首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Urban green spaces (GS) are essential for the well-being of the population. Several works have shown a positive correlation between the amount of GS and the household incomes in both developed and developing countries. Thus, the higher the incomes, the larger the total area covered by GS, the better the quality of these spaces, the higher the amount of private GS. Public policies seek to correct this inequality, but existing indicators, especially the amount of GS per inhabitant, do not provide enough information for effective decision-making. Our aim was to provide tools to evaluate and plan better the location and quality of GS in complex urban areas. For this we applied a set of indicators for GS at two spatial scales city-level and local-level, in order to disclose existing inequalities. The indicators considered (i) the total area of GS in relation to population and urban context, (ii) the quality of GS based on its size, shape and vegetation cover, and (iii) the spatial distribution and accessibility of GS. The proposed indicators were tested in three municipalities, belonging to the Metropolitan Area of Santiago (Chile), with different household incomes. The indicators showed large differences in terms of quantity of GS per inhabitant, vegetation cover and accessibility. The GS proved to be an effective strategy to reduce areas that lack vegetation cover. The sustainability assessments must consider how the diversity of structural attributes of GS has an impact on the well-being of urban inhabitants.  相似文献   

2.
Riparian vegetation, an important mediator of land–water interactions, provides habitat for animals and other organisms; however, riparian vegetation zones have been altered by agricultural and urban development in Korea. This riparian vegetation survey was conducted to obtain information vital for the ecological restoration and management of the Korean Geum River ecosystem. At 100 study sites, along the Geum River, we recorded the vegetation of the Geum riparian zone. We then surveyed the riparian vegetation associations in the area and overlaid those areas corresponding to trees, shrubs, perennial herbs, annual herbs, exotic plants, cultivated lands, and damaged lands on a geographical map. We also reconstructed the cross-sectional landscape. The mean values of vegetation diversity, exotic plant area (%), annual plant area (%), and species richness were 6.47 ± 0.26, 5.44 ± 1.01, 11.98 ± 1.20, and 22.69 ± 0.93, respectively. The landscape elements of the herbaceous plants were more spread out, compared with those of the woody plants, and 23 sites were composed strictly of herbs. Our results indicate significant differences in vegetation structure among the study sites. For example, at some sites, exotic plants, cultivated lands, and damaged lands dominated the landscape comprising 25.7, 62, and 68.9%, respectively, of the area. The riparian landscape reference model suggested by these results may be applied to studies of other well-conserved riparian zones. We propose that the material pathways and transport of organisms from land to water at Geum River depend on the patchy distribution of these diverse landscape elements.  相似文献   

3.
In urban areas, the consistent and positive association between vegetation density and household income has been explained historically by either the capitalization of larger lawns and lower housing densities or landscaping and lifestyle districts that convey prestige. Yet cities with shrinking populations and rising land burdens often exhibit high vegetation density in declining neighborhoods. Because the observed associations do not directly address the causal connection between measures of social privilege and vegetation in urban landscapes, it is difficult to understand the forces that maintain them. Here, we compare patterns of household income with new measures derived from housing market data and other parcel-level sources—sale prices, tax foreclosures, new housing construction, demolitions, and the balance of construction and demolition. Our aim is to evaluate whether these spatially, temporally and semantically finer measures of neighborhood social conditions are better predictors of the distribution of urban vegetation. Furthermore, we examine how these relationships differ at two scales: within the City of Detroit and across the Detroit metropolitan area. We demonstrate, first, that linear relationships between income or home values and urban vegetation, though evident at broad metropolitan scales, do not explain recent variations in vegetation density within the City of Detroit. Second, we find that the real estate and demolition records demonstrate a stronger relationship with changes in vegetation density than corresponding changes in US Census measures like income, which suggests they hold at least as much interest for understanding how the relationships between biophysical changes and neighborhood change processes come about.  相似文献   

4.
5.
Broad-scale modification of natural ecosystems associated with urbanisation often leads to localised extinctions and reduced species richness. Despite this, habitats within the urban matrix are still capable of supporting biodiversity to varying degrees. As species have different responses to anthropogenic habitat modification, the species composition of urban areas can depend greatly on the habitat characteristics of the local and surrounding areas. The aim of this study was to compare the community composition of spiders in private gardens, urban parks, patches of remnant vegetation and continuous bushland sites, so as to identify habitat variables associated with variation in spider populations along and within the urban gradient and matrix. Overall spider abundances and richness were highest in remnant vegetation patches and were associated with increased vegetation cover at microhabitat and landscape-scales. While gardens were not as diverse as remnant patches, they did support a surprisingly high diversity of spiders. We also found that species composition differed significantly between gardens and other urban green spaces. Higher richness within gardens was also associated with greater vegetation cover, indicating the importance of private management decisions on local biodiversity. Differences in community composition between land-use types were driven by a small number of urban-tolerant species, and spider guilds showed different responses to habitat traits such as vegetation cover and human population densities. This study demonstrates that urban land-uses support unique spider communities and that maintaining vegetation cover within the urban matrix is essential in order to support diverse spider communities in cities.  相似文献   

6.
Urban riparian ecosystems are now recognized as essential components in determining the vulnerability of nature and human systems to climate change, but still remains uncertainty concerning how to stratify and classify urban riparian landscapes into units of ecological significance at spatial scales appropriate for management. Ecosystem classification presents a tool that allows for quantifying the social and ecological processes of ecosystems so as to shape them into relatively homogeneous management objectives, and provides the potential of offering decision support to urban planners based on urban ecological principles. The purpose of this study is to explore and develop a framework for urban riparian ecosystem classification. The classification framework integrates 9 ecosystem components and 29 spatially-explicit variables that characterized by the biophysical landscape, built environment and human population. Then this framework is applied at the neighbourhood scale in Huangpu River basin, Shanghai city, China, employing hierarchical cluster analysis. The results of the ecosystem classification show that the riparian ecosystems in the Huangpu River could be grouped into three principal categories and these ecosystems are aligned along a gradient of increasing urbanization. We highlight the conservation and payment for riparian ecosystem services delivered in the upstream of Huangpu River, and revegetation and enhancement of riparian ecosystems in the more urbanized downstream area. We also find that riparian vegetation connectivity and coverage were negatively related to land use mix, built environment density, and economic wealth. In terms of riparian vegetation ecology, neighbourhood scale land use mix and built environment density are more influential than socioeconomic background (such as average family income and immigrant status).  相似文献   

7.
Property rights are a central topic in conservation debates, but their influence on environmental outcomes is rarely carefully assessed. This study compared land use, tree planting practices and arboreal vegetation on government, estate private, smallholder private and communal ??family?? lands in Saint Lucia. The influence of tenure was apparent, but overall not a strong predictor of either farmer practices or vegetation characteristics. Higher abundance of planted trees on smallholder private lands was offset by greater abundance of natural forest trees on estate and family lands. Tree planting and abandonment of cultivation (with ensuing afforestation) were commonplace on all three types of land. The influence of tenure was swamped by other factors shaping farmer decisions to plant trees, cut trees or abandon cultivation, including local topography and changing commodity and labor markets. Findings from this study challenge the assumption that property rights necessarily determine resource and environmental outcomes.  相似文献   

8.
以典型的高原河谷城市——西宁市为例,定量分析了2000-2015年研究区景观格局及植被覆盖度的时空演变,揭示了高原河谷地区的城镇建设对植被覆盖度的干扰过程及生态环境质量的影响。结果表明:(1)2000-2015年间,西宁市城镇面积增幅为25.99%,总体城镇化率为4.76%,各区县城镇化水平差异较大;(2)西宁市平均植被覆盖度呈增加趋势但不显著(P < 0.57)。植被覆盖度以中高和高植被覆盖度为主,空间上呈现"东西低-南北高"的分布特征,退耕(牧)还林(草)区的植被覆盖度显著增加(P < 0.01),说明生态恢复工程效果显著;(3)区县尺度上,城镇化速率与中高覆盖植被面积变化呈显著负相关(P < 0.01),区县内生态质量有所下降,城镇发展程度和区位条件的差异是影响中高覆盖度植被变化的主要因素;(4)格网尺度上,建成区及其周边区域的低覆盖植被面积呈显著增加趋势(P < 0.01),表明城镇内部区域生态质量有所改善。研究结果对保护和提高西宁市生态环境质量及合理推进城镇建设等方面具有重要意义。  相似文献   

9.
王刚  管东生 《应用生态学报》2012,23(9):2429-2436
利用LANDSAT-5 TM影像提取地表温度、植被覆盖度和归一化湿度指数(NDMI)等信息,结合景观生态学方法探讨广州市不同区域城市植被和NDMI对地表温度的调节作用.结果表明:植被覆盖度、NDMI和地表温度两两之间有较强的线性相关性,但不同区域植被覆盖度、NDMI与地表温度的相关程度存在明显差异;提高相同植被覆盖度时,中心城区的降温效果最好,其次是处于中心城区北缘的近郊区;不同区域森林公园对周围热环境的影响程度不同,960~1080 m缓冲区内平均温度与公园内部平均温度之差分别为4.69℃(白云山)、1.27℃(马仔山)和0.41℃(流溪河);高植被覆盖度可增加热力景观多样性和不同景观之间的结合度,促进低温斑块内部与其他斑块如高温斑块间的能量交换,起到控制热岛效应的效果;增加环境湿度与提高植被覆盖度对热力景观格局所形成的作用相当.  相似文献   

10.
Understanding plant community change over time is essential for managing important ecosystems such as riparian areas. This study analyzed historic vegetation using soil seed banks and the effects of riparian shrub removal treatments and channel incision on ecosystem and plant community dynamics in Canyon de Chelly National Monument, Arizona. We focused on how seeds, nutrients, and ground water influence the floristic composition of post-treatment vegetation and addressed three questions: (1) How does pre-treatment soil seed bank composition reflect post-treatment vegetation composition? (2) How does shrub removal affect post-treatment riparian vegetation composition, seed rain inputs, and ground water dynamics? and (3) Is available soil nitrogen increased near dead Russian olive plants following removal and does this influence post-treatment vegetation? We analyzed seed bank composition across the study area, analyzed differences in vegetation, ground water levels, and seed rain between control, cut-stump and whole-plant removal areas, and compared soil nitrogen and vegetation near removed Russian olive to areas lacking Russian olive. The soil seed bank contained more riparian plants, more native and fewer exotic plants than the extant vegetation. Both shrub removal methods decreased exotic plant cover, decreased tamarisk and Russian olive seed inputs, and increased native plant cover after 2 years. Neither method increased ground water levels. Soil near dead Russian olive trees indicated a short-term increase in soil nitrogen following plant removal but did not influence vegetation composition compared to areas without Russian olive. Following tamarisk and Russian olive removal, our study sites were colonized by upland plant species. Many western North American rivers have tamarisk and Russian olive on floodplains abandoned by channel incision, river regulation or both. Our results are widely applicable to sites where drying has occurred and vegetation establishment following shrub removal is likely to be by upland species.  相似文献   

11.
1. Urbanisation severely affects stream hydrology, biotic integrity and water quality, but relatively little is known about effects on organic matter dynamics. Coarse particulate organic matter (CPOM) is a source of energy and nutrients in aquatic systems, and its availability has implications for ecosystem productivity and aquatic communities. In undisturbed environments, allochthonous inputs from riparian zones provide critical energy subsidies, but the extent to which this occurs in urbanised streams is poorly understood. 2. We investigated CPOM inputs, standing stocks, retention rates and retention mechanisms in urban and peri‐urban streams in Melbourne, Australia. Six streams were chosen along a gradient of catchment urbanisation, with the presence of reach scale riparian canopy cover as a second factor. CPOM retention was assessed at baseflow via replicate releases of marked Eucalyptus leaves where the retention distance and mechanism were recorded. CPOM and small wood (>1 cm diameter) storage were measured via cores and direct counts, respectively, while lateral and horizontal CPOM inputs were assessed using riparian litter traps. Stream discharge, velocity, depth and width were also measured. 3. CPOM inputs were not correlated with urbanisation, but were significantly higher in ‘closed’ canopy reaches. Urbanisation and riparian cover altered CPOM retention mechanisms, but not retention distances. Urban streams showed greater retention by rocks; while in less urban streams, retention by small wood was considerably higher. CPOM and small wood storage were significantly lower in more urban streams, but we found only a weak effect of riparian cover. 4. These findings suggest that while riparian vegetation increases CPOM inputs and has modest/weak effects on storage, catchment scale urbanisation decreases organic matter availability. Using an organic matter budget approach, it appears likely that the increased frequency and magnitude of high flows associated with catchment urbanisation exerts an overriding influence on organic matter availability. 5. We conclude that to maintain both organic matter inputs and storage, the restoration and protection of streams in urban or rapidly urbanising environments relies on the management of both riparian vegetation and catchment hydrology.  相似文献   

12.
王刚  管东生 《生态学杂志》2012,23(9):2429-2436
利用LANDSAT-5 TM影像提取地表温度、植被覆盖度和归一化湿度指数(NDMI)等信息,结合景观生态学方法探讨广州市不同区域城市植被和NDMI对地表温度的调节作用.结果表明: 植被覆盖度、NDMI和地表温度两两之间有较强的线性相关性,但不同区域植被覆盖度、NDMI与地表温度的相关程度存在明显差异;提高相同植被覆盖度时,中心城区的降温效果最好,其次是处于中心城区北缘的近郊区;不同区域森林公园对周围热环境的影响程度不同,960~1080 m缓冲区内平均温度与公园内部平均温度之差分别为4.69 ℃(白云山)、1.27 ℃(马仔山)和0.41 ℃(流溪河);高植被覆盖度可增加热力景观多样性和不同景观之间的结合度,促进低温斑块内部与其他斑块如高温斑块间的能量交换,起到控制热岛效应的效果;增加环境湿度与提高植被覆盖度对热力景观格局所形成的作用相当.  相似文献   

13.
14.
Summary   To a large extent, the condition of riparian areas in Australia is determined by the management actions of private landholders. In this study, we discuss findings from our research in the Goulburn Broken Catchment comparing landholder and scientist assessments of the condition of riparian areas. We interviewed 33 landholders and undertook ecological condition assessments at 38 sites on privately managed river frontages. Using mail survey data that included landholder assessments of riparian condition, we were then able to compare landholder and scientist assessments. Despite substantial effort in this catchment to improve riparian condition, the riparian zones sampled were generally in poor condition. Landholder and scientist assessments of ecological condition showed a significant positive correlation. This indicated broad agreement, despite some substantial differences in assessment of some components of the condition score. Disparities between scientist and landholder assessments were related to the estimation of native ground cover, leaf litter cover and tree canopy continuity within riparian zones. The capacity of this simple assessment tool to differentiate varying levels of riparian zone degradation demonstrates the potential utility of mailed, self-assessment surveys to inform management programs and decisions about the allocation of resources for restoration efforts.  相似文献   

15.
Deforestation in the tropical Andes is affecting ecological conditions of streams, and determination of how much forest should be retained is a pressing task for conservation, restoration and management strategies. We calculated and analyzed eight benthic metrics (structural, compositional and water quality indices) and a physical-chemical composite index with gradients of vegetation cover to assess the effects of deforestation on macroinvertebrate communities and water quality of 23 streams in southern Ecuadorian Andes. Using a geographical information system (GIS), we quantified vegetation cover at three spatial scales: the entire catchment, the riparian buffer of 30 m width extending the entire stream length, and the local scale defined for a stream reach of 100 m in length and similar buffer width. Macroinvertebrate and water quality metrics had the strongest relationships with vegetation cover at catchment and riparian scales, while vegetation cover did not show any association with the macroinvertebrate metrics at local scale. At catchment scale, the water quality metrics indicate that ecological condition of Andean streams is good when vegetation cover is over 70%. Further, macroinvertebrate community assemblages were more diverse and related in catchments largely covered by native vegetation (>70%). Our results suggest that retaining an important quantity of native vegetation cover within the catchments and a linkage between headwater and riparian forests help to maintain and improve stream biodiversity and water quality in Andean streams affected by deforestation. This research proposes that a strong regulation focused to the management of riparian buffers can be successful when decision making is addressed to conservation/restoration of Andean catchments.  相似文献   

16.
Preventing and controlling exotic plants remains a key challenge in any ecological restoration, and most efforts are currently aimed at local scales. We combined local‐ and landscape‐scale approaches to identify factors that were most closely associated with invasion of riparian forests by exotic shrubs (Amur honeysuckle [Lonicera maackii] and Tatarian honeysuckle [L. tatarica]) in Ohio, U.S.A. Twenty sites were selected in mature riparian forests along a rural–urban gradient (<1–47% urban land cover). Within each site, we measured percent cover of Lonicera spp. and native trees and shrubs, percent canopy cover, and facing edge aspect. We then developed 10 a priori models based on local‐ and landscape‐level variables that we hypothesized would influence percent cover of Lonicera spp. within 25 m of the forest edge. To determine which of these models best fit the data, we used an information‐theoretic approach and Akaike's information criterion. Percent cover of Lonicera was best explained by the proportion of urban land cover within 1 km of riparian forests. In particular, percent cover of Lonicera was greater in forests within more urban landscapes than in forests within rural landscapes. Results suggest that surrounding land uses influence invasion by exotic shrubs, and explicit consideration of land uses may improve our ability to predict or limit invasion. Moreover, identifying land uses that increase the risk of invasion may inform restoration efforts.  相似文献   

17.
1. Detrital inputs from riparian forests can provide the main source of energy to aquatic consumers in stream communities. However, the supply of coarse organic detritus to stream communities is difficult to predict. Patchy riparian inputs and connectivity between reaches have complicated studies and disrupted patterns of the distribution of suspended coarse particulate organic matter within streams and rivers.
2. In this study we emphasize the importance of spatial and temporal scales in determining potential distribution of instream leaf litter. Although large pulses of detritus are transported by streams during storm flows, the main supply of benthic leaf litter used by shredders and of suspended particulate organic matter used by filter feeders is transported during prolonged periods of baseflow. The local, fine-scale distribution of this organic matter is determined by the location and continuity of leaf litter sources (riparian vegetation) and specific features of channel roughness (such as woody debris, roots and rocks).
3. Viewing riparian vegetation at several scales results in variable conclusions regarding the amount of potential source area of leaf detritus. The percentage of suspended whole leaves at sites in the Little Washita River, Oklahoma, U.S.A. was best explained by the percentage of riparian forest cover in 500 m and 1000 m reaches upstream of the sites, as viewed by remote sensing imagery. The amount of leaf fragments was best explained by distance downstream along the longitudinal gradient. Ash-free dry mass of suspended coarse particulate matter did not correlate with any measures of riparian cover.
4. Our results suggest that leaves originate over longer reach lengths than those generally considered as source areas. Scale is an important consideration in studies of riparian patterns and related instream processes because of the need to integrate point dynamics as well as upstream influences.  相似文献   

18.
Mediterranean ecosystems are inherently patchy, challenging habitat-use behavior. Certain mammalian carnivores take advantage of this patchiness by a strategy of habitat complementation/supplementation, which is invariant to the scale of analysis. To test if the same behavior is adopted by the stone marten, we used a combined data set of capture and radio-tracking data at three scales of analysis (1-m, 25-m, and 452-m radius plots). We used compositional analysis to test if there were sex-specific differences in foraging and resting habitat use of stone martens and if these patterns were affected by the presence of other mesocarnivores. Our results showed that stone martens are found both in rural and forested landscapes. Foraging and resting activities occurred far from roads in large and complex patches of cork oak woodlands, riparian vegetation, orchards, and pastureland. Use varied with the scale of analysis and the sex. At smaller scales, females use pastures for foraging and orchards for resting, whereas riparian vegetation and sparse cork oak forests influenced this use at larger scales. Males, on the other hand, were more consistent across scales, using riparian areas and dense cork oak woodlands for foraging and pastures for resting. Stone martens shared the same areas with other coexisting mesocarnivores. Stone martens use cork oak woodlands and complement/supplement this use with other land cover types. The consistent use of cork oak woodlands across scales emphasizes the importance of this land cover to the preservation of functional Mediterranean ecosystems in southern Portugal.  相似文献   

19.
Ecological sites and state‐and‐transition models are useful tools for generating and testing hypotheses about drivers of vegetation composition in rangeland systems. These models have been widely implemented in upland rangelands, but comparatively, little attention has been given to developing ecological site concepts for rangeland riparian areas, and additional environmental criteria may be necessary to classify riparian ecological sites. Between 2013 and 2016, fifteen study reaches on five creeks were studied at Tejon Ranch in southern California. Data were collected to describe the relationship between riparian vegetation composition, environmental variables, and livestock management; and to explore the utility of ecological sites and state‐and‐transition models for describing riparian vegetation communities and for creating hypotheses about drivers of vegetation change. Hierarchical cluster analysis was used to classify the environmental and vegetation data (15 stream reaches × 4 years) into two ecological sites and eight community phases that comprised three vegetation states. Classification and regression tree (CART) analysis was used to determine the influence of abiotic site variables, annual precipitation, and cattle activity on vegetation clusters. Channel slope explained the greatest amount of variation in vegetation clusters; however, soil texture, geology, watershed size, and elevation were also selected as important predictors of vegetation composition. The classification tree built with this limited set of abiotic predictor variables explained 90% of the observed vegetation clusters. Cattle grazing and annual precipitation were not linked to qualitative differences in vegetation. Abiotic variables explained almost all of the observed riparian vegetation dynamics—and the divisions in the CART analysis corresponded roughly to the ecological sites—suggesting that ecological sites are well‐suited for understanding and predicting change in this highly variable system. These findings support continued development of riparian ecological site concepts and state‐and‐transition models to aid decision making for conservation and management of rangeland riparian areas.  相似文献   

20.
Abstract: Alteration of Iowa, USA, landscapes for agricultural production has resulted in a loss of >99% of the original prairie and >95% of native wetlands. This conversion has included riparian areas, which, as interfaces between terrestrial and aquatic ecosystems, are important to many wildlife species. Farm Bill programs have resulted in the reestablishment of millions of hectares of grasslands and wetlands nationwide, including >100,000 ha in riparian areas of the Midwest. We assessed plant and arthropod responses to burning and disking of riparian grasslands in east-central Iowa in 2001 and 2002. Burning altered the plant community by removing litter and standing dead vegetation and had negative effects on several arthropod taxa, including Hemiptera and Lepidoptera. However, we observed no differences in vegetation or arthropods between burned and unburned fields during the second year postburning (P > 0.05). Disking decreased the cover of grasses, litter, and standing dead vegetation and increased plant species richness and the cover of forbs and bare ground (P < 0.05). Arthropod abundance and dry biomass were greater on disked than undisked portions of fields (P < 0.05). Increases in the abundance and biomass of arthropods associated with changes in vegetation structure and composition likely improved habitat quality for a number of breeding bird species. Both burning and disking appear to be effective management options for maintaining or enhancing riparian grasslands for wildlife.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号