首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Natal dispersal has profound consequences for populations through the movement of individuals and genes. Habitat fragmentation reduces structural connectivity by decreasing patch size and increasing isolation, but understanding of how this impacts dispersal and the functional connectivity of landscapes is limited because many studies are constrained by the size of the study areas or sample sizes to accurately capture natal dispersal. We quantified natal dispersal probability and natal dispersal distances in a small migratory shorebird, the Southern Dunlin Calidris alpina schinzii, with data from two extensively monitored endangered metapopulations breeding in Sweden and Finland. In both metapopulations philopatry was strong, with individuals returning to or close to their natal patches more often than expected by chance, consistent with the patchy distribution of their breeding habitat. Dispersal probabilities were lower and dispersal distances were shorter in Sweden. These results provide a plausible explanation for the observed inbreeding and population decline of the Swedish population. The differences between Sweden and Finland were explained by patch‐specific differences. Between‐patch dispersal decreased with increasing natal patch size and distance to other patches. Our results suggest that reduced connectivity reduces movements of the philopatric Dunlin, making it vulnerable to the effects of inbreeding. Increasing connectivity between patches should thus be one of the main goals when planning future management. This may be facilitated by creating a network of suitably sized patches (20–100 ha), no more than 20 km apart from each other, from existing active patches that may work as stepping stones for movement, and by increasing nest success and pre‐fledging survival in small patches.  相似文献   

2.
Species that alternate periods of solitary and social living may provide clues to the conditions that favor sociality. Social spiders probably originated from subsocial‐like ancestors, species in which siblings remain together for part of their life cycle but disperse prior to mating. Exploring the factors that lead to dispersal in subsocial species, but allow the development of large multigenerational colonies in social species, may provide insight into this transition. We studied the natal dispersal patterns of a subsocial spider, Anelosimus cf. jucundus, in Southeastern Arizona. In this population, spiders disperse from their natal nests in their penultimate and antepenultimate instars over a 3‐mo period. We tracked the natal dispersal of marked spiders at sites with clustered vs. isolated nests. We found that most spiders initially dispersed less than 5 m from their natal nests. Males and females, and spiders in patches with different densities of nests, dispersed similar distances. The fact that both sexes in a group dispersed, the lack of a sex difference in dispersal distance, and the relatively short distances dispersed are consistent with the hypothesis that natal dispersal results from resource competition within the natal nest, rather than inbreeding avoidance in competition for mates. Additionally, an increase in the average distance dispersed with time and with the number of spiders leaving a nest suggests that competition for nest sites in the vicinity of the natal nest may affect dispersal distances. The similar distances dispersed in patches with isolated vs. clustered nests, in contrast, suggest that competition among dispersers from different nests may not affect dispersal distances.  相似文献   

3.
Male and female indigo buntings (Passerina cyanea) were equally likely to return and breed in their natal areas. The distances and number of territories between natal and breeding sites were similar between the sexes. The breeding site was not limited by prior occupation of sites by breeding adults closer to the natal territory. Dispersal distances were independent of whether parents or siblings of either sex returned in the same year. Variation in distance within the natal area appeared to be independent of local population density, social competition, active kin recognition, and avoidance of incest, but was affected by date of birth. The local distribution of dispersal distances approximated a neutral model with a decreasing probability of settling with distance from the natal site. A population inbreeding coefficient ΔF of 0.01 was estimated from known genealogies and matings. The proportion of nestlings recaptured in a later year on their natal area was 1.65% of 1,212 nestlings at the George Reserve and 8.78% of 1,332 nestlings at Niles. Locally born birds comprised 1.6% and 13.0% of the breeding population in areas of 10 and 4 km2. Evidently most buntings settle and breed more than 2 km from their natal site. The results are inconsistent with predictions of social and avoidance-of-inbreeding hypotheses that are based on the local natal demographic environment. The results are consistent with a model of neutral dispersal within a genetically open population.  相似文献   

4.
Effects of male‐biased dispersal on inbreeding avoidance were investigated in a semi‐natural population of Myodes (formerly Clethrionomys) rufocanus using a large outdoor enclosure (3 ha). Parentage of 918 voles weaned from 215 litters and relatedness of mates were analysed using microsatellite loci, and dispersal distances were obtained from mark–recapture live‐trapping data. Natal and breeding male‐biased dispersal was observed. There remained, however, chances that incestuous mating could occur, because not all males dispersed from their natal site, and 51 matings occurred between relatives (relatedness r > 0). The number of weaned juveniles from inbred litters was significantly smaller than that from non‐inbred litters. Fourteen incestuous matings occurred between close relatives (r ≥ 0.25), most of which were those between non‐littermate maternal half siblings (four cases) and those between paternal half siblings (seven cases). When comparing the observed frequencies to the expected ones generated by combining every oestrous female with a male randomly chosen from her surroundings, the observed values for inbreeding of r ≥ 0.25 were significantly smaller than the expectations, while no difference was observed for inbreeding of 0 < r < 0.25. These results suggest that male‐biased dispersal is partly effective to avoid incestuous mating, but it does not provide complete separation of male and female close relatives. Additional mechanisms such as kin discrimination based on familiarity may work in inbreeding avoidance of the vole.  相似文献   

5.
6.
Sib–sib or, more generally, family resemblance for dispersal seems a widespread characteristic of vertebrates, and the birthplace has the potential to shape the dynamics and features of animal populations. Dispersal studies have often stressed the fundamental link between the fate of dispersers and population dynamics, but few have focused on the dispersal directions of individuals, despite the profound implications that this may have on population distribution, structure, dynamics and viability. We investigated the directions followed by 72 radio‐tagged dispersers (43 males and 29 females from 14 nest sites) in an eagle owl Bubo bubo population, and assessed their a) inter‐individual distances during dispersal and b) age at dispersal departure. For siblings, as well as potential‐siblings (i.e. individuals born in the same nest in different years), the birthplace influenced inter‐individual distances and dispersal directions, i.e. dispersers from the same nest moved to similar locations during the study; moreover, in each year, individuals from the same birthplace moved across the same areas in a short time period. Finally, siblings and potential‐siblings born in the same nest in different years started dispersal at similar ages. Based on the movement patterns of dispersers we discuss: a) the potential implications of the birthplace‐dependent dispersal on the ideal free distribution theory, as well as in terms of kin competition, inbreeding avoidance and population dynamics; and, more generally, b) the effect of the temporal features of the natal dispersal on the concept of habitat suitability vs density of individuals developed by the ideal free distribution theory.  相似文献   

7.
Avoidance of competition and inbreeding have been invoked as the major ultimate causes of natal dispersal, but proximate factors such as sex, body condition or birth date can also be important. Natal dispersal is expected to be of particular importance to understanding the ecological and evolutionary implications of dispersal strategies, since 1) numerous evidences suggest that individual differences in dispersal strategies are expressed early in life (i.e. at the onset of dispersal movement), 2) ultimate and proximate factors are more likely to act during this stage and 3) this stage is associated with the highest mortality rates in most vertebrates. We analysed the natal dispersal (hereafter, dispersal) behaviour in 100 marked individuals of a lekking species, the North African houbara bustards Chlamydotis undulata undulata, during four years. We investigated the effects of proximate factors on dispersal pattern and distance, as well as the mortality cost associated with movement using multievent models, allowing uncertainty in sex assignment and mixture of live recaptures and dead recoveries. Overall, males exhibited longer dispersal distances than females, contrary to the common pattern in birds. Moreover, males in poorer body condition moved further than those in better condition, whereas distance was independent of body condition in females. Finally, survival rates during dispersal were lower for females than for males and were negatively correlated with the distances covered with a similar distance‐survival slope in the two sexes. Collectively, our results suggest that 1) there is substantial dispersal cost in both sexes, 2) dispersal is strongly male‐biased, 3) this bias is unlikely to be explained by differential movement costs of each sex, and 4) dispersal differences found across different categories of individuals are in broad agreement with both the inbreeding avoidance and intraspecific competition mechanisms for dispersal.  相似文献   

8.
Natal and breeding dispersal have a major impact on gene flowand population structure. We examined the consequences of nataldispersal on the reproductive success (proportion of pairs rearingchicks) of colonial-breeding Thick-billed murres (Uria lomvia).Reproductive success increased with distance dispersed for thefirst and second breeding attempt. The increase in breedingsuccess leveled off at natal dispersal distances above 7 m.Our results were consistent with the idea that the relationshipbetween dispersal and reproductive success is caused by siteavailability and mate choice as birds willing to disperse fartherhad a greater choice of potential sites and mates. This hypothesiswas supported by the fact that birds dispersing farther weremore likely to pair with an experienced breeder, which increasesthe likelihood of breeding success for young breeders. Explanationsfor increasing breeding success with increased dispersal basedon inbreeding effects were unlikely because most breeding failureswere caused by egg loss rather than infertility or nestlingdeath. However, we could not explain why >50% of birds returnwithin 3 m of the natal site, despite having an up to 50% lowerreproductive success than birds dispersing 7 m or more.  相似文献   

9.
We studied dispersal movements by sibling pairs of great tits, Parus major, and blue tits, P. caeruleus, in a patchy environment, in order to test whether siblings are more similar in dispersal than expected by chance. Because of possible common environmental effects due to the heterogeneity and finiteness of the study area, we compared the similarity among siblings with the similarity between each sibling and an unrelated bird that fledged in the same patch and year, as close to the siblings nest as possible. Siblings of both species were not more similar in dispersal distance than they were to control birds. However, great tit siblings dispersed in similar directions compared to control birds, and this result was not affected by the degree of matching between sibling and control birds. As a consequence, siblings ended up breeding at closer distances from one another than control birds. Heritability values calculated from parent-offspring regressions were close to zero, suggesting that there is no additive genetic variance for dispersal distance or dispersal direction. We propose that similarity in dispersal direction originates from association of siblings during dispersal or during activities that influence the choice of direction, such as postfledging family movements. Our results show that non-independence in the choice of dispersal direction by siblings may influence small-scale kin structure in this population with high local recruitment.  相似文献   

10.
We analyzed more than 1,600 dispersal events from two populations of a North American cooperatively breeding woodpecker species to determine what factors influence natal dispersal distance and whether distance traveled affects reproduction later in life. We found significant heritability of natal dispersal distance, in both males and females, indicating substantial additive genetic variance for this behavioral trait. Natal dispersal distance additionally was affected by social and ecological factors: individuals dispersing in their first year of life moved longer distances than those staying on their natal site as helpers for a prolonged time prior to dispersal, and increasing territory isolation led to longer dispersal distances. Successful dispersers incurred fitness costs, with lifetime fledgling production (in both sexes) and lifetime production of recruits to the breeding population (in females only) decreasing with increasing natal dispersal distance. We conclude that natal dispersal distance has a genetic basis but is modulated by environmental and social factors and that natal dispersal distance in this species is (currently) under selection.  相似文献   

11.
Dispersal behavior directly influences the level of inbreeding, but the effect of inbreeding avoidance on dispersal is less well studied. The parasitoid wasp Nasonia vitripennis (Walker) (Hymenoptera: Chalcidoidea: Pteromalidae) is known to mate exclusively on the natal patch, and females are the only dispersing sex. A previous study has shown that foundresses on a patch are typically unrelated, implying that females disperse for a considerable distance from their natal patch after mating. We investigated dispersal of N. vitripennis on two scales. On a local scale we used a mark-release-recapture experiment, and on the larger scale we investigated isolation by distance using a population genetic approach. We found that N. vitripennis females are long-distance dispersers, capable of covering at least 2 km in 48 h. Populations within a range of 100 km showed no substructure, but larger distances or major geographical barriers restricted gene flow and led to significant population structure. The results provide a basis for future research on dispersal of parasitoids and are discussed in the context of dispersal abilities and inbreeding avoidance in Nasonia .  相似文献   

12.
Abstract: We captured and radiocollared 57 pronghorn (Antilocapra americana) fawns in western South Dakota, USA, during May 2002–2003 and radiotracked them through 15 months of age, by which time all surviving individuals had established a permanent home range. We classified 56% (n = 19) of fawns as dispersers and 44% (n = 15) as residents. Eighty-four percent (n = 16) of dispersers departed natal home ranges in late October and occupied winter home ranges for 102–209 days before dispersing to permanent home ranges during April 2003 and 2004. Dispersal distances from natal ranges to permanent home ranges varied from 6.2–267.0 km. Winter home-range sizes for all individual pronghorns varied from 39.4–509.6 km. Permanent home-range size for all individuals varied from 15.5–166.1 km2. Mean 95% permanent home-range size differed (P = 0.06) between residents (x̄ = 97.3 ± 15.1 km2) and dispersers (x̄ = 48.6 ± 16.0 km2), but was similar (P = 0.97) among sexes. Mean dispersal distance from natal to permanent home ranges was similar (P = 0.35) for males (x̄ = 54.2 ± 21.0 km) and females (x̄ = 26.3 ± 19.9 km). We suggest that habitat quality (i.e., patchiness) and pronghorn density, in part, stimulated dispersal. We hypothesize that as habitat patch size decreases, home range sizes and distance traveled during predispersal and dispersal movements by pronghorns will increase.  相似文献   

13.
I investigated the effect of male mate competition and inbreeding avoidance on natal dispersal of chipmunks by longitudinally monitoring known individuals from 1986 to 1990. Natal males exhibited greater absolute and effective dispersal distances but dispersed at the same proportion as natal females. Recruitment of juvenile males was negatively affected by density of resident males, but there was no evidence of local mate competition among male kin. Analysis of the spatial distribution of neighbors showed that natal males settled farther from their mothers than did their female siblings and farther than unrelated juvenile males. In addition, mothers apparently tolerated daughters as close neighbors and occasionally shared den sites with grandprogeny. Sexually mature males were never neighbors of their mothers and were never observed at maternal mating bouts. Males may disperse to improve reproductive opportunities by avoiding competition with resident males, and by increasing access to unrelated females. Maternal tolerance of daughters but not sons may result in the close affiliation between mothers and daughters, and indirectly contribute to dispersal of natal males. Hence male-biased dispersal could be a consequence of mate competition and maternal avoidance of incestuous matings. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Natal dispersal outcomes are an interplay between environmental conditions and individual phenotypes. Peripheral, isolated populations may experience altered environmental conditions and natal dispersal patterns that differ from populations in contiguous landscapes. We document nonphilopatric, sex‐biased natal dispersal in an endangered small mammal, the Mt. Graham red squirrel (Tamiasciurus hudsonicus grahamensis), restricted to a single mountain. Other North American red squirrel populations are shown to have sex‐unbiased, philopatric natal dispersal. We ask what environmental and intrinsic factors may be driving this atypical natal dispersal pattern. We test for the influence of proximate factors and ultimate drivers of natal dispersal: habitat fragmentation, local population density, individual behavior traits, inbreeding avoidance, competition for mates, and competition for resources, allowing us to better understand altered natal dispersal patterns at the periphery of a species’ range. A juvenile squirrel's body condition and its mother's mass in spring (a reflection of her intrinsic quality and territory quality) contribute to individual behavioral tendencies for movement and exploration. Resources, behavior, and body condition have the strongest influence on natal dispersal distance, but affect males and females differently. Male natal dispersal distance is positively influenced by its mother's spring body mass and individual tendency for movement; female natal dispersal distance is negatively influenced by its mother's spring body mass and positively influenced by individual tendency for movement. An apparent feedback between environmental variables and subsequent juvenile behavioral state contributes to an altered natal dispersal pattern in a peripheral population, highlighting the importance of studying ecological processes at the both range center and periphery of species’ distributions.  相似文献   

15.
We examined predictions on the proportion of dispersing natal males and females, dispersal distances, the age at dispersal and the potential for inbreeding over a 6-year period in a free-living population of grey mouse lemurs. We used monthly mark-recapture procedures to determine individual locations and interindividual distances. The analysis of seven polymorphic microsatellite markers for 213 (130 males, 83 females) individuals allowed us to estimate relatedness coefficients and kinship relationships. Closely related males ranged further from each other than closely related females and natal males were found further from their potential mothers than were females. Natal males were more likely to disperse from their birth sites than females, although male dispersal was not universal. Male breeding dispersal was detected in half of the long-term observations. Males therefore seem to be the predominant vectors for gene flow between populations and social units. Females usually stayed within one to two home range diameters of their potential mother, facilitating the evolution of cooperative behaviour by kin selection among females. Most dispersal took place before the mating season, indicating an age of less than 7 months for natal dispersal. The analysis of spatiotemporal coexistence revealed the potential for inbreeding in only 3.8% of the potential mother-son dyads, but in 21.9% of the potential father-daughter dyads and in 41.7% of other closely related male-female dyads. Copyright 2003 Published by Elsevier Science Ltd on behalf of The Association for the Study of Animal Behaviour   相似文献   

16.
We investigated differences between firstborn and secondborn siblings on major dimensions of personality, in the context of the proposal of Sulloway [Sulloway, F. J. (1996). Born to rebel: Birth order, family dynamics and creative lies. New York: Pantheon] that personality is influenced by the specialized niches siblings adopt in the quest for access to parental resources. Using a within-family methodology, we tested two predictions from Sulloway's model: that firstborns are more achieving and conscientious than secondborns and that secondborns are more rebellious and open to new experiences than firstborns. To test an alternative prenatal hypomasculinization theory proposed by Beer and Horn [Beer, J. M., & Horn, J. M. (2000). The influence of rearing order on personality development within two adoption cohorts. Journal of Personality, 68, 769–819], we also examined the size of birth-order effects in sister–sister versus brother–brother pairs. The hypothesized effects of birth order on personality were found in both Study 1 (n=161 sibling pairs) and Study 2 (n=174 sibling pairs) and provided support for Sulloway's family-niche model. No support was found for Beer and Horn's hypomasculinization model.  相似文献   

17.
Capsule Natal dispersal was rapid and distances were short. Winter ranging and breeding dispersal were limited. Few birds undertook large movements.

Aims To investigate the natal and breeding dispersal of Marsh Tits, including the timing of dispersal movements.

Methods Nestlings, juveniles and adults were ringed and searched for over 4500 ha during summer, autumn–winter, and spring over six years. Dispersal distances were measured as metric distances and multiples of territory widths. Ranging distances were compared with dispersal distances.

Results Median distances of natal dispersal were 2.6 territory widths for males (704.5 m) and 3.1 territory widths for females (1065.0 m). Median distances of breeding dispersal were 0.2 territory widths for males and females (58.6 and 53.1 m respectively). Most natal dispersal was completed soon after independence, with further movement in spring. Breeding dispersal was also detected during these periods. Median ranging distances were short, and some winter floaters were identified.

Conclusion Marsh Tits had short dispersal distances, with most dispersal activity occurring in June. Results suggested that dispersal behaviour was sensitive to habitat fragmentation, resulting in poor settling success outside of the natal wood. Habitat fragmentation may, therefore, be a contributory factor in the decline of the Marsh Tit population in Britain.  相似文献   

18.
In patchily distributed species dispersal connects local populations into metapopulations. Reliable quantifications of dispersal are therefore crucial to understanding the population dynamics and genetic structure of such metapopulation systems. The great reed warbler (Acrocephalus arundinaceus) inhabits eutrophic lakes and has a patchy breeding distribution. In this study we investigated the dispersal pattern of the great reed warbler based on an extensive capture-recapture effort covering a large census area (22,500 km2). At two adjacent breeding sites (10 km apart) in southern Central Sweden, the "main study area", we ringed the majority of adult and nestling great reed warblers between 1992 and 1999. In 1998 and 1999, we opportunistically searched for territorial males at the majority of the Swedish breeding sites, and were able to examine about 56% of all males in the region. Analyses of recaptured males demonstrated that philopatry predominated. Sixty-nine percent of the recruiting nestlings returned to breed in the main study area (their natal area), and 92% of the resighted adults were found at the same breeding locality in both study years. Breeding dispersal was significantly more restricted than natal dispersal. Additional data on natal and breeding dispersal within the main study area in 1992-1999 suggested that females were as philopatric as males. The overall high level of philopatry, with only occasional longer dispersal distances documented, yielded a root-mean-square dispersal distance of 33 km per generation. High philopatry, short dispersal distances and similar dispersal patterns of male and female great reed warblers contrast the findings among birds in general, but conform to data of species having patchy breeding habitat and isolated populations. Restricted dispersal suggests limited gene flow even among several Swedish populations, which is in line with some previous findings of the population ecology of the great reed warbler: (1) structured mtDNA lineages among European populations; (2) small-scale population differences in song patterns; and (3) low genetic variation and occurrence of inbreeding depression in our main study population.  相似文献   

19.
The lifetime movements of an individual determine the gene flow and invasion potential of the species. However, sex dependence of dispersal and selective pressures driving dispersal have gained much more attention than dispersal at different life and age stages. Natal dispersal is more common than dispersal between breeding attempts, but breeding dispersal may be promoted by resource availability and competition. Here, we utilize mark–recapture data on the nest‐box population of Siberian flying squirrels to analyze lifetime dispersal patterns. Natal dispersal means the distance between the natal nest and the nest used the following year, whereas breeding movements refer to the nest site changes between breeding attempts. The movement distances observed here were comparable to distances reported earlier from radio‐telemetry studies. Breeding movements did not contribute to lifetime dispersal distance and were not related to variation in food abundance or habitat patch size. Breeding movements of males were negatively, albeit not strongly, related to male population size. In females, breeding movement activity was low and was not related to previous breeding success or to competition between females for territories. Natal philopatry was linked to apparent death of a mother; that is, we did not find evidence for mothers bequeathing territories for offspring, like observed in some other rodent species. Our results give an example of a species in which breeding movements are not driven by environmental variability or nest site quality. Different evolutionary forces often operate in natal and breeding movements, and our study supports the view that juveniles are responsible for redistributing individuals within and between populations. This emphasizes the importance of knowledge on natal dispersal, if we want to understand consequences of movement ecology of the species at the population level.  相似文献   

20.
Marine species with pelagic larvae typically exhibit little population structure, suggesting long‐distance dispersal and high gene flow. Directly quantifying dispersal of marine fishes is challenging but important, particularly for the design of marine protected areas (MPAs). Here, we studied kelp rockfish (Sebastes atrovirens) sampled along ~25 km of coastline in a boundary current‐dominated ecosystem and used genetic parentage analysis to identify dispersal events and characterize them, because the distance between sedentary parents and their settled offspring is the lifetime dispersal distance. Large sample sizes and intensive sampling are critical for increasing the likelihood of detecting parent–offspring matches in such systems and we sampled more than 6,000 kelp rockfish and analysed them with a powerful set of 96 microhaplotype markers. We identified eight parent–offspring pairs with high confidence, including two juvenile fish that were born inside MPAs and dispersed to areas outside MPAs, and four fish born in MPAs that dispersed to nearby MPAs. Additionally, we identified 25 full‐sibling pairs, which occurred throughout the sampling area and included all possible combinations of inferred dispersal trajectories. Intriguingly, these included two pairs of young‐of‐the‐year siblings with one member each sampled in consecutive years. These sibling pairs suggest monogamy, either intentional or accidental, which has not been previously demonstrated in rockfishes. This study provides the first direct observation of larval dispersal events in a current‐dominated ecosystem and direct evidence that larvae produced within MPAs are exported both to neighbouring MPAs and to proximate areas where harvest is allowed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号