首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure and variation of nuclear ribosomal DNA (rDNA) units of Picea abies, (L.) Karst. was studied by restriction mapping and Southern hybridization. Conspicuous length variation was found in the internal transcribed spacer (ITS) region of P. abies, although the length of this region is highly conserved both within and among most of the plant species. Two types of ITS variants (A and B), displaying a size difference of 0.5 kb in the ITS2 region, were present within individuals of P. abies from Sweden, Central Europe and Siberia. A preliminary survey of 14 additional Eurasian and North American species of Picea suggested that length variation in the ITS region is widespread in this genus. Alltogether three length variants (A, B and C) were identified. Within individuals of eight Picea species, two length variants were present within the genome (combinations of A and B variants in P. glehnii, P. maximowiczii, P. omorika, P. polita and P. sitchensis and variants B and C in P. jezoensis, P. likiangensis and P. spinulosa). Within individuals from five species, however only one rDNA variant was present in their genome (variant A in P. aurantiaca, P. engelmannii, P. glauca, P. koraiensis and P. koyamai; variant B in P. bicolor). The ITS length variation will be useful as a molecular marker in evolutionary studies of the Picea species complex, whose phylogeny is controversial. The presence of intraindividual variation in, and shared polymorphism of the, ITS length variants raises questions about the occurrence of interspecific hybridization during the evolutionary history of Picea.  相似文献   

2.
The evidence on mitochondrial genome variation and its role in evolution of the genus Drosophila are reviewed. The mitochondrial genome is represented by a circular double-stranded DNA molecule 16 to 19 kb in length. The genome contains no introns involved in recombination. The entire mitochondrial genome can be arbitrarily divided into three parts: (1) protein-coding genes; (2) genes encoding rRNA and tRNA; and (3) the noncoding regulatory region (A + T region). The selective importance of mutations within different mtDNA regions is therefore unequal. In Drosophila, the content of the A + T pairs in mtDNA is extremely low and a pattern of nucleotide substitution is characterized by a low transition/transversion ratio (and a low threshold of mutation saturation). The deletions and duplications are of common occurrence in the mitochondrial genome. However, this genome lacks such characteristic for the nuclear genome aberrations as the inversions and transpositions. The phenomena of introgression and heteroplasmy provide an opportunity to study the adaptive role of the mitochondrial genome and its role in speciation. Analysis of evidence concerning mtDNA variation in different species of the genus Drosophila made it possible to ascertain data on phylogenetic relationships among species obtained by studying nuclear genome variation. In some species, mtDNA variation may serve as a reliable marker for population differentiation within a species, although evidence on the population dynamics of the mtDNA variation is very scarce.  相似文献   

3.
Chromosomes of kinetoplastida   总被引:16,自引:1,他引:15       下载免费PDF全文
We have compared chromosome-sized DNA molecules (molecular karyotypes) of five genera (nine species) of kinetoplastida after cell lysis and deproteinization of DNA in agarose blocks and size fractionation of the intact DNA molecules by pulsed field gradient (PFG) gel electrophoresis. With the possible exception of Trypanosoma vivax and Crithidia fasciculata, all species have at least 20 chromosomes. There are large differences between species in molecular karyotype and in the chromosomal distribution of the genes for alpha- and beta-tubulin, rRNA and the common mini-exon sequence of kinetoplastid mRNAs. In all cases, the rRNA genes are in DNA that is larger than 500 kb. Whereas T. brucei has approximately 100 mini-chromosomes of 50-150 kb, only few are found in T. equiperdum; T. vivax has no DNA smaller than 2000 kb. As all three species exhibit antigenic variation, small chromosomes with telomeric variant surface glycoprotein genes cannot be vital to the mechanism of antigenic variation. The apparent plasticity of kinetoplastid genome composition makes PFG gel electrophoresis a potentially useful tool for taxonomic studies.  相似文献   

4.
The evidence on mitochondrial genome variation and its role in evolution of the genus Drosophila are reviewed. The mitochondrial genome is represented by a circular double-stranded DNA molecule 16 to 19 kb in length. Mitochondrial genes lack introns and recombination. The entire mitochondrial genome can be arbitrarily divided into three parts: (1) protein-coding genes; (2) genes encoding rRNA and tRNA; and (3) the noncoding regulatory region (A + T region). The selective importance of mutations within different mtDNA regions is therefore unequal. In Drosophila, the content of the A + T pairs in mtDNA is extremely high and a pattern of nucleotide substitution is characterized by a low transition/transversion ratio (and a low threshold of mutation saturation). The deletions and duplications are of common occurrence in the mitochondrial genome. However, this genome lacks such characteristic for the nuclear genome aberrations as inversions and transpositions. The phenomena of introgression and heteroplasmy provide an opportunity to study the adaptive role of the mitochondrial genome and its role in speciation. Analysis of evidence concerning mtDNA variation in different species of the genus Drosophilamade it possible to ascertain data on phylogenetic relationships among species obtained by studying nuclear genome variation. In some species, mtDNA variation may serve as a reliable marker for population differentiation within a species, although evidence on the population dynamics of the mtDNA variation is very scarce.  相似文献   

5.
Mitochondrial DNA (mtDNA) obtained from ovaries of Drosophila simulans, D. mauritiana, D. takahashii, D. yakuba and D. virilis was examined by electron microscopy. From a consideration of the structural properties of replicative intermediates, it was concluded that in mtDNA molecules of each species, synthesis on one strand can be up to 97% complete before synthesis on the complementary strand is initiated. MtDNA molecules of each species contain a single A+T-rich region which shows species-specific size variation from 1.0 kb (D. virilis) to 4.8 kb (D. simulans), and maps at the same position in all molecules relative to three common EcoRI sites. The structural properties of complex forms, interpreted as having originated from replicative intermediates, and produced by either partial denaturation or EcoRI digestion, are consistent with the hypothesis that replication is initiated within the A+T-rich region and proceeds unidirectionally around the molecule towards the nearest common EcoRI site. The replication origin is located near the center of the A+T-rich region in D. simulans and D. mauritiana, but lies closer to that end of the A+T-rich region which is distal to the nearest common EcoRI site in D. takahashii, D. yakuba and D. virilis.  相似文献   

6.
The recent development of vectors and methods for cloning large linear DNA as yeast artificial chromosomes (YACs) has enormous potential in facilitating genome analysis, particularly because of the large cloning capacity of the YAC cloning system. However, the construction of comprehensive libraries with very large DNA segments (400-500 kb average insert size) has been technically very difficult to achieve. We have examined the possibility that this difficulty is due, at least in part, to preferential transformation of the smaller DNA molecules in the yeast transformation mixture. Our data indicate that the transformation efficiency of a 330-kb linear YAC DNA molecule is 40-fold lower, on a molar basis, than that of a 110-kb molecule. This extreme size bias in transformation efficiency is dramatically reduced (to less than 3-fold) by treating the DNA with millimolar concentrations of polyamines prior to and during transformation into yeast spheroplasts. This effect is accounted for by a stimulation in transformation efficiency of the 330-kb YAC molecule; the transformation efficiency of the 110-kb YAC molecule is not affected by the inclusion of polyamines. Application of this finding to the cloning of large exogenous DNA as artificial chromosomes in yeast will facilitate the construction of genomic libraries with significantly increased average insert sizes. In addition, the methods described allow efficient transfer of YACs to yeast strain backgrounds suitable for subsequent manipulations of the large insert DNA.  相似文献   

7.

Background  

Copy number variants (CNVs) account for a large proportion of genetic variation in the genome. The initial discoveries of long (> 100 kb) CNVs in normal healthy individuals were made on BAC arrays and low resolution oligonucleotide arrays. Subsequent studies that used higher resolution microarrays and SNP genotyping arrays detected the presence of large numbers of CNVs that are < 100 kb, with median lengths of approximately 10 kb. More recently, whole genome sequencing of individuals has revealed an abundance of shorter CNVs with lengths < 1 kb.  相似文献   

8.
Structural variation in the primary structure of human T200 glycoprotein has been detected. Three cDNA variants have been characterized each of which encode T200 molecules that differ in size as a result of sequence differences in their amino-terminal regions. The largest form of the molecule is distinguished from the smallest by an insert of 161 amino acids, after the first eight amino-terminal residues. The other variant has an insert at the same location of 47 amino acids identical to residues 75-121 in the larger insert. Both extra domains are rich in serine and threonine residues and are likely to display multiple O-linked oligosaccharides. These structural variants which probably arise by cell-type-specific alternative splicing provide a molecular basis for the previously observed structural and antigenic heterogeneity of T200 glycoprotein. In addition to the variable amino-terminal region, the external domain of human T200 glycoprotein consists of a second cysteine-rich region of about 400 amino acids, a single transmembrane-spanning region and a large cytoplasmic domain of 707 amino acids shared by all of the structural variants and highly conserved between species. The gene encoding human T200 is located on the long arm of chromosome 1.  相似文献   

9.
Background and aimsGenome size varies considerably across the diversity of plant life. Although genome size is, by definition, affected by genetic presence/absence variants, which are ubiquitous in population sequencing studies, genome size is often treated as an intrinsic property of a species. Here, we studied intra- and interspecific genome size variation in taxonomically complex British eyebrights (Euphrasia, Orobanchaceae). Our aim is to document genome size diversity and investigate underlying evolutionary processes shaping variation between individuals, populations and species.MethodsWe generated genome size data for 192 individuals of diploid and tetraploid Euphrasia and analysed genome size variation in relation to ploidy, taxonomy, population affiliation and geography. We further compared the genomic repeat content of 30 samples.Key resultsWe found considerable intraspecific genome size variation, and observed isolation-by-distance for genome size in outcrossing diploids. Tetraploid Euphrasia showed contrasting patterns, with genome size increasing with latitude in outcrossing Euphrasia arctica, but with little genome size variation in the highly selfing Euphrasia micrantha. Interspecific differences in genome size and the genomic proportions of repeat sequences were small.ConclusionsWe show the utility of treating genome size as the outcome of polygenic variation. Like other types of genetic variation, such as single nucleotide polymorphisms, genome size variation may be affected by ongoing hybridization and the extent of population subdivision. In addition to selection on associated traits, genome size is predicted to be affected indirectly by selection due to pleiotropy of the underlying presence/absence variants.  相似文献   

10.
D M Shah  C H Langley 《Plasmid》1979,2(1):69-78
Mitochondrial DNAs (mtDNA) from three species of the genus Drosophila (D. melanogaster, D. simulons, and D. virilis) were compared by electron microscope heteroduplex mapping. Analysis of heteroduplex molecules revealed that the A + T-rich region of these mtDNAs has undergone quite extensive base sequence divergence, whereas the remainder of the molecule was found to share apparently complete base sequence homology in all three species. The differences in the sizes of the A + T-rich regions, as determined from the heteroduplex measurements, completely account for the differences in the total sizes of these mtDNAs. A segment of approximately 0.1 kb is conserved within the A + T-rich regions of D. simulans and D. virilis mtDNAs, but not within the A + T-rich region of D. melanogaster mtDNA. HaeIII restriction endonuclease analysis of the heteroduplex molecules has further shown that the unique HaeIII site of D. virilis mtDNA molecule is apparently conserved in both D. melanogaster and D. simulans mtDNA molecules. Finally, electrophoretic patterns of HaeIII-digested mtDNAs from all three species were found to be different and distinguishable from each other suggesting that single base substitutions have probably taken place throughout the entire mitochondrial genome.  相似文献   

11.
Animal mitochondrial DNA (mtDNA) is believed to have evolved under intense selection for economy of the size of the molecule. Among scallop species mtDNA size may vary by a factor of two and among conspecific individuals by as much as 25%. We have examined the possibility that large mtDNA size differences may be associated with fitness in the deep sea scallop Placopecten magellanicus by comparing shell lengths of individuals with different copy numbers of a large mtDNA repeated sequence. Among juvenile cohorts of same age, shell length is known to be a good index of overall fitness in marine bivalves and it is shown here to be affected by differences in nuclear genotype, expressed as the degree of enzyme heterozygosity. We have observed no correlation between shell length and mtDNA length and interpreted this to mean that variation in the size of animal mtDNA is effectively neutral to the forces of natural selection acting on the individual. This type of mtDNA variation must, therefore, be explained in terms of biases in the molecular mechanisms causing expansion or contraction of the molecule, differential replication rates of mtDNA molecules of different size, and the stochastic assortment of mtDNA size classes among individuals.  相似文献   

12.
The monocyte chemotactic protein-3 (MCP3), on chromosome 17q11.2-q12, is a secreted chemokine, which attracts macrophages during inflammation and metastasis. In an effort to discover additional polymorphism(s) in genes whose variant(s) have been implicated in asthma, we scrutinized the genetic polymorphisms in MCP3 to evaluate it as a potential candidate gene for asthma host genetic study. By direct DNA sequencing in twenty-four individuals, we identified four sequence variants within the 3 kb full genome including 1,000bp promoter region of MCP3; one in promoter region (-420T>C), three in intron (+136C>G, +563C>T, +984G>A) respectively. The frequencies of those four SNPs were 0.020 (-420T>C), 0.038 (+136C>G), 0.080 (+563C>T), 0.035 (+984G>A), respectively, in Korean population (n = 598). Haplotypes, their frequencies and linkage disequilibrium coefficients (|D'|) between SNP pairs were estimated. The associations with the risk of asthma, skin-test reactivity and total serum IgE levels were analyzed. Using statistical analyses for association of MCP3 polymorphisms with asthma development and asthma-related phenotypes, no significant signals were detected. In conclusion, we identified four genetic polymorphisms in the important MCP3 gene, but no significant associations of MCP3 variants with asthma phenotypes were detected. MCP3 variation/haplotype information identified in this study will provide valuable information for future association studies of other allergic diseases.  相似文献   

13.
We have analyzed Semliki Forest virus defective interfering RNA molecules, generated by serial undiluted passaging of the virus in baby hamster kidney cells. The 42 S RNA genome (about 13 kb 2) has been greatly deleted to generate the DI RNAs, which are heterogeneous both in size (about 2 kb) and sequence content. The DI RNAs offer a system for exploring binding sites for RNA polymerase and encapsidation signals, which must have been conserved in them since they are replicated and packaged. In order to study the structural organization of DI RNAs, and to analyze which regions from the genome have been conserved, we have determined the nucleotide sequences of (1) a 2.3 kb long DI RNA molecule, DI309, (2) 3′-terminal sequences (each about 0.3 kb) of two other DI RNAs, and (3) the nucleotide sequence of 0.4 kb at the extreme 5′ end of the 42 S RNA genome.The DI309 molecule consists of a duplicated region with flanking unique terminal sequences. A 273-nucleotide sequence is present in four copies per molecule. The extreme 5′-terminal nucleotide sequence of the 42 S RNA genome is shown to contain domains that are conserved in the two DI RNAs of known structure: DI309, and the previously sequenced DI301 (Lehtovaara et al., 1981). Here we report which terminal genome sequences are conserved in the DI RNAs, and how they have been modified, rearranged or amplified.  相似文献   

14.
Here we use whole-genome de novo assembly of second-generation sequencing reads to map structural variation (SV) in an Asian genome and an African genome. Our approach identifies small- and intermediate-size homozygous variants (1-50 kb) including insertions, deletions, inversions and their precise breakpoints, and in contrast to other methods, can resolve complex rearrangements. In total, we identified 277,243 SVs ranging in length from 1-23 kb. Validation using computational and experimental methods suggests that we achieve overall <6% false-positive rate and <10% false-negative rate in genomic regions that can be assembled, which outperforms other methods. Analysis of the SVs in the genomes of 106 individuals sequenced as part of the 1000 Genomes Project suggests that SVs account for a greater fraction of the diversity between individuals than do single-nucleotide polymorphisms (SNPs). These findings demonstrate that whole-genome de novo assembly is a feasible approach to deriving more comprehensive maps of genetic variation.  相似文献   

15.
Y Sheng  V Mancino    B Birren 《Nucleic acids research》1995,23(11):1990-1996
We have examined bacterial electroporation with a specific interest in the transformation of large DNA, i.e. molecules > 100 kb. We have used DNA from bacterial artificial chromosomes (BACs) ranging from 7 to 240 kb, as well as BAC ligation mixes containing a range o different sized molecules. The efficiency of electroporation with large DNA is strongly dependent on the strain of Escherichia coli used; strains which offer comparable efficiencies for 7 kb molecules differ in their uptake of 240 kb DNA by as much as 30-fold. Even with a host strain that transforms relatively well with large DNA, transformation efficiency drops dramatically with increasing size of the DNA. Molecules of 240 kb transform approximately 30-fold less well, on a molar basis, than molecules of 80 kb. Maximum transformation of large DNA occurs with different voltage gradients and with different time constants than are optimal for smaller DNA. This provides the opportunity to increase the yield of transformants which have taken up large DNA relative to the number incorporating smaller molecules. We have demonstrated that conditions may be selected which increase the average size of BAC clones generated by electroporation and compare the overall efficiency of each of the conditions tested.  相似文献   

16.
A physical map of chloroplast DNA (cpDNA) of pear [Pyrus ussuriensis var. hondoensis (Nakai et Kikuchi) Rehder] was constructed using five restriction enzymes, SalI, XhoI, BamHI, SacI and PstI. This information will make it possible to investigate the phylogenetic relationships between Pyrus species. Pear cpDNA was found to be a circular molecule with a total size of about 156 kb in which two inverted repeats of 24.8 kb divide the molecule into small (17 kb) and large (90 kb) single-copy regions. The endonuclease recognition sites in the physical map were determined by single and double digestion of 13 lambda phage clones which covered the entire sequence of the pear cpDNA. Twenty nine genes were localized on the physical map of the pear cpDNA. The structure of pear cpDNA was almost the same in terms of genome size and gene order as that of tobacco cpDNA. RFLP analysis was carried out on cpDNAs from five Pyrus species (Pyrus pyrifolia, Pyrus ussuriensis, Pyrus calleryana, Pyrus elaeagrifolia and Pyrus communis). Two mutations, a recognition-site mutation and a length mutation (deletion), were found only in the cpDNA of P. pyrifolia cultivars. These mutations were localized on the physical map of pear cpDNA. The number of mutations of cpDNA in Pyrus species are small in comparison with those of other angiosperms, suggesting a high degree of genome conservatism in Pyrus species.  相似文献   

17.
Copy number variants (CNVs) contribute to human genetic and phenotypic diversity. However, the distribution of larger CNVs in the general population remains largely unexplored. We identify large variants in ~2500 individuals by using Illumina SNP data, with an emphasis on “hotspots” prone to recurrent mutations. We find variants larger than 500 kb in 5%–10% of individuals and variants greater than 1 Mb in 1%–2%. In contrast to previous studies, we find limited evidence for stratification of CNVs in geographically distinct human populations. Importantly, our sample size permits a robust distinction between truly rare and polymorphic but low-frequency copy number variation. We find that a significant fraction of individual CNVs larger than 100 kb are rare and that both gene density and size are strongly anticorrelated with allele frequency. Thus, although large CNVs commonly exist in normal individuals, which suggests that size alone can not be used as a predictor of pathogenicity, such variation is generally deleterious. Considering these observations, we combine our data with published CNVs from more than 12,000 individuals contrasting control and neurological disease collections. This analysis identifies known disease loci and highlights additional CNVs (e.g., 3q29, 16p12, and 15q25.2) for further investigation. This study provides one of the first analyses of large, rare (0.1%–1%) CNVs in the general population, with insights relevant to future analyses of genetic disease.  相似文献   

18.
Despite considerable excitement over the potential functional significance of copy-number variants (CNVs), we still lack knowledge of the fine-scale architecture of the large majority of CNV regions in the human genome. In this study, we used a high-resolution array-based comparative genomic hybridization (aCGH) platform that targeted known CNV regions of the human genome at approximately 1 kb resolution to interrogate the genomic DNAs of 30 individuals from four HapMap populations. Our results revealed that 1020 of 1153 CNV loci (88%) were actually smaller in size than what is recorded in the Database of Genomic Variants based on previously published studies. A reduction in size of more than 50% was observed for 876 CNV regions (76%). We conclude that the total genomic content of currently known common human CNVs is likely smaller than previously thought. In addition, approximately 8% of the CNV regions observed in multiple individuals exhibited genomic architectural complexity in the form of smaller CNVs within larger ones and CNVs with interindividual variation in breakpoints. Future association studies that aim to capture the potential influences of CNVs on disease phenotypes will need to consider how to best ascertain this previously uncharacterized complexity.  相似文献   

19.
Characterization of human 5S rRNA genes.   总被引:5,自引:0,他引:5       下载免费PDF全文
  相似文献   

20.
A number of studies have claimed that recombination occurs in animal mtDNA, although this evidence is controversial. Ladoukakis and Zouros (2001) provided strong evidence for mtDNA recombination in the COIII gene in gonadal tissue in the marine mussel Mytilus galloprovincialis from the Black Sea. The recombinant molecules they reported had not however become established in the population from which experimental animals were sampled. In the present study, we provide further evidence of the generality of mtDNA recombination in Mytilus by reporting recombinant mtDNA molecules in a related mussel species, Mytilus trossulus, from the Baltic. The mtDNA region studied begins in the 16S rRNA gene and terminates in the cytochrome b gene and includes a major noncoding region that may be analogous to the D-loop region observed in other animals. Many bivalve species, including some Mytilus species, are unusual in that they have two mtDNA genomes, one of which is inherited maternally (F genome) the other inherited paternally (M genome). Two recombinant variants reported in the present study have population frequencies of 5% and 36% and appear to be mosaic for F-like and M-like sequences. However, both variants have the noncoding region from the M genome, and both are transmitted to sperm like the M genome. We speculate that acquisition of the noncoding region by the recombinant molecules has conferred a paternal role on mtDNA genomes that otherwise resemble the F genome in sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号