首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electron Microscopy of Measles Virus Replication   总被引:15,自引:5,他引:10       下载免费PDF全文
Replication of measles virus in HeLa cells was examined by electron microscopy with ultrathin sectioning and phosphotungstic acid negative staining methods. The cytoplasmic inclusion bodies consisted of masses of helical nucleocapsid which was similar in structure to the nucleocapsid found in measles virions. The cytoplasmic helical nucleocapsid appeared to align near the HeLa cell membrane, and the membrane differentiated into the internal membrane of the viral envelope and the outer layer of the short projections. The viral particles were released by a budding process involving incorporation into the viral envelope of membrane which was contiguous to but morphologically altered from the membrane of the HeLa cells. The intranuclear inclusion bodies were composed of tubular structures similar to those found in the cytoplasmic inclusion bodies. These structures aggregated to crystalline arrangement. The relationship between nuclear inclusion body and replication of measles virus was not clear.  相似文献   

2.
A Duvenkamp 《Acta anatomica》1984,119(2):121-123
In the rat kidney proximal convoluted segment epithelium the development of intranuclear inclusion bodies was observed after long-term lead administration with the drinking water. The inclusion bodies were PAS-positive. By electron microscopy they were identified as composed of filaments and granules lacking any kind of surrounding membrane. During the experiment, the nuclear volumes increased commensurately with the duration of lead exposure. The nuclear volume increase was considered a physiological reaction since it began long before the first appearance of intranuclear inclusion bodies.  相似文献   

3.
The nuclear pore complex (NPC) is a multicomponent structure containing a subset of proteins that bind nuclear transport factors or karyopherins and mediate their movement across the nuclear envelope. By altering the expression of a single nucleoporin gene, NUP53, we showed that the overproduction of Nup53p altered nuclear transport and had a profound effect on the structure of the nuclear membrane. Strikingly, conventional and immunoelectron microscopy analysis revealed that excess Nup53p entered the nucleus and associated with the nuclear membrane. Here, Nup53p induced the formation of intranuclear, tubular membranes that later formed flattened, double membrane lamellae structurally similar to the nuclear envelope. Like the nuclear envelope, the intranuclear double membrane lamellae enclosed a defined cisterna that was interrupted by pores but, unlike the nuclear envelope pores, they lacked NPCs. Consistent with this observation, we detected only two NPC proteins, the pore membrane proteins Pom152p and Ndc1p, in association with these membrane structures. Thus, these pores likely represent an intermediate in NPC assembly. We also demonstrated that the targeting of excess Nup53p to the NPC and its specific association with intranuclear membranes were dependent on the karyopherin Kap121p and the nucleoporin Nup170p. At the nuclear envelope, the abilities of Nup53p to associate with the membrane and drive membrane proliferation were dependent on a COOH-terminal segment containing a potential amphipathic alpha-helix. The implications of these results with regards to the biogenesis of the nuclear envelope are discussed.  相似文献   

4.
This paper reports new observations obtained from a study of macronuclear fine structure throughout various stages of the cell division cycle of Euplotes. Study of the ultrastructural organization of the macronuclear chromatin indicates that much of the chromatin is organized into continuous masses, portions of which appear to be attached to the nuclear envelope. The macronuclear envelope appears unchanged in the region of a replication band, and apparent attachments of the chromatin to the inner membrane of the nuclear envelope are maintained in the reticular and diffuse zones. Intranuclear helices were never observed in the diffuse zone. During macronuclear division, linear elements (fibrils or microtubules) were observed in close association with both chromatin bodies and nucleoli. The ultrastructural data suggest that the intranuclear linear fibrils have two functions: elongation of the dividing nucleus, and attachment of chromatin bodies and nucleoli to the envelope. The significance of these observations for macronuclear division and chromatin segregation is considered.  相似文献   

5.
The ultrastructure of spindle formation during the first meiotic division in oocytes of the Strepsipteran insect Xenos peckii Kirby (Acroschismus wheeleri Pierce) was examined in serial thick (0.25- micron) and thin sections. During late prophase the nuclear envelope became extremely convoluted and fenestrated. At this time vesicular and tubular membrane elements permeated the nucleoplasm and formed a thin fusiform sheath, 5-7 micron in length, around each of the randomly oriented and condensing tetrads. These membrane elements appeared to arise from the nuclear envelope and/or in association with annulate lamellae in the nuclear region. All of the individual tetrads and their associated fusiform sheaths became aligned within the nucleus subsequent to the breakdown of the nuclear envelope. Microtubules (MTs) were found associated with membranes of the meiotic apparatus only after the nuclear envelope had broken down. Kinetochores, with associated MTs, were first recognizable as electron-opaque patches on the chromosomes at this time. The fully formed metaphase arrested Xenos oocyte meiotic apparatus contained an abundance of membranes and had diffuse poles that lacked distinct polar MT organizing centers. From these observations we conclude that the apparent individual chromosomal spindles--seen in the light microscope to form around each Xenos tetrad during "intranuclear prometaphase" (Hughes-Schrader, S., 1924, J. Morphol. 39:157-197)--actually form during late prophase, lack MTs, and are therefore not complete miniature bipolar spindles, as had been commonly assumed. Thus, the unique mode of spindle formation in Xenos oocytes cannot be used to support the hypothesis that chromosomes (kinetochores) induce the polymerization of their associated MTs. Our observation that MTs appeared in association with and parallel to tubular membrane components of the Xenos meiotic apparatus after these membranes became oriented with respect to the tetrads, is consistent with the notion that membranes associated with the spindle determine the orientation of spindle MTs and also play a part in regulating their formation.  相似文献   

6.
Actin-containing filaments have been visualized inside the Xenopus oocyte nuclei due to combination of fluorescence and transmission electron microscopy. It has been shown that these filaments contact with nucleoli, spherical bodies and nuclear pore complexes. The incubation of oocytes with actin-depolymerizing latrunculin causes membrane vesiculation in the cytoplasm, and disruption of the nucleoplasm and nuclear envelope integrity. We suppose that actin-containing filaments belong to crucial cell components which are involved in coordination of nuclear-cytoplasmic interactions as well as distribution and transport of intranuclear components in growing Xenopus oocytes.  相似文献   

7.
The nuclear envelope and associated structures from Xenopus laevis oocytes (stage VI) have been examined with the high resolution scanning electron microscope (SEM). The features of the inner and outer surfaces of the nuclear surface complex were revealed by manual isolation , whereas the membranes facing the perinuclear space (the space between the inner and outer nuclear membranes) were observed by fracturing the nuclear envelope in this plane and splaying the corresponding regions apart. Pore complexes were observed on all four membrane surfaces of this double-membraned structure. The densely packed pore complexes (55/micron2) are often clustered into triplets with shared walls (outer diameter = 90 nm; inner diameter = 25 nm; wall thickness = aproximately 30 nm), and project aproximately 20 nm above each membrane except where they are flush with the innermost surface. The pore complex appears to be an aggregate of four 30-nm subunits. The nuclear cortex, a fibrous layer (300 nm thickness) associated with the inner surface of the nuclear envelope, has been revealed by rapid fixation. This cortical layer is interrupted by funnel-shaped intranuclear channels (120-640 nm diam) which narrow towards the pore complexes. Chains of particles, arranged in spirals, are inserted into these intranuclear channels. The fibers associated with the innermost face of the nuclear envelope can be extraced with 0.6 MKI to reveal the pore complexes. A model of the nuclear surface complex, compiled from the visualization of all the membrane faces and the nuclear cortex, demonstrates relations between the intranuclear channels (3.2/micron2) and the numerous pore complexes, and the possibility of their role in nucleocytoplasmic interactions.  相似文献   

8.
Most of the phospholipids in the nuclear envelope are contained in the double nuclear membrane, and this has an active lipid metabolism consistent with its origins as a component of the endoplasmic reticular system. However, even after removal of the nuclear membrane with detergents, some phospholipids, mostly of unknown location and function, remain. Amongst these are all of the components of what appears to be a nuclear polyphosphoinositide signalling system, distinct from the well-established inositide pathway found in the plasma membrane. The consequences for nuclear function of the activation of these two inositide pathways are discussed, with a detailed consideration of proposed intranuclear functions for protein kinase C, and the maintenance of nuclear Ca2+ homoeostasis.  相似文献   

9.
Sorosphaera veronicae Schroet. is an endobiotic, holocarpic, obligately parasitic fungus presently classified in the Plasmodiophoromycetes. The ultrastructure of nuclear envelope formation in somatic nuclear division in cystosoral plasmodia was studied. The inner membrane of the nuclear envelope during prophase appears to invaginate and blebb off intranuclear membranous vesicles. The intranuclear membranous vesicles become associated with the surface of the separating chromatin in anaphase and eventually are involved in the formation of daughter nuclear envelopes within the original nuclear envelope. The sequence of nuclear envelope breakdown and reformation in S. veronicae is noteworthy because it emphasizes alternate methods of nuclear envelope formation other than the generally considered “typical” formation described in Allium cepa L.  相似文献   

10.
鸭病毒性肠炎病毒强毒株的形态发生学与超微病理学研究   总被引:6,自引:1,他引:5  
应用透射电镜和超薄切片技术,研究鸭病毒性肠炎病毒(duck enteritis virus,DEV)CH强毒株人工感染成年鸭后,病毒在宿主细胞内的形态发生及各组织器官的超微结构变化.结果表明,感染后不同时间剖杀及发病后死亡鸭的肝、肠、脾、胸腺、法氏囊等组织器官中,均观察到典型的疱疹病毒粒子.病毒主要的靶细胞为淋巴细胞、网状内皮细胞、成纤维细胞、巨噬细胞、血管内皮细胞、肠道上皮细胞、肠道平滑肌细胞和肝细胞等.DEV的核衣壳有空心型、致密核心型、双环型和内壁附有颗粒型四种形态,存在胞核和胞浆两种装配方式.病毒核衣壳可在核内获得皮层,通过核内膜获得囊膜成为成熟病毒;也可通过内外核膜进入胞浆,在其中获得皮层,然后在各种质膜上获得囊膜,最后成熟病毒释放到细胞外.伴随着病毒的复制、装配和成熟,细胞中出现多种核内和胞浆包涵体、核内致密病毒核酸颗粒、微管和中空短管以及胞浆内膜包裹的电子致密小体、双层管等病毒相关结构.超微研究表明,组织细胞有坏死和凋亡两种变化.坏死细胞肿胀甚至破裂,线粒体肿胀空泡化,粗面内质网扩张,核糖体脱落,有的细胞器甚至完全崩解,染色质或固缩或溶解.凋亡细胞则染色质聚集,胞浆凝聚深染,细胞膜上有大量空泡,并有凋亡小体形成.细胞坏死与凋亡往往同时存在,疾病发生过程中,脾、胸腺、法氏囊以及小肠固有层中的淋巴细胞凋亡数量明显增多.  相似文献   

11.
In the green alga Scenedesmus acutus, Golgi bodies are located near the nucleus and supplied with transition vesicles that bud from the outer nuclear envelope membrane. Using this alga, we have shown previously that thiamine pyrophosphatase (TPPase), a marker enzyme of Golgi bodies, migrates in vesicles from the Golgi bodies to the ER via the nuclear envelope in the presence of BFA (Noguchi et al., Protoplasma 201, 202-212, 1998). In this study we demonstrate that both cytochalasin B and oryzalin (microtubule-disrupting agent) inhibit the BFA-induced migration of TPPase from Golgi bodies to the nuclear envelope. However, only actin filaments--not microtubules--can be detected between the nuclear envelope and the Golgi bodies in both BFA-treated and untreated cells. These observations suggest that actin filaments mediate the BFA-induced retrograde transport of vesicles. This mechanism differs from that found in mammalian cells, in which microtubules mediate BFA-induced retrograde transport by the elongation of membrane tubules from the Golgi cisternae. We also discuss the non-participation of the cytoskeleton in anterograde transport from the nuclear envelope to the Golgi bodies.  相似文献   

12.
Wang  Yan  Cai  Qingyun  Chen  Jiannan  Huang  Zhihong  Wu  Wenbi  Yuan  Meijin  Yang  Kai 《中国病毒学》2019,34(6):712-721
Our previous study has shown that the Autographa californica multiple nucleopolyhedrovirus(AcMNPV) p48(ac103)gene is essential for the nuclear egress of nucleocapsids and the formation of occlusion-derived virions(ODVs). However,the exact role of p48 in the morphogenesis of ODVs remains unknown. In this study, we demonstrated that p48 was required for the efficient formation of intranuclear microvesicles. To further understand its functional role in intranuclear microvesicle formation, we characterized the distribution of the P48 protein, which was found to be associated with the nucleocapsid and envelope fractions of both budded virions and ODVs. In Ac MNPV-infected cells, P48 was predominantly localized to nucleocapsids in the virogenic stroma and the nucleocapsids enveloped in ODVs, with a limited but discernible distribution in the plasma membrane, nuclear envelope, intranuclear microvesicles, and ODV envelope. Furthermore,coimmunoprecipitation assays showed that among the viral proteins required for intranuclear microvesicle formation, P48 associated with Ac93 in the absence of viral infection.  相似文献   

13.
The envelope components of nuclear bodies which were obtained from Escherichia coli W7 by a mild lysis method were investigated. By using 2,6-diaminopimelic acid (DAP) as precursor which is incorporated only into peptidoglycan in this strain it was found that the particles contained about 14% of the murein layer of the cell. The percentage of phosphatidylethanolamine was enriched at the cost of the other phospholipids in the nuclear bodies compared to whole cells. If lipids were labelled with 3H-palmitic acid the cytoplasmic and the outer membrane could be found after isopycnic centrifugation; however, when the cells were incubated with chloramphenicol, only the outer membrane was seen. The peptidoglycan and the proteins could be assigned only to the outer membrane. The DNA is also bound to the outer membrane. From these results it was concluded that (1) in all lysis methods the cytoplasmic membrane is more easily dissolved than the outer layers of the envelope, and (2) that there is a firm binding between DNA and the outer membrane in vivo.  相似文献   

14.
In animals, the nuclear envelope disassembles in mitosis, while budding and fission yeast form an intranuclear spindle. Ultrastructural data indicate that basidiomycetes, such as the pathogen Ustilago maydis, undergo an 'open mitosis'. Here we describe the mechanism of nuclear envelope break-down in U. maydis. In interphase, the nucleus resides in the mother cell and the spindle pole body is inactive. Prior to mitosis, it becomes activated and nucleates microtubules that reach into the daughter cell. Dynein appears at microtubule tips and exerts force on the spindle pole body, which leads to the formation of a long nuclear extension that reaches into the bud. Chromosomes migrate through this extension and together with the spindle pole bodies leave the old envelope, which remains in the mother cell until late telophase. Inhibition of nuclear migration or deletion of a Tem1p-like GTPase leads to a 'closed' mitosis, indicating that spindle pole bodies have to reach into the bud where MEN signalling participates in envelope removal. Our data indicate that dynein-mediated premitotic nuclear migration is essential for envelope removal in U. maydis.  相似文献   

15.
Our previous study showed that the Autographa californica Nucleopolyhedrovirus (AcMNPV) ac76 gene is essential for both budded virion (BV) and occlusion-derived virion (ODV) development. More importantly, deletion of ac76 affects intranuclear microvesicle formation. However, the exact role by which ac76 affects virion morphogenesis remains unknown. In this report, we characterized the expression, distribution, and topology of Ac76 to further understand the functional role of Ac76 in virion morphogenesis. Ac76 contains an α-helical transmembrane domain, and phase separation showed that it was an integral membrane protein. In AcMNPV-infected cells, Ac76 was detected as a stable dimer that was resistant to SDS and thermal denaturation, and only a trace amount of monomer was detected. A coimmunoprecipitation assay demonstrated the dimerization of Ac76 by high-affinity self-association. Western blot analyses of purified virions and their nucleocapsid and envelope fractions showed that Ac76 was associated with the envelope fractions of both BVs and ODVs. Immunoelectron microscopy revealed that Ac76 was localized to the plasma membrane, endoplasmic reticulum (ER), nuclear membrane, intranuclear microvesicles, and ODV envelope. Amino acids 15 to 48 of Ac76 were identified as an atypical inner nuclear membrane-sorting motif because it was sufficient to target fusion proteins to the ER and nuclear membrane in the absence of viral infection and to the intranuclear microvesicles and ODV envelope during infection. Topology analysis of Ac76 by selective permeabilization showed that Ac76 was a type II integral membrane protein with an N terminus exposed to the cytosol and a C terminus hidden in the ER lumen.  相似文献   

16.
Viral particles of the nuclear polyhedrosis virus (Baculovirus) of the gypsy moth, Porthetria dispar, appear to be released from hemocyte nuclei by budding through both inner and outer lamellae of the nuclear envelope. As a result of budding, the virus particle acquires its envelope from the inner lamella of the nuclear envelope. The outer lamella, which forms a membrane-limited vesicle around the enveloped particles, may fuse with the plasma membrane during viral release from host cells by exocytosis. These observations differ from two other reported cases of nuclear budding in NPV-infected cells in that the process occurred in the absence of nuclear inclusion bodies.  相似文献   

17.
The nuclear envelope has a stereotypic morphology consisting of a flat double layer of the inner and outer nuclear membrane, with interspersed nuclear pores. Underlying and tightly linked to the inner nuclear membrane is the nuclear lamina, a proteinous layer of intermediate filament proteins and associated proteins. Physiological, experimental or pathological alterations in the constitution of the lamina lead to changes in nuclear morphology, such as blebs and lobulations. It has so far remained unclear whether the morphological changes depend on the differentiation state and the specific lamina protein. Here we analysed the ultrastructural morphology of the nuclear envelope in intestinal stem cells and differentiated enterocytes in adult Drosophila flies, in which the proteins Lam, Kugelkern or a farnesylated variant of LamC were overexpressed. Surprisingly, we detected distinct morphological features specific for the respective protein. Lam induced envelopes with multiple layers of membrane and lamina, surrounding the whole nucleus whereas farnesylated LamC induced the formation of a thick fibrillary lamina. In contrast, Kugelkern induced single-layered and double-layered intranuclear membrane structures, which are likely be derived from infoldings of the inner nuclear membrane or of the double layer of the envelope.  相似文献   

18.
Mitosis is described in the flagellate Oxyrrhis marina Dujardin and is compared in related genera. Dense plaques develop in the nuclear envelope at prophase and give rise to an intranuclear spindle. Some of the microtubules associate with the chromosomes while others extend across the nucleus. The basal bodies migrate toward the poles early in division and retain a position lateral to the nuclear poles throughout mitosis. Microtubules are not present between the nucleus and the basal bodies. The nucleolus is persistent and elongates throughout anaphase and telophase. Chromosomal separation is accomplished by sliding of non-chromosomal microtubules and by elongation of the nuclear envelope rather than by shortening of the spindle microtubules. The nuclear envelope begins to constrict in the center early in anaphase. Continued constriction of the envelope and elongation of the nucleus leads to the formation of a dumbbell-shaped nucleus by late telophase. Mitosis culminates by the constriction of the nucleus into two daughter nuclei. The taxonomic position of Oxyrrhis marina is discussed in light of these findings.  相似文献   

19.
Stages of mitosis of the micronuclei of Stentor coeruleus were described as seen by transmission electron microscopy. Cells in division and those regenerating new oral membranelles were studied. Microtubules were found in early prophase in the karyoplasm and interspersed between the condensing chromatin. A monaxial intranuclear spindle is formed by early metaphase, with kinetochore microtubule attachment sites on the chromosomes. The spindle elongates, separating the daughter nuclei at anaphase. A new nuclear envelope, consisting of two unit membranes, begins to form at late anaphase. Small segments of membrane found in the space between the newly forming and the old micronuclear envelopes appear to fuse to form the new nuclear envelope. No ultrastructural differences were found in the mitotic nuclei of cells in division or regeneration.  相似文献   

20.
Electron micrograph evidence is presented that the nuclear envelope of the mature ovum of Dendraster excentricus is implicated in a proliferation of what appear as nuclear envelope replicas in the cytoplasm. The proliferation is associated with intranuclear vesicles which apparently coalesce to form comparatively simple replicas of the nuclear envelope closely applied to the inside of the nuclear envelope. The envelope itself may become disorganized at the time when fully formed annulate lamellae appear on the cytoplasmic side and parallel with it. The concept of interconvertibility of general cytoplasmic vesicles with most of the membrane systems of the cytoplasm is presented. The structure of the annuli in the annulate lamellae is shown to include small spheres or vesicles of variable size embedded in a dense matrix. Dense particles which are about 150 A in diameter are often found closely associated with annulate lamellae in the cytoplasm. Similar structures in other echinoderm eggs are basophilic. In this species, unlike other published examples, the association apparently takes place in the cytoplasm only after the lamellae have separated from the nucleus. If 150 A particles are synthesized by annulate lamellae, as their close physical relationship suggests, then in this species at least the necessary synthetic mechanisms and specificity must reside in the structure of annulate lamellae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号