首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CD4+ T cells play critical roles in protection against the blood stage of malarial infection; however, their uncontrolled activation can be harmful to the host. In this study, in which rodent models of Plasmodium parasites were used, the expression of inhibitory receptors on activated CD4+ T cells and their cytokine production was compared with their expression in a bacterial and another protozoan infection. CD4+ T cells from mice infected with P. yoelii 17XL, P yoelii 17XNL, P. chabaudi, P. vinckei and P. berghei expressed the inhibitory receptors, PD‐1 and LAG‐3, as early as 6 days after infection, whereas those from either Listeria monocytogenes‐ or Leishmania major‐infected mice did not. In response to T‐cell receptor stimulation, CD4+ T cells from mice infected with all the pathogens under study produced high concentrations of IFN‐γ. IL‐2 production was reduced in mice infected with Plasmodium species, but not in those infected with Listeria or Leishmania. In vitro blockade of the interaction between PD‐1 and its ligands resulted in increased IFN‐γ production in response to Plasmodium antigens, implying that PD‐1 expressed on activated CD4+ T cells actively inhibits T cell immune responses. Studies using Myd88?/?, Trif?/? and Irf3?/? mice showed that induction of these CD4+ T cells and their ability to produce cytokines is largely independent of TLR signaling. These studies suggest that expression of the inhibitory receptors PD‐1 and LAG‐3 on CD4+ T cells and their reduced IL‐2 production are common characteristic features of Plasmodium infection.
  相似文献   

2.
Caspase recruitment domains‐containing protein 9 (CARD9) is an adaptor molecule critical for key signalling pathways initiated through C‐type lectin receptors (CLRs). Previous studies demonstrated that Pneumocystis organisms are recognised through a variety of CLRs. However, the role of the downstream CARD9 adaptor signalling protein in host defence against Pneumocystis infection remains to be elucidated. Herein, we analysed the role of CARD9 in host defence against Pneumocystis both in CD4‐depleted CARD9?/? and immunocompetent hosts. Card9 gene‐disrupted (CARD9?/?) mice were more susceptible to Pneumocystis, as evidenced by reduced fungal clearance in infected lungs compared to wild‐type (WT) infected mice. Our data suggests that this defect was due to impaired proinflammatory responses. Furthermore, CARD9?/? macrophages were severely compromised in their ability to differentiate and express M1 and M2 macrophage polarisation markers, to enhanced mRNA expression for Dectin‐1 and Mincle, and most importantly, to kill Pneumocystis in vitro. Remarkably, compared to WT mice, and despite markedly increased organism burdens, CARD9?/? animals did not exhibit worsened survival during pneumocystis pneumonia (PCP), perhaps related to decreased lung injury due to altered influx of inflammatory cells and decreased levels of proinflammatory cytokines in response to the organism. Finally, although innate phase cytokines were impaired in the CARD9?/? animals during PCP, T‐helper cell cytokines were normal in immunocompetent CARD9?/? animals infected with Pneumocystis. Taken together, our data demonstrate that CARD9 has a critical function in innate immune responses against Pneumocystis.  相似文献   

3.
This study provides evidence supporting the idea that although inflammatory cells migration to the cardiac tissue is necessary to control the growth of Trypanosoma cruzi, the excessive influx of such cells during acute myocarditis may be deleterious to the host. Production of lipid mediators of inflammation like leukotrienes (LTs) along with cytokines and chemokines largely influences the severity of inflammatory injury in response to tissue parasitism. T. cruzi infection in mice deficient in 5-lipoxygenase (5-LO), the enzyme responsible for the synthesis of LTs and other lipid inflammatory mediators, resulted in transiently increased parasitemia, and improved survival rate compared with WT mice. Myocardia from 5-LO?/? mice exhibited reduced inflammation, collagen deposition, and migration of CD4+, CD8+, and IFN-γ-producer cells compared with WT littermates. Moreover, decreased amounts of TNF-α, IFN-γ, and nitric oxide synthase were found in the hearts of 5-LO?/? mice. Interestingly, despite of early higher parasitic load, 5-LO?/? mice survived, and controlled T. cruzi infection. These results show that efficient parasite clearance is possible in a context of moderate inflammatory response, as occurred in 5-LO?/? mice, in which reduced myocarditis protects the animals during T. cruzi infection.  相似文献   

4.
Niemann–Pick disease, type C1 (Npc1), is an atypical lysosomal storage disorder caused by autosomal recessive inheritance of mutations in Npc1 gene. In the Npc1 mutant mice (Npc1?/?), the initial manifestation is enlarged spleen, concomitant with free cholesterol accumulation. Telocytes (TCs), a novel type of interstitial cell, exist in a variety of tissues including spleen, presumably thought to be involved in many biological processes such as nursing stem cells and recruiting inflammatory cells. In this study, we found that the spleen is significantly enlarged in Npc1?/? mice, and the results from transmission electron microscopy examination and immunostaining using three different TCs markers, c‐Kit, CD34 and Vimentin revealed significantly increased splenic TCs in Npc1?/? mice. Furthermore, hematopoietic stem cells and macrophages were also elevated in Npc1?/? spleen. Taken together, our data indicate that splenic TCs might alleviate the progress of splenic malfunction via recruiting hematopoietic stem cells and macrophages.  相似文献   

5.
Pro‐aging effects of endogenous advanced glycation end‐products (AGEs) have been reported, and there is increasing interest in the pro‐inflammatory and ‐fibrotic effects of their binding to RAGE (the main AGE receptor). The role of dietary AGEs in aging remains ill‐defined, but the predominantly renal accumulation of dietary carboxymethyllysine (CML) suggests the kidneys may be particularly affected. We studied the impact of RAGE invalidation and a CML‐enriched diet on renal aging. Two‐month‐old male, wild‐type (WT) and RAGE?/? C57Bl/6 mice were fed a control or a CML‐enriched diet (200 μg CML/gfood) for 18 months. Compared to controls, we observed higher CML levels in the kidneys of both CML WT and CML RAGE?/? mice, with a predominantly tubular localization. The CML‐rich diet had no significant impact on the studied renal parameters, whereby only a trend to worsening glomerular sclerosis was detected. Irrespective of diet, RAGE?/? mice were significantly protected against nephrosclerosis lesions (hyalinosis, tubular atrophy, fibrosis and glomerular sclerosis) and renal senile apolipoprotein A‐II (ApoA‐II) amyloidosis (p < 0.001). A positive linear correlation between sclerosis score and ApoA‐II amyloidosis score (r = 0.92) was observed. Compared with old WT mice, old RAGE?/? mice exhibited lower expression of inflammation markers and activation of AKT, and greater expression of Sod2 and SIRT1. Overall, nephrosclerosis lesions and senile amyloidosis were significantly reduced in RAGE?/? mice, indicating a protective effect of RAGE deletion with respect to renal aging. This could be due to reduced inflammation and oxidative stress in RAGE?/? mice, suggesting RAGE is an important receptor in so‐called inflamm‐aging.  相似文献   

6.
The spleen is the main organ for immune defense during infection with Plasmodium parasites and splenomegaly is one of the major symptoms of such infections. Using a rodent model of Plasmodium yoelii infection, MHC class II+CD11c? non‐T, non‐B cells in the spleen were characterized. Although the proportion of conventional dendritic cells was reduced, that of MHC II+CD11c? non‐T, non‐B cells increased during the course of infection. The increase in this subpopulation was dependent on the presence of lymphocytes. Experiments using Rag‐2?/? mice with adoptively transferred normal spleen cells indicated that these cells were non‐lymphoid cells; however, their accumulation in the spleen during infection with P. yoelii depended on lymphocytes. Functionally, these MHC II+CD11c? non‐T, non‐B cells were able to produce the proinflammatory cytokines alpha tumor necrosis factor and interleukin‐6 in response to infected red blood cells, but had only a limited ability to activate antigen‐specific CD4+ T cells. This study revealed a novel interaction between MHC II+CD11c? non‐lymphoid cells and lymphoid cells in the accumulations of these non‐lymphoid cells in the spleen during infection with P. yoelii.
  相似文献   

7.
Toll‐like receptors (TLRs) are expressed by haematopoietic stem and progenitor cells (HSPCs), and may play a role in haematopoiesis in response to pathogens during infection. We have previously demonstrated that (i) inactivated yeasts of Candida albicans induce in vitro differentiation of HSPCs towards the myeloid lineage, and (ii) soluble TLR agonists induce in vivo their differentiation towards macrophages. In this work, using an in vivo model of HSPCs transplantation, we report for the first time that HSPCs sense C. albicans in vivo and subsequently are directed to produce macrophages by a TLR2‐dependent signalling. Purified lineage‐negative cells (Lin?) from bone marrow of C57BL/6 mice (CD45.2 alloantigen) were transplanted into B6Ly5.1 mice (CD45.1 alloantigen), which were then injected with viable or inactivated C. albicans yeasts. Transplanted cells were detected in the spleen and in the bone marrow of recipient mice, and they differentiate preferentially to macrophages, both in response to infection or in response to inactivated yeasts. The generation of macrophages was dependent on TLR2 but independent of TLR4, as transplanted Lin? cells from TLR2?/? mice did not give rise to macrophages, whereas Lin? cells from TLR4?/? mice generated macrophages similarly to control cells. Interestingly, the absence of TLR2, or in a minor extent TLR4, gives Lin? cells an advantage in transplantation assays, as increases the percentage of transplanted recovered cells. Our results indicatethat TLR‐mediated recognition of C. albicans by HSPCs may help replace and/or increase cells that constitute the first line of defence against the fungus, and suggest that TLR‐mediated signalling may lead to reprogramming early progenitors to rapidly replenishing the innate immune system and generate the most necessary mature cells to deal with the pathogen.  相似文献   

8.
Histidine decarboxylase (HDC) catalyses the formation of histamine from L‐histidine. Histamine is a biogenic amine involved in many physiological and pathological processes, but its role in the regeneration of skeletal muscles has not been thoroughly clarified. Here, using a murine model of hindlimb ischaemia, we show that histamine deficiency in Hdc knockout (Hdc?/?) mice significantly reduces blood perfusion and impairs muscle regeneration. Using Hdc‐EGFP transgenic mice, we demonstrate that HDC is expressed predominately in CD11b+Gr‐1+ myeloid cells but not in skeletal muscles and endothelial cells. Large amounts of HDC‐expressing CD11b+ myeloid cells are rapidly recruited to injured and inflamed muscles. Hdc?/? enhances inflammatory responses and inhibits macrophage differentiation. Mechanically, we demonstrate that histamine deficiency decreases IGF‐1 (insulin‐like growth factor 1) levels and diminishes myoblast proliferation via H3R/PI3K/AKT‐dependent signalling. These results indicate a novel role for HDC‐expressing CD11b+ myeloid cells and histamine in myoblast proliferation and skeletal muscle regeneration.  相似文献   

9.
10.

Previously, we have reported that the coronary reactive hyperemic response was reduced in adenosine A2A receptor-null (A2AAR?/?) mice, and it was reversed by the soluble epoxide hydrolase (sEH) inhibitor. However, it is unknown in aortic vascular response, therefore, we hypothesized that A2AAR-gene deletion in mice (A2AAR?/?) affects adenosine-induced vascular response by increase in sEH and adenosine A1 receptor (A1AR) activities. A2AAR?/? mice showed an increase in sEH, AI AR and CYP450-4A protein expression but decrease in CYP450-2C compared to C57Bl/6 mice. NECA (adenosine-analog) and CCPA (adenosine A1 receptor-agonist)-induced dose-dependent vascular response was tested with t-AUCB (sEH-inhibitor) and angiotensin-II (Ang-II) in A2AAR?/? vs. C57Bl/6 mice. In A2AAR?/?, NECA and CCPA-induced increase in dose-dependent vasoconstriction compared to C57Bl/6 mice. However, NECA and CCPA-induced dose-dependent vascular contraction in A2AAR?/? was reduced by t-AUCB with NECA. Similarly, dose-dependent vascular contraction in A2AAR?/? was reduced by t-AUCB with CCPA. In addition, Ang-II enhanced NECA and CCPA-induced dose-dependent vascular contraction in A2AAR?/? with NECA. Similarly, the dose-dependent vascular contraction in A2AAR?/? was also enhanced by Ang-II with CCPA. Further, t-AUCB reduced Ang-II-enhanced NECA and CCPA-induced dose-dependent vascular contraction in A2AAR?/? mice. Our data suggest that the dose-dependent vascular contraction in A2AAR?/? mice depends on increase in sEH, A1AR and CYP4A protein expression.

  相似文献   

11.
It has been recently reported that CD38 was highly expressed in adipose tissues from obese people and CD38‐deficient mice were resistant to high‐fat diet (HFD)‐induced obesity. However, the role of CD38 in the regulation of adipogenesis and lipogenesis is unknown. In this study, to explore the roles of CD38 in adipogenesis and lipogenesis in vivo and in vitro, obesity models were generated with male CD38?/? and WT mice fed with HFD. The adipocyte differentiations were induced with MEFs from WT and CD38?/? mice, 3T3‐L1 and C3H10T1/2 cells in vitro. The lipid accumulations and the alternations of CD38 and the genes involved in adipogenesis and lipogenesis were determined with the adipose tissues from the HFD‐fed mice or the MEFs, 3T3‐L1 and C3H10T1/2 cells during induction of adipocyte differentiation. The results showed that CD38?/? male mice were significantly resistant to HFD‐induced obesity. CD38 expressions in adipocytes were significantly increased in WT mice fed with HFD, and the similar results were obtained from WT MEFs, 3T3‐L1 and C3H10T1/2 during induction of adipocyte differentiation. The expressions of PPARγ, AP2 and C/EBPα were markedly attenuated in adipocytes from HFD‐fed CD38?/? mice and CD38?/? MEFs at late stage of adipocyte differentiation. Moreover, the expressions of SREBP1 and FASN were also significantly decreased in CD38?/? MEFs. Finally, the CD38 deficiency‐mediated activations of Sirt1 signalling were up‐regulated or down‐regulated by resveratrol and nicotinamide, respectively. These results suggest that CD38 deficiency impairs adipogenesis and lipogenesis through activating Sirt1/PPARγ‐FASN signalling pathway during the development of obesity.  相似文献   

12.
The enterohepatic Epsilonproteobacterium Helicobacter hepaticus persistently colonizes the intestine of mice and causes chronic inflammatory symptoms in susceptible mouse strains. The bacterial factors causing intestinal inflammation are poorly characterized. A large genomic pathogenicity island, HHGI1, which encodes components of a type VI secretion system (T6SS), was previously shown to contribute to the colitogenic potential of H. hepaticus. We have now characterized the T6SS components Hcp, VgrG1, VgrG2 and VgrG3, encoded on HHGI1, including the potential impact of the T6SS on intestinal inflammation in a mouse T‐cell transfer model. The H. hepaticus T6SS components were expressed during the infection and secreted in a T6SS‐dependent manner, when the bacteria were cultured either in the presence or in the absence of mouse intestinal epithelial cells. Mutants deficient in VgrG1 displayed a significantly lower colitogenic potential in T‐cell‐transferred C57BL/6 Rag2?/? mice, despite an unaltered ability to colonize mice persistently. Intestinal microbiota analyses demonstrated only minor changes in mice infected with wild‐typeH. hepaticus as compared with mice infected with VgrG1‐deficient isogenic bacteria. In addition, competitive assays between both wild‐type and T6SS‐deficient H. hepaticus, and between wild‐type H. hepaticus and Campylobacter jejuni or Enterobacteriaceae species did not show an effect of the T6SS on interbacterial competitiveness. Therefore, we suggest that microbiota alterations did not play a major role in the changes of pro‐inflammatory potential mediated by the T6SS. Cellular innate pro‐inflammatory responses were increased by the secreted T6SS proteins VgrG1 and VgrG2. We therefore concluded that the type VI secretion component VgrG1 can modulate and specifically exacerbate the innate pro‐inflammatory effect of the chronic H. hepaticus infection.  相似文献   

13.
The intracellular pathogen Salmonella enterica serovar Typhimurium causes intestinal inflammation characterized by edema, neutrophil influx and increased pro-inflammatory cytokine expression. A major bacterial factor inducing pro-inflammatory host responses is lipopolysaccharide (LPS). S. Typhimurium ΔmsbB possesses a modified lipid A, has reduced virulence in mice, and is being considered as a potential anti-cancer vaccine strain. The lack of a late myristoyl transferase, encoded by MsbB leads to attenuated TLR4 stimulation. However, whether other host receptor pathways are also altered remains unclear. Nod1 and Nod2 are cytosolic pattern recognition receptors recognizing bacterial peptidoglycan. They play important roles in the host''s immune response to enteric pathogens and in immune homeostasis. Here, we investigated how deletion of msbB affects Salmonella''s interaction with Nod1 and Nod2. S. Typhimurium Δ msbB-induced inflammation was significantly exacerbated in Nod2 −/− mice compared to C57Bl/6 mice. In addition, S. Typhimurium ΔmsbB maintained robust intestinal colonization in Nod2 −/− mice from day 2 to day 7 p.i., whereas colonization levels significantly decreased in C57Bl/6 mice during this time. Similarly, infection of Nod1 −/− and Nod1/Nod2 double-knockout mice revealed that both Nod1 and Nod2 play a protective role in S. Typhimurium ΔmsbB-induced colitis. To elucidate why S. Typhimurium ΔmsbB, but not wild-type S. Typhimurium, induced an exacerbated inflammatory response in Nod2 −/− mice, we used HEK293 cells which were transiently transfected with pathogen recognition receptors. Stimulation of TLR2-transfected cells with S. Typhimurium ΔmsbB resulted in increased IL-8 production compared to wild-type S. Typhimurium. Our results indicate that S. Typhimurium ΔmsbB triggers exacerbated colitis in the absence of Nod1 and/or Nod2, which is likely due to increased TLR2 stimulation. How bacteria with “genetically detoxified” LPS stimulate various innate responses has important implications for the development of safe and effective bacterial vaccines and adjuvants.  相似文献   

14.
Collagen‐type‐II‐induced arthritis (CIA) is an autoimmune disease, which involves a complex host systemic response including inflammatory and autoimmune reactions. CIA is milder in CD38?/? than in wild‐type (WT) mice. ProteoMiner‐equalized serum samples were subjected to 2D‐DiGE and MS‐MALDI‐TOF/TOF analyses to identify proteins that changed in their relative abundances in CD38?/? versus WT mice either with arthritis (CIA+), with no arthritis (CIA?), or with inflammation (complete Freund's adjuvant (CFA)‐treated mice). Multivariate analyses revealed that a multiprotein signature (n = 28) was able to discriminate CIA+ from CIA? mice, and WT from CD38?/? mice within each condition. Likewise, a distinct multiprotein signature (n = 16) was identified which differentiated CIA+ CD38?/? mice from CIA+ WT mice, and lastly, a third multiprotein signature (n = 18) indicated that CD38?/? and WT mice could be segregated in response to CFA treatment. Further analyses showed that the discriminative power to distinguish these groups was reached at protein species level and not at the protein level. Hence, the need to identify and quantify proteins at protein species level to better correlate proteome changes with disease processes. It is crucial for plasma proteomics at the low‐abundance protein species level to apply the ProteoMiner enrichment. All MS data have been deposited in the ProteomeXchange with identifiers PXD001788, PXD001799 and PXD002071 ( http://proteomecentral.proteomexchange.org/dataset/PXD001788 , http://proteomecentral.proteomexchange.org/dataset/PXD001799 and http://proteomecentral.proteomexchange.org/dataset/PXD002071 ).  相似文献   

15.
Background: In contrast to wild type, interleukin‐10‐deficient (IL‐10?/–) mice are able to clear Helicobacter infection. In this study, we investigated the immune response of IL‐10?/– mice leading to the reduction of Helicobacter infection. Materials and Methods: We characterized the immune responses of Helicobacter felis‐infected IL‐10?/– mice by studying the systemic antibody and cellular responses toward Helicobacter. We investigated the role of CD4+ T cells in the Helicobacter clearance by injecting H. felis‐infected IL‐10?/– mice with anti‐CD4 depleting antibodies. To examine the role of mast cells in Helicobacter clearance, we constructed and infected mast cells and IL‐10 double‐deficient mice. Results: Reduction of Helicobacter infection in IL‐10?/– mice is associated with strong humoral (fivefold higher serum antiurease antibody titers were measured in IL‐10?/– in comparison to wild‐type mice, p < .008) and cellular (urease‐stimulated splenic CD4+ T cells isolated from infected IL‐10?/– mice produce 150‐fold more interferon‐γ in comparison to wild‐type counterparts, p < .008) immune responses directed toward Helicobacter. Depletion of CD4+ cells from Helicobacter‐infected IL‐10?/– mice lead to the loss of bacterial clearance (rapid urease tests are threefold higher in CD4+ depleted IL‐10?/– in comparison to nondepleted IL‐10?/– mice, p < .02). Mast cell IL‐10?/– double‐deficient mice clear H. felis infection, indicating that mast cells are unnecessary for the bacterial eradication in IL‐10?/– mice. Conclusion: Taken together, these results suggest that CD4+ cells are required for Helicobacter clearance in IL‐10?/– mice. This reduction of Helicobacter infection is, however, not dependent on the mast cell population.  相似文献   

16.
We examined the roles of indoleamine-2, 3-dioxygenase 1 (IDO1) in controlling cerebral Toxoplasma gondii infection in both genetically resistant and susceptible strains of mice. In susceptible C57BL/6 mice, IDO expression was immunohistochemically detected only in a minority (22.5%) of tachyzoite-infected cells in their brains during the later stage of infection. When C57BL-6-background IDO1-deficient (IDO1?/?) mice were infected, their cerebral tachyzoite burden was equivalent to those of wild-type (WT) animals. In contrast, in resistant BALB/c mice, IDO expression was detected in a majority (84.0%) of tachyzoite-infected cerebral cells. However, tachyzoite burden in BALB/c-background IDO1?/? mice remained as low as that of WT mice, which was 78 times less than those of C57BL/6 mice. Of interest, IDO1?/? mice of only resistant BALB/c-background had markedly greater cerebral expressions of two other IFN-γ-mediated effector molecules, guanylate binding protein 1 (Gbp1) and nitric oxide synthase 2 (NOS2), than their WT mice. Therefore, it would be possible that IDO1 deficiency was effectively compensated by the upregulated expression of Gbp1 and NOS2 to control cerebral tachyzoite growth in genetically resistant BALB/c mice, whereas IDO1 did not significantly contribute to controlling cerebral tachyzoite growth in genetically susceptible C57BL/6 mice because of its suppressed expression in infected cells.  相似文献   

17.
Staphylococcus aureus, a versatile Gram‐positive bacterium, is the main cause of bone and joint infections (BJI), which are prone to recurrence. The inflammasome is an immune signaling platform that assembles after pathogen recognition. It activates proteases, most notably caspase‐1 that proteolytically matures and promotes the secretion of mature IL‐1β and IL‐18. The role of inflammasomes and caspase‐1 in the secretion of mature IL‐1β and in the defence of S. aureus‐infected osteoblasts has not yet been fully investigated. We show here that S. aureus‐infected osteoblast‐like MG‐63 but not caspase‐1 knock‐out CASP1 ?/?MG‐63 cells, which were generated using CRISPR‐Cas9 technology, activate the inflammasome as monitored by the release of mature IL‐1β. The effect was strain‐dependent. The use of S. aureus deletion and complemented phenole soluble modulins (PSMs) mutants demonstrated a key role of PSMs in inflammasomes‐related IL‐1β production. Furthermore, we found that the lack of caspase‐1 in CASP1 ?/?MG‐63 cells impairs their defense functions, as bacterial clearance was drastically decreased in CASP1 ?/? MG‐63 compared to wild‐type cells. Our results demonstrate that osteoblast‐like MG‐63 cells play an important role in the immune response against S. aureus infection through inflammasomes activation and establish a crucial role of caspase‐1 in bacterial clearance.  相似文献   

18.
Microglia are a proliferative population of resident brain macrophages that under physiological conditions self‐renew independent of hematopoiesis. Microglia are innate immune cells actively surveying the brain and are the earliest responders to injury. During aging, microglia elicit an enhanced innate immune response also referred to as ‘priming’. To date, it remains unknown whether telomere shortening affects the proliferative capacity and induces priming of microglia. We addressed this issue using early (first‐generation G1 mTerc?/?)‐ and late‐generation (third‐generation G3 and G4 mTerc?/?) telomerase‐deficient mice, which carry a homozygous deletion for the telomerase RNA component gene (mTerc). Late‐generation mTerc?/? microglia show telomere shortening and decreased proliferation efficiency. Under physiological conditions, gene expression and functionality of G3 mTerc?/? microglia are comparable with microglia derived from G1 mTerc?/? mice despite changes in morphology. However, after intraperitoneal injection of bacterial lipopolysaccharide (LPS), G3 mTerc?/? microglia mice show an enhanced pro‐inflammatory response. Nevertheless, this enhanced inflammatory response was not accompanied by an increased expression of genes known to be associated with age‐associated microglia priming. The increased inflammatory response in microglia correlates closely with increased peripheral inflammation, a loss of blood–brain barrier integrity, and infiltration of immune cells in the brain parenchyma in this mouse model of telomere shortening.  相似文献   

19.
Mycobacterium avium ssp. paratuberculosis (MAP) is the cause of Johne''s disease, an inflammatory bowel disorder of ruminants. Due to the similar pathology, MAP was also suggested to cause Crohn''s disease (CD). Despite of intensive research, this question is still not settled, possibly due to the lack of versatile mouse models. The aim of this study was to identify basic immunologic mechanisms in response to MAP infection. Immune compromised C57BL/6 Rag2 −/− mice were infected with MAP intraperitoneally. Such chronically infected mice were then reconstituted with CD4+ and CD8+ T cells 28 days after infection. A systemic inflammatory response, detected as enlargement of the spleen and granuloma formation in the liver, was observed in mice infected and reconstituted with CD4+ T cells. Whereby inflammation in infected and CD4+CD45RBhi T cell reconstituted animals was always higher than in the other groups. Reconstitution of infected animals with CD8+ T cells did not result in any inflammatory signs. Interestingly, various markers of inflammation were strongly up-regulated in the colon of infected mice reconstituted with CD4+CD45RBlo/int T cells. We propose, the usual non-colitogenic CD4+CD45RBlo/int T cells were converted into inflammatory T cells by the interaction with MAP. However, the power of such cells might be not sufficient for a fully established inflammatory response in the colon. Nevertheless, our model system appears to mirror aspects of an inflammatory bowel disease (IBD) like CD and Johne''s diseases. Thus, it will provide an experimental platform on which further knowledge on IBD and the involvement of MAP in the induction of CD could be acquired.  相似文献   

20.
Background:  Helicobacter pylori is a spiral‐shaped Gram‐negative microaerophilic bacterium associated with a number of gastrointestinal disorders, including gastritis, peptic ulcers, and gastric cancer. Several studies have implicated a Th17 response as a key to protective immunity against Helicobacter. Materials and Methods:  Wild type (WT) and MyD88‐deficient (MyD88?/?) mice in the C57BL/6 background were infected with H. felis for 6 and 25 weeks and colonization density and host response evaluated. Real‐time PCR was used to determine the expression of cytokines and antimicrobial peptides in the gastric tissue of mice. Results:  mRNA expression levels of the Th17 cytokines interleukin‐17A (IL‐17A) and IL‐22 were markedly up‐regulated in WT compared with MyD88?/? mice both at 6 and at 25 weeks in response to infection with H. felis, indicating that induction of Th17 responses depends on MyD88 signaling. Furthermore, reduction in the expression of Th17‐dependent intestinal antimicrobial peptide lipocalin‐2 was linked with increased bacterial burden in the absence of MyD88 signaling. Conclusion:  We provide evidence showing that MyD88‐dependent signaling is required for the host to induce a Th17 response for the control of Helicobacter infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号