornerstone of the microbial transformations of iron‐bearing minerals in the anoxic biogeochemical cycle of iron and opens up new possibilities for the interpretation of the evolution of Earth's history and for the understanding of biocorrosion processes in the field of applied science.  相似文献   

2.
To assess the effect of polymeric substances on the biomineralization and stabilization of green rust (GR), the effect of two organic polymers on the transformation of lepidocrocite (γ-FeOOH) to GR vs. magnetite in presence of Shewanella putrefaciens was investigated. These two polymers, generally used as flocculants, are polyacrylic acid (PAA), which bears negatively charged carboxylic groups at neutral pH and is expected to react with cationic hydrolyzed iron species, and polyacrylamide (PAM), which is a neutral polymer that may develop hydrogen bonds with iron nanocolloids. The bioreduction of lepidocrocite by S. putrefaciens was performed under conditions known to yield either magnetite or GR. Each operational condition of interest was investigated with various polymer concentrations from 0.6 to 60 mg g?1 Fe (10 to 1000 mg l?1). The final product was characterized using X-ray diffraction and electronic microscopy. The results showed that the formation of GR is favored, with respect to magnetite, to a lesser extent with PAM than with PAA. These results indicated that polymers influence the chemical stability of GR and/or guide the route of biomineralization. Polymer properties, in addition to silica and phosphate concentrations, are then critical parameters that control the secondary iron mineral biomineralization from iron-reducing bacteria.

Supplemental materials are available for this article. Go to the publisher's online edition of Geomicrobiology Journal to view the supplemental file.  相似文献   

3.
The formation of hydroxysulphate green rust 2, a Fe(II-III) compound commonly found during corrosion processes of iron-based materials in seawater, has not yet been reported in bacterial cultures. Here we used Shewanella putrefaciens, a dissimilatory iron-reducing bacterium to anaerobically catalyze the transformation of a ferric oxyhydroxide, lepidocrocite (γ-FeOOH), into Fe(II) in the presence of various sulphate concentrations. Biotransformation assays of γ-FeOOH were performed with formate as the electron donor under a variety of concentrations. The results showed that the competitive formation of hydroxycarbonate green rust 1 (GR1(CO3 2?)) and hydroxysulphate green rust 2 (GR2(SO4 2 ?)) depended upon the relative ratio (R) of bicarbonate and sulphate concentrations. When R ≥ 0.17, GR1(CO3 2 ?) only was formed whereas when R < 0.17, a mixture of GR2(SO4 2 ?) and GR1(CO3 2 ?) was obtained. These results demonstrated that the hydroxysulphate GR2 can originate from the microbial reduction of γ-FeOOH and confirmed the preference for carbonate over sulphate during green rust precipitation. The solid phases were characterized by X-ray diffraction, transmission Mössbauer spectroscopy and scanning electron microscopy. Diffuse reflectance infrared Fourier transform spectroscopy confirmed the presence of intercalated carbonate and sulphate in green rust's structure. This study sheds light on the influence of dissimilatory iron-reducing bacteria on microbiologically influenced corrosion.  相似文献   

4.
Sediment samples were obtained from areas of diffuse hydrothermal venting along the seabed in the Tonga sector of the Tonga‐Kermadec Arc, southwest Pacific Ocean. Sediments from Volcano 1 and Volcano 19 were analyzed by X‐ray diffraction (XRD) and found to be composed primarily of the iron oxyhydroxide mineral, two‐line ferrihydrite. XRD also suggested the possible presence of minor amounts of more ordered iron (hydr)oxides (including six‐line ferrihydrite, goethite/lepidocrocite and magnetite) in the biogenic iron oxides (BIOS) from Volcano 1; however, Mössbauer spectroscopy failed to detect any mineral phases more crystalline than two‐line ferrihydrite. The minerals were precipitated on the surfaces of abundant filamentous microbial structures. Morphologically, some of these structures were similar in appearance to the known iron‐oxidizing genus Mariprofundus spp., suggesting that the sediments are composed of biogenic iron oxides. At Volcano 19, an areally extensive, active vent field, the microbial cells appeared to be responsible for the formation of cohesive chimney‐like structures of iron oxyhydroxide, 2–3 m in height, whereas at Volcano 1, an older vent field, no chimney‐like structures were apparent. Iron reduction of the sediment material (i.e. BIOS) by Shewanella putrefaciens CN32 was measured, in vitro, as the ratio of [total Fe(II)]:[total Fe]. From this parameter, reduction rates were calculated for Volcano 1 BIOS (0.0521 day?1), Volcano 19 BIOS (0.0473 day?1), and hydrous ferric oxide, a synthetic two‐line ferrihydrite (0.0224 day?1). Sediments from both BIOS sites were more easily reduced than synthetic ferrihydrite, which suggests that the decrease in effective surface area of the minerals within the sediments (due to the presence of the organic component) does not inhibit subsequent microbial reduction. These results indicate that natural, marine BIOS are easily reduced in the presence of dissimilatory iron‐reducing bacteria, and that the use of common synthetic iron minerals to model their reduction may lead to a significant underestimation of their biological reactivity.  相似文献   

5.

Although GR2(SO4 2-) can be easily formed by abiotic synthesis, the biotic formation of hydroxysulphate as a single iron(II-III) mineral in microbial culture and its characterization was not achieved. This study was carried out to investigate the sole formation of GR2(SO4 2-) during the reduction of γ-FeOOH by a dissimilatory iron-respiring bacterium, Shewanella putrefaciens CIP 8040T. Reduction experiments were performed in a non-buffered medium devoid of organic compounds, with 25 mM of sulphate and with a range of lepidocrocite concentrations with H2 as the electron donor under nongrowth conditions. The resulting biogenic solids, after iron-respiring activity, were characterized by X-ray diffraction (XRD), transmission Mössbauer spectroscopy (TMS) and electron microscopy (SEM and TEM). The sulphate has been identified as the intercalated anion by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). In addition, the structure of this sulphate anion was discussed. Our experimental study demonstrated that, under H2 atmosphere, the biogenic solid was a GR2(SO4 2-), as the sole iron(II-III) bearing mineral, whatever the initial lepidocrocite concentration. The crystals of the biotically formed GR2(SO4 2-) are significantly larger than those observed for GR2(SO4 2-) obtained through abiotic preparation, < 15 μ m diameter as against 0.5–4 μm, respectively.  相似文献   

6.

In this study, batch experiments were used to characterize attachment behavior of Shewanella putrefaciens strain 200R to ferrihydrite and magnetite. Attachment was quantified in batch experiments with a 0.01 M NaNO 3 solution as a function of pH (ranging from 3 to 10), sorbed anion (PO4 3 ? ), and growth conditions (aerobic vs. anaerobic). Electrophoretic mobility data was collected for S. putrefaciens cells and magnetite grains and used as a means to interpret the role of electrostatic interaction in attachment studies. Little difference in attachment behavior was observed as a function of growth conditions or surface treatments. The exception was at pH ranging from 2 to 4, under anaerobic conditions, where increased attachment was measured on magnetite surfaces with sorbed PO4 3 ? . This increased attachment was attributed to development of Fe-PO4 surface complexes or secondary mineral phases, resulting in altered surface interactions between cell and mineral surfaces. Attachment was irreversible and increased with time under anaerobic conditions even under elevated pH conditions unfavourable to electrostatic interactions between cells and mineral surfaces. These results suggest that electrophoretic mobility data in this system is not a good predictor of attachment behavior, while surface charge development via protonation and deprotonation of surface functional groups is consistent with experimental attachment data. In this study, S. putrefaciens appears to utilize polymers or pili to remain attached to Fe-oxides and this process may facilitate Fe reduction on these surfaces. Results from this study underscore the need for quantitative bulk measurements of microbial attachment to accurately predict partitioning of dissimilatory iron reducing bacteria between solution and solid phases.  相似文献   

7.
We have examined the influence of carbon source on both the rate of iron reduction and the mineralogy of the reduction products with Shewanella putrefaciens strain W3-18-1. When pyruvate was the carbon source, the secondary products were spherules composed of siderite. When uridine was used as the carbon source, the products were hexagonal plate-like structures identified as iron carbonate hydroxide hydrate, also known as carbonate green rust, a precursor to fougerite. When lactate was used as the carbon source, products were a mixture of iron carbonate hydroxide and magnetite. In terms of reaction stoichiometry, there were differences in the amount of acetate produced depending on the starting organic carbon source. Incubation with pyruvate produced a relatively large amount of acetate compared to incubation with uridine and lactate. There were also differences in the final pH of the cultures. While the pH for incubations with lactate started at 8.6 and ended between 8.0–8.3, the pH of cultures incubated with uridine was found to be almost a full unit lower at the conclusion of the experiment (~7.4). Solubility diagrams based on the chemistry found in our experiments predict that the production of Fe2+ (aq) should always lead to the formation of magnetite. However, strain W3-18-1 produced different minerals depending on the carbon source utilized as the electron acceptor.  相似文献   

8.
Callus and cell suspension cultures were initiated from leaf segments of G. paniculata. Fresh and dry weights measurements of callus showed that callus growth was optimal on MS medium supplemented with 1.0 mg l–1 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.2 mg l–1 benzyladenin (BA). Calli cultured on this medium, showed a two-fold increase in fresh weight by the fourth week of incubation. The initiated hard green callus was repeatedly subcultured on MS medium containing increasing concentrations of 2,4-D in order to increase its friability. The friable callus was then used for establishment of a cell suspension culture. Maximum growth of the suspension culture was on medium supplemented with 1.0 mg l–1 2,4-D and 0.2 mg l–1 BA.The suspension culture was used for studying plant host attachment in both electron and light microscopy. Upon infection with E. herbicola, plant cells showed aggregate formation within 24 h of infection. In the presence of the pathogenic Ehg,the number of aggregates formed was 342 aggregates ml–1, in the presence of the non-pathogenic Ehg154 aggregates ml–1 and in the control 115 aggregates ml–1. These results show that the pathogenic strain causes formation of cell aggregates 5.8 times greater than the non-pathogenic one. Based on these results, it can be hypothesized that bacterial cells of the pathogenic strains bind to the plant cells and may form a bridge for attachment of plant cells to one another. Observations by electron microscope show that bacterial cells do attach to plant cells and that this attachment might be via formation of a bridge between the bacteria and the plant cell.  相似文献   

9.
【目的】研究产胞外分泌物微生物Shewanella putrefaciens CN32对土壤中常见粘土矿物附着态NH_4~+的释放效果及影响机制。【方法】以吸附NH_4~+的蒙脱石、蛭石、伊蒙混层矿物和黑云母为对象,通过监测S. putrefaciens CN32作用下不同粘土释放的NH_4~+含量及过程,以及监测微生物量及释放的胞外聚合物(Extracellular Polymeric Substances,EPS)的含量变化,研究S. putrefaciens CN32作用下不同粘土矿物类型附着态NH_4~+释放的差异性。【结果】粘土矿物附着态NH_4~+含量从高到低依次为蒙脱石蛭石伊蒙混层矿物黑云母(黑云母NH_4~+吸附量极低,会在非生物作用下几乎完全释放),CN32作用下粘土附着态NH_4~+相对释放量依次为蒙脱石伊蒙混层矿物蛭石;然而,尽管CN32有效促进了粘土附着态NH_4~+释放,但释放的NH_4~+并未在溶液中大量累积,而是多被微生物同化吸收转化为生物有机氮(EPS为主)并吸附在粘土表面,且粘土对EPS的吸附能力表现为蒙脱石伊蒙混层矿物蛭石黑云母;由于粘土吸附NH_4~+及EPS都与矿物中的羟基(结构水或层间水)关系密切,推测EPS对矿物羟基的竞争吸附可能是CN32促进NH_4~+释放的重要原因之一。【结论】以上结果表明,产EPS微生物S. putrefaciens CN32能够促进各类粘土矿物的附着态NH_4~+释放,但释放的NH_4~+可以通过微生物作用转化为有机氮,从而在减少NH_4~+流失的同时增加土壤氮肥的生物可利用性,因此微生物在降低土壤氮肥流失、转化土壤氮肥污染过程中可能起到了重要作用,也揭示了深入系统地分析不同类型土壤(粘土类型不同)中粘土附着态NH_4~+在不同功能微生物作用下的迁移转化过程,是精准评估土壤氮肥施用效率及流失风险的前提之一。  相似文献   

10.
The influence of phosphate on the competitive formation of magnetite and lepidocrocite and the properties of magnetite prepared from mixtures of Fe(II) and Fe(III) salts were studied. Products were prepared at 90 °C and pH 12.5 (series 1), 50 °C and pH 7 (series 2) and 20 °C and pH 8 (series 3). The P/Fe atomic ratio in the initial solution ranged from 0 to 3% and the pH was kept at the desired value with NaOH or KOH. Air was used as oxidant in series 2 and 3. All products, which were characterized by X-ray diffraction, transmission electron microscopy, chemical analysis and IR spectroscopy, contained a phase intermediate between magnetite and maghemite (referred to as magnetite in this paper). The products of series 1 consisted only of magnetite at all P/Fe ratios, whereas both magnetite and lepidocrocite formed in series 2 and 3 above a certain P/Fe ratio. On increasing the P/Fe ratio in the initial solution, the magnetite crystals became smaller and more oxidized (i.e. closer to maghemite) and the lepidocrocite/magnetite ratio increased. The P associated with magnetite was partly in the form of occluded P, i.e. non-surface-adsorbed phosphate. IR spectra suggested this P to be structural and occurring as low-symmetry PO4 units. Because abiogenic magnetites produced in various environments incorporate structural P but some well-characterized biogenic magnetites seem to contain no P or be formed in P-poor environments, we hypothesize that natural magnetites containing occluded P are unlikely to be biogenic. However, more studies are needed to discard the presence of P in biogenic magnetites.  相似文献   

11.
Magnetite formation during the reduction of nanoparticulate hematite by Shewanella putrefaciens 200R is investigated in media of variable composition, at circumneutral pH and with lactate as electron donor. The relative rates of production of dissolved Fe(II) and Fe(III), aqueous speciation, plus chemical gradients control whether or not magnetite forms in the experiments. High bicarbonate concentrations result in the precipitation of magnetite, presumably by enhancing the non-reductive dissolution of hematite, hence causing the simultaneous production of soluble Fe(III) and Fe(II) in the incubations. Magnetite formation is inhibited when hematite dissolution is slowed down by adsorption of oxyanions (phosphate and sulfate) at the mineral surface, when the reduction of soluble Fe(III) is enhanced by increasing the cell density or adding an electron shuttle (AQS), or when aqueous Fe(II) is complexed by ferrozine. In experiments where hematite suspensions with and without bacteria are separated by a dialysis membrane, magnetite formation occurs mainly in the cell-free portion of the reaction system. Most likely, precipitation of magnetite is favored in the cell-free suspension because of a higher soluble Fe(III) to Fe(II) ratio. The formation of magnetite in the absence of cells further implies that its nucleation is not catalyzed by the bacterial surfaces.  相似文献   

12.
In this study, iron reduction and concomitant biomineralization of a deep‐sea iron reducing bacterium (IRB), Shewanella piezotolerans WP3, were systematically examined at different hydrostatic pressures (0.1, 5, 20, and 50 MPa). Our results indicate that bacterial iron reduction and induced biomineralization are influenced by hydrostatic pressure. Specifically, the iron reduction rate and extent consistently decreases with the increase in hydrostatic pressure. By extrapolation, the iron reduction rate should drop to zero by ~68 MPa, which suggests a possible shut‐off of enzymatic iron reduction of WP3 at this pressure. Nano‐sized superparamagnetic magnetite minerals are formed under all the experimental pressures; nevertheless, even as magnetite production decreases, the crystallinity and grain size of magnetite minerals increase at higher pressure. These results imply that IRB may play an important role in iron reduction, biomineralization, and biogeochemical cycling in deep‐sea environments.  相似文献   

13.
Green rusts are mixed ferrous/ferric hydroxides that typically form under weakly acidic to alkaline conditions in suboxic environments. The recent identification of green rusts as products of the reduction of Fe(III) oxides and oxyhydroxides by Shewanella putrefaciens, a dissimilatory iron-reducing bacterium (DIRB), suggests that green rusts may play a role in the redox cycling of Fe in many aquatic and terrestrial environments. We examined the potential for green rust formation resulting from the bioreduction of lepidocrocite(γ -FeOOH) by a series of Shewanella species (S. alga BrY, S. amazonensis SB2B, S. baltica OS155, S. denitrificans OS217T, S. loihica PV-4, S. oneidensis MR-1, S. putrefaciens ATCC 8071, S. putrefaciens CN32, S. saccharophilia, and Shewanella sp. ANA-3). All Shewanella species, with the exception of S. denitrificans OS217T, were able to couple the oxidation of formate to the reduction of Fe(III) in lepidocrocite; however there were significant differences among species with respect to the rate and extent of Fe(II) production. Despite these differences, green rust was the only Fe(II)-bearing solid phase formed under our experimental conditions, as indicated by X-ray diffraction, Mössbauer spectroscopy, and scanning electron microscopy. The formation of green rust by Shewanella species isolated from a wide range of habitats and possessing varied metabolic capabilities suggests that under favorable conditions biogenic green rusts may be formed by a diverse array of DIRB.  相似文献   

14.
Aims: To develop a PCR strategy for Vibrio vulnificus in irradiated foods. Methods and Results: Real‐time PCR was used to discriminate between DNA from γ‐irradiated and nonirradiated cells. γ‐Irradiation at 1·08 KGy and above of cell suspensions containing 1 × 106 CFU ml?1 resulted in 0 CFU ml?1. Real‐time PCR was able to detect 86·6% destruction by 1·08 KGy, while ethidium bromide monoazide (EMA) real‐time PCR was able to detect 93·2% destruction at this dose. With 3·0 and 5·0 KGy, EMA real‐time PCR was able to detect 99·3% and 100% destruction, respectively. Conclusions: The inability to detect via PCR extensively degraded DNA resulting from γ‐irradiation can be taken as evidence of cell death. The increased ability of EMA to further reduce the detectable number of target sequences via PCR, with DNA from cells exposed to increased doses of γ‐irradiation, can be considered to reflect the accompanying increase in membrane damage which allows EMA to penetrate the cells. Significance and impact of the study: This is the first study that has made use of the PCR to discriminate between γ‐irradiated and nonirradiated bacterial cells and has led to insights regarding the ability of the PCR to discriminate between nonirradiated and γ‐irradiation destroyed cells.  相似文献   

15.
Summary Image analysis tools were developed to measure biomass concentration, aggregate size and distribution, and pigmentation from anthocyanin-producing cell suspension cultures of ohelo (Vaccinium pahalae). The ex situ imaging system could image cell aggregates from 30 μm to 2 mm in diameter. The image analysis algorithm was based on extracted geometric features and morphological methods for biomass volume estimates, and hue, saturation, and intensity color characteristics for pigmentation estimates. Detailed information available from sampled cell culture images was validated by comparison to standard destructive manual measurements. Image analysis measurements revealed that pigment accumulation was negatively correlated with aggregate size. Although a substantial proportion of small aggregates remained colorless, the highly-pigmented small aggregates, 18 to 238 μm in breadth, contributed over 70% of the culture anthocyanin production (mg L−1), despite their minor contribution to the overall biomass. The relative frequency of pigmented aggregates was higher in large-size aggregate classes; however, the pigmented sectors were mostly confined to only the periphery of the aggregates. As a result, large aggregate classes had only a minor contribution to overall culture anthocyanin yield.  相似文献   

16.
17.
With the aim of exploring the potential application of a novel chitosan oligosaccharide derivative (COS-All-Tio) in shrimp preservation, six dominant spoilage bacteria in the spoiled shrimp (Penaeus vannamei) were isolated and identified as Shewanella putrefaciens (RMS1), S. putrefaciens (S2), Pseudomonas weihenstephanensis (P1), P. gessardii (P2), Aeromonas bestiarum (A1) and Aeromonas molluscorum (A2). The antibacterial effect of COS-All-Tio against the six bacterial isolates were studied. Bacterial inhibition zone determination, and minimum inhibitory concentration and minimum bactericidal concentration assays indicated that the antibacterial activity of COS-All-Tio was greatly improved when compared to that of chitosan oligosaccharide (COS). The antibacterial mechanism investigation against S. putrefaciens (RMS1) revealed that COS-All-Tio could inhibit bacterial growth by influencing of membrane integrity. Such disturbance of membrane structure resulted in the leakage of intracellular substance of the bacteria. A strong synergistic antibacterial effect against S. putrefaciens (RMS1) was observed when COS-All-Tio was used in combination with food preservatives (e.g. ε-polylysine hydrochloride). Therefore, COS-All-Tio might have potential in shrimp preservation.  相似文献   

18.
白晓雄  李妍  胡斯乐  董立国  张敏  王迎  余旋 《生态学报》2024,44(12):5259-5268
探究刺槐人工林土壤团聚体、有机碳及细菌群落的变化特征,可为提升土壤质量与功能提供理论依据。以黄土高原沟壑区不同林龄刺槐人工林(8年生、18年生和30年生)和刚撂荒的农耕地(CK)为研究对象,利用最适湿度筛分法获得不同粒径团聚体,测定其有机碳含量和细菌群落结构特征。结果表明:(1)各林龄土壤团聚体均以>0.25 mm粒径为主,含量为92.74%-95.78%。土壤团聚体稳定性随着林龄的增加显著提高,以30年生林地最高,团聚体平均重量直径(MWD)、几何平均直径(GMD)分别较CK显著增加48.19%和91.38%(P<0.05)。(2)各林龄均以<0.25 mm粒径有机碳含量最高。土壤有机碳含量和>2 mm粒径团聚体有机碳含量均随着林龄的增长而显著增加。(3)团聚体细菌群落主要由变形菌门(Proteobacteria)、放线菌门(Actinobacteria)和酸杆菌门(Acidobacteria)组成。随着林龄的增加,各粒径团聚体中放线菌门相对丰度先降低后增加,18年生林地最低。酸杆菌门变化趋势与放线菌门相反。变形菌门无明显变化。土壤有机碳、pH、全氮和全磷是影响团聚体细菌群落的主要因素。(4)>2 mm和2-0.25 mm粒径团聚体中,己科河菌门(Rokubacteria)对团聚体稳定性影响最大,既对团聚体稳定性产生直接正效应,又通过增加有机碳的含量间接提高团聚体稳定性。在<0.25 mm粒径团聚体中,有机碳含量对其稳定性的影响最大,有机碳含量越高,团聚体稳定性越强。综上,营造刺槐人工林有利于提高土壤团聚体稳定性,促进土壤有机碳的积累,可作为该区域生态恢复的有效措施。在生长发育过程中,人工林可通过改变土壤团聚体细菌群落和有机碳含量从而影响团聚体的稳定性。  相似文献   

19.
Elevated dissolved iron concentrations in the methanic zone are typical geochemical signatures of rapidly accumulating marine sediments. These sediments are often characterized by co-burial of iron oxides with recalcitrant aromatic organic matter of terrigenous origin. Thus far, iron oxides are predicted to either impede organic matter degradation, aiding its preservation, or identified to enhance organic carbon oxidation via direct electron transfer. Here, we investigated the effect of various iron oxide phases with differing crystallinity (magnetite, hematite, and lepidocrocite) during microbial degradation of the aromatic model compound benzoate in methanic sediments. In slurry incubations with magnetite or hematite, concurrent iron reduction, and methanogenesis were stimulated during accelerated benzoate degradation with methanogenesis as the dominant electron sink. In contrast, with lepidocrocite, benzoate degradation, and methanogenesis were inhibited. These observations were reproducible in sediment-free enrichments, even after five successive transfers. Genes involved in the complete degradation of benzoate were identified in multiple metagenome assembled genomes. Four previously unknown benzoate degraders of the genera Thermincola (Peptococcaceae, Firmicutes), Dethiobacter (Syntrophomonadaceae, Firmicutes), Deltaproteobacteria bacteria SG8_13 (Desulfosarcinaceae, Deltaproteobacteria), and Melioribacter (Melioribacteraceae, Chlorobi) were identified from the marine sediment-derived enrichments. Scanning electron microscopy (SEM) and catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) images showed the ability of microorganisms to colonize and concurrently reduce magnetite likely stimulated by the observed methanogenic benzoate degradation. These findings explain the possible contribution of organoclastic reduction of iron oxides to the elevated dissolved Fe2+ pool typically observed in methanic zones of rapidly accumulating coastal and continental margin sediments.Subject terms: Biogeochemistry, Microbial ecology  相似文献   

20.
The structural phases and optoelectronic properties of coevaporated CsPbI3 thin films with a wide range of [CsI]/[PbI2] compositional ratios are investigated using high throughput experimentation and gradient samples. It is found that for CsI‐rich growth conditions, CsPbI3 can be synthesized directly at low temperature into the distorted perovskite γ‐CsPbI3 phase without detectable secondary phases. In contrast, PbI2‐rich growth conditions are found to lead to the non‐perovskite δ‐phase. Photoluminescence spectroscopy and optical‐pump THz‐probe mapping show carrier lifetimes larger than 75 ns and charge carrier (sum) mobilities larger than 60 cm2 V?1 s?1 for the γ‐phase, indicating their suitability for high efficiency solar cells. The dependence of the carrier mobilities and luminescence peak energy on the Cs‐content in the films indicates the presence of Schottky defect pairs, which may cause the stabilization of the γ‐phase. Building on these results, p–i–n type solar cells with a maximum efficiency exceeding 12% and high shelf stability of more than 1200 h are demonstrated, which in the future could still be significantly improved, judging on their bulk optoelectronic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号