首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Sialic acid, a terminal monosaccharide present in N-glycans, plays an important role in determining both the in vivo half-life and the therapeutic efficacy of recombinant glycoproteins. Low sialylation levels of recombinant human erythropoietin (rhEPO) in recombinant Chinese hamster ovary (rCHO) cell cultures are considered a major obstacle to the production of rhEPO in fed-batch mode. This is mainly due to the accumulation of extracellular sialidases released from the cells. To overcome this hurdle, three sialidase genes (Neu1, 2, and 3) were initially knocked-out using the CRISPR/Cas9-mediated large deletion method in the rhEPO-producing rCHO cell line. Unlike wild type cells, sialidase knockout (KO) clones maintained the sialic acid content and proportion of tetra-sialylated rhEPO throughout fed-batch cultures without exhibiting a detrimental effect with respect to cell growth and rhEPO production. Additional KO of two pro-apoptotic genes, BAK and BAX, in sialidase KO clones (5X KO clones) further improved rhEPO production without any detrimental effect on sialylation. On day 10 in fed-batch cultures, the 5X KO clones had 1.4-times higher rhEPO concentration and 3.0-times higher sialic acid content than wild type cells. Furthermore, the proportion of tetra-sialylated rhEPO on day 10 in fed-batch cultures was 42.2–44.3% for 5X KO clones while it was only 2.2% for wild type cells. Taken together, KO of sialidase and pro-apoptotic genes in rCHO cells is a useful tool for producing heavily sialylated glycoproteins such as rhEPO in fed-batch mode.  相似文献   

3.
There have been many attempts to generate various essential proteins using transformed E. coli systems. However, prokaryote systems are not equipped with the protein maturation mechanisms necessary to generate eukaryotic proteins. In this sense, among the eukaryotes, silkworms have major merits in overcoming the difficulties. Such protein maturation mechanisms are available in silkworms. In this study, a transgenic silkworm producing rhEPO in the cocoon was generated and purified. Specifically, we constructed a transgenic silkworm using a vector system that could be controlled to the next generation. To accomplish this, we microinjected the system into eggs laid during the preblastoderm stage. The rhEPO was then purified from transgenic silkworm cocoons using a Con A affinity column. The biological activity of rhEPO isolated from the cocoon of transgenic silkworms was then assessed in a cell culture system using an EPO-dependent cell line, F-36E. Next, PCR analysis was used to demonstrate that stable gene expression can occur in the embryos of the silkworm, Bombyx. mori. Transgenic silkworms were then selected and observed to ensure that the transgenic silkworm was maintained and transmitted to their progeny. The rhEPO was subsequently purified from the transgenic silkworm cocoon and the electrophoretic pattern of the purified rhEPO revealed a protein band with a molecular weight of approximately 20 kDa. A total of 3 mg of rhEPO was eluted from 10 g of cocoons. The proliferation of F36E cells for 25 ng/ml rhEPO was 1.32, while the proliferation for 2.5 IU/ml hEPO was 1.32. The proliferation of these cells could be induced by commercial hEPO, as well as by rhEPO from transgenic silkworm cocoons. An in vivo test of mice treated with rhEPO revealed relatively high RBC values when compared to normal mice. These results indicated that purified glycosylated EPO from transgenic silkworms had biological activities. Overall, the transgenic silkworm technique will be very useful for the large scale production of proteins for diagnostic and therapeutic purposes.  相似文献   

4.
Chinese hamster ovary cell lines are good manufacturing practice-certified host cells and are widely used in the field of biotechnology to produce therapeutic antibodies. Recombinant protein productivity in cells is strongly associated with cell growth. To control cell proliferation, many approaches have previously been tested including: genetic engineering, chemical additives such as cell cycle inhibitors, and temperature shift of the culture. To be widely adopted in the biopharmaceutical industry, the culture methods should be simple, uniform and safe. To this end, we examined the use a natural compound to improve the production capacity. In this study, we focused on the antioxidants, catechin polyphenols, which are found in green tea, for cell proliferation control strategies. (–)-Epigallocatechin-3-gallate (EGCG), the major catechin that induces G0/G1 cell cycle arrest, was investigated for its effect on recombinant protein production. Adding EGCG to the cell culture media resulted in slower cellular growth and longer cell longevity, which improved the specific productivity and total yield of recombinant IgG1 in batch cultures by almost 50% for an extra 2 or 3 days of culture. A lower l-glutamine consumption rate was observed in cells cultured in EGCG-containing media, which may be suggesting that there was less stress in the culture environment. Additionally, EGCG did not affect the N-glycan quality of IgG1. Our results indicated that adding EGCG only on the first day of the culture enhanced the specific productivity and total amount of recombinant protein production in batch cultures. This approach may prove to be useful for biopharmaceutical production.  相似文献   

5.
Production of recombinant human erythropoietin (rhEPO) for therapeutic purposes relies on its expression in selected clones of transfected mammalian cells. Alternatively, this glycoprotein can be produced by targeted secretion into the body fluid of transgenic mammals. Here, we report on the generation of a transgenic rabbits producing rhEPO in the lactating mammary gland. Transgenic individuals are viable, fertile and transmit the rhEPO gene to the offspring. Northern blot data indicated that the expression of the transgene in the mammary gland is controlled by whey acidic protien (WAP) regulatory sequences during the period of lactation. While the hybridization with total RNA revealed the expression only in the lactating mammary gland, the highly sensitive combinatory approach using RT-PCR/hybridization technique detected a minor ectopic expression. The level of rhEPO secretion in the founder female, measured in the period of lactation, varied in the range of 60–178 and 60–162 mIU/ml in the milk and blood plasma, respectively. Biological activity of the milk rhEPO was confirmed by a standard [3H]-thymidine incorporation test. Thus, we describe the model of a rhEPO-transgenic rabbit, valuable for studies of rhEPO glycosylation and function, which can be useful for the development of transgenic approaches designed for the preparation of recombinant proteins by alternative biopharmaceutical production.  相似文献   

6.
7.
Terminal sialylation of therapeutic glycoprotein is important for biological activity and in vivo stability. The enzyme α2,3-sialyltransferase is the key enzyme that links sialic acids to the termini of glycans in the Chinese hamster ovary (CHO) cell line. Terminal sialylation is affected by numerous factors, but the elements that regulate α2,3-sialyltransferase are not known. We investigated the relationship between α2,3-sialyltransferase activity, ammonium concentration, and cell attachment area-based cell concentration in a recombinant human erythropoietin (rhEPO)-producing CHO cell line. We found that ammonium in the culture medium had almost no effect on α2,3-sialyltransferase activity, but that the activity was affected by cell attachment area-based cell concentration; α2,3-sialyltransferase activity and terminal sialylation of rhEPO decreased with increasing the cell concentration. These results demonstrate that the cell attachment area-based cell concentration is an important factor that affects 2,3-sialyltransferase activity and terminal sialylation of CHO cells.  相似文献   

8.
9.
10.
为了对工程中国仓鼠卵巢(CHO)细胞所产人源重组促红素(rhEPO)的N-糖基化特点进行考察,静置培养工程细胞后,通过等电聚焦和凝集素共沉淀对培养上清中的rhEPO进行分析,并对无血清培养上清中乳酸脱氢酶(LDH)和唾液酸酶活性进行检测,发现这株CHO细胞可以表达唾液酸含量较高的rhEPO蛋白。但是随着培养时间的延长,细胞的存活率逐渐降低,死亡的细胞将胞内的唾液酸酶释放到胞外,唾液酸酶的降解作用会造成N-糖链分枝末端的唾液酸占有率降低,导致rhEPO蛋白糖基化形态的变化。所使用的方法及得到的结果为进一步对工业过程进行分析提供了参考。  相似文献   

11.
In Chinese hamster ovary (CHO) cells, rapid glucose metabolism normally leads to inefficient use of glucose, most of which is converted to lactate during cell cultures. Since lactate accumulation during the culture often exerts a negative effect on cell growth and valuable product formation, several genetic engineering approaches have been developed to suppress lactate dehydrogenase-A (LDH-A), the enzyme converting pyruvate into lactate. However, despite the reduced lactate accumulation, such cell cultures are eventually terminated in the late period of the culture, mainly due to apoptosis. Therefore, we developed an apoptosis-resistant, less lactate-producing dhfr CHO cell line (CHO-Bcl2-LDHAsi) by overexpressing Bcl-2, one of the most well-known anti-apoptotic proteins, and by downregulating LDH-A in a dhfr CHO cell line. When the dhfr CHO-Bcl2-LDHAsi cell line was used as a host cell line for the development of recombinant CHO (rCHO) cells producing an Fc-fusion protein, the culture longevity of the rCHO cells was extended without any detrimental effect of genetic engineering on specific protein productivity. Simultaneously, the specific lactate production rate and apparent yield of lactate from glucose were reduced to 21–65% and 37–78% of the control cells, respectively. Taken together, these results show that the use of an apoptosis-resistant, less lactate-producing dhfr CHO cell line as a host cell line saves the time and the effort of establishing an apoptosis-resistant, less lactate-producing rCHO cells for producing therapeutic proteins.  相似文献   

12.
13.
Recombinant human erythropoietin produced in milk of transgenic pigs   总被引:7,自引:0,他引:7  
We have developed a line of transgenic swine harboring recombinant human erythropoietin through microinjection into fertilized one cell pig zygotes. Milk from generations F1 and F2 transgenic females was analyzed, and hEPO was detected in milk from all lactating females at concentrations of approximately 877.9+/-92.8 IU/1 ml. The amino acid sequence of rhEPO protein in the transgenic pig milk matched that of commercial rhEPO produced from cultured animal cells. In addition, an F-36 cell line, which proliferates in the presence of hEPO or commercial EPO, was induced to synthesize erythroid by extracts from tg sow milk. This study provides evidence that production of purified rhEPO from transgenic pig milk is a potentially valuable technology, and can be used as a cost-effective alternative in clinical applications as well as providing other clinical advantages.  相似文献   

14.
Mesenchymal stromal cells (MSCs) have been isolated from numerous sources and are potentially therapeutic against various diseases. Umbilical cord-derived MSCs (UC-MSCs) are considered superior to other tissue-derived MSCs since they have a higher proliferation rate and can be procured using less invasive surgical procedures. However, it has been recently reported that 2D culture systems, using conventional cell culture flasks, limit the mass production of MSCs for cell therapy. Therefore, the development of alternative technologies, including microcarrier-based cell culture in bioreactors, is required for the large-scale production and industrialization of MSC therapy. In this study, we aimed to optimize the culture conditions for UC-MSCs by using a good manufacturing practice (GMP)-compatible serum-free medium, developed in-house, and a small-scale (30 mL) bioreactor, which was later scaled up to 500 mL. UC-MSCs cultured in microcarrier-based bioreactors (MC-UC-MSCs) showed characteristics equivalent to those cultured statically in conventional cell culture flasks (ST-UC-MSCs), fulfilling the minimum International Society for Cellular Therapy criteria for MSCs. Additionally, we report, for the first time, the equivalent therapeutic effect of MC-UC-MSCs and ST-UC-MSCs in immunodeficient mice (graft-versus-host disease model). Lastly, we developed a semi-automated cell dispensing system, without bag-to-bag variation in the filled volume or cell concentration. In summary, our results show that the combination of our GMP-compatible serum-free and microcarrier-based culture systems is suitable for the mass production of MSCs at an industrial scale. Further improvements in this microcarrier-based cell culture system can contribute to lowering the cost of therapy and satisfying several unmet medical needs.  相似文献   

15.
中国仓鼠卵巢细胞(Chinese hamster ovary cells,CHO)表达系统因具有较高密度培养、高表达和相对完整的蛋白质糖基化修饰系统等特点,成为生产糖蛋白广泛应用的宿主表达细胞之一。目前已产生不同的CHO细胞系和各种功能细胞株以满足对糖蛋白的大量生产和其他实验需求。近年来,随着基因工程、蛋白质工程、细胞工程和发酵调控等技术的发展应用,由CHO细胞生产糖蛋白的产量和糖基化修饰程度取得了突破。然而,随着生物制品市场对于糖蛋白的需求增加,如何获得大量、均质的糖蛋白也成为急需解决的问题。综述了不同工程CHO表达系统的研究、应用、糖基化修饰系统,以及影响外源糖蛋白在CHO系统表达和糖基化修饰的理化因素,结合文献总结并预测了未来CHO细胞表达系统研究的四个具有重大意义的研究方向,以期在未来可以改善由CHO细胞表达糖蛋白的产量和质量。  相似文献   

16.
Bone tissue engineering is a promising field of regenerative medicine in which cultured cells, scaffolds, and osteogenic inductive signals are used to regenerate bone. This technology has already been used in several clinical studies and its efficacy has been reported. In this review, we focus on bone marrow stromal cells, which are the most commonly used cell source for bone tissue engineering. The nature of the cells, suitable culture conditions for bone tissue engineering, and their potential therapeutic applications are reviewed with possible caveats. Furthermore, recent advances in bone marrow stromal cell biology are discussed with reference to clinical translation.  相似文献   

17.
Stem cells can be defined as units of biological organization that are responsible for the development and the regeneration of organ and tissue systems. They are able to renew their populations and to differentiate into multiple cell lineages. Therefore, these cells have great potential in advanced tissue engineering and cell therapies. When seeded on synthetic or nature-derived scaffolds in vitro, stem cells can be differentiated towards the desired phenotype by an appropriate composition, by an appropriate architecture, and by appropriate physicochemical and mechanical properties of the scaffolds, particularly if the scaffold properties are combined with a suitable composition of cell culture media, and with suitable mechanical, electrical or magnetic stimulation. For cell therapy, stem cells can be injected directly into damaged tissues and organs in vivo. Since the regenerative effect of stem cells is based mainly on the autocrine production of growth factors, immunomodulators and other bioactive molecules stored in extracellular vesicles, these structures can be isolated and used instead of cells for a novel therapeutic approach called “stem cell-based cell-free therapy”. There are four main sources of stem cells, i.e. embryonic tissues, fetal tissues, adult tissues and differentiated somatic cells after they have been genetically reprogrammed, which are referred to as induced pluripotent stem cells (iPSCs). Although adult stem cells have lower potency than the other three stem cell types, i.e. they are capable of differentiating into only a limited quantity of specific cell types, these cells are able to overcome the ethical and legal issues accompanying the application of embryonic and fetal stem cells and the mutational effects associated with iPSCs. Moreover, adult stem cells can be used in autogenous form. These cells are present in practically all tissues in the organism. However, adipose tissue seems to be the most advantageous tissue from which to isolate them, because of its abundancy, its subcutaneous location, and the need for less invasive techniques. Adipose tissue-derived stem cells (ASCs) are therefore considered highly promising in present-day regenerative medicine.  相似文献   

18.
Human mesenchymal stem cells (hMSCs) have great potential for therapeutic applications. A bioreactor system that supports long-term hMSCs growth and three-dimensional (3-D) tissue formation is an important technology for hMSC tissue engineering. A 3-D perfusion bioreactor system was designed using non-woven poly (ethylene terepthalate) (PET) fibrous matrices as scaffolds. The main features of the perfusion bioreactor system are its modular design and integrated seeding operation. Modular design of the bioreactor system allows the growth of multiple engineered tissue constructs and provides flexibility in harvesting the constructs at different time points. In this study, four chambers with three matrices in each were utilized for hMSC construct development. The dynamic depth filtration seeding operation is incorporated in the system by perfusing cell suspensions perpendicularly through the PET matrices, achieving a maximum seeding efficiency of 68%, and the operation effectively reduced the complexity of operation and the risk of contamination. Statistical analyses suggest that the cells are uniformly distributed in the matrices. After seeding, long-term construct cultivation was conducted by perfusing the media around the constructs from both sides of the matrices. Compared to the static cultures, a significantly higher cell density of 4.22 x 10(7) cell/mL was reached over a 40-day culture period. Cellular constructs at different positions in the flow chamber have statistically identical cell densities over the culture period. After expansion, the cells in the construct maintained the potential to differentiate into osteoblastic and adipogenic lineages at high cell density. The perfusion bioreactor system is amenable to multiple tissue engineered construct production, uniform tissue development, and yet is simple to operate and can be scaled up for potential clinical use. The results also demonstrate that the multi-lineage differentiation potential of hMSCs are preserved even after extensive expansion, thus indicating the potential of hMSCs for functional tissue construct development. The system has important applications in stem cell tissue engineering.  相似文献   

19.
The methylotrophic yeast, Pichia pastoris, is an important organism used for the production of therapeutic proteins. However, the presence of fungal-like glycans, such as those containing β-mannose (Man) linkages, can elicit an immune response or bind to Man receptors, thus reducing their efficacy. Recent studies have confirmed that P. pastoris has four genes from the β-mannosyl transferase (BMT) family and that Bmt2p is responsible for the majority of β-Man linkages on glycans. While expressing recombinant human erythropoietin (rhEPO) in a developmental glycoengineered strain devoid of BMT2 gene expression, cross-reactivity was observed with an antibody raised against host cell antigens. Treatment of the rhEPO with protein N-glycosidase F eliminated cross-reactivity, indicating that the antigen was associated with the glycan. Thorough analysis of the glycan profile of rhEPO demonstrated the presence of low amounts of α-1,2-mannosidase resistant high-Man glycoforms. In an attempt to eliminate the α-mannosidase resistant glycoforms, we used a systemic approach to genetically knock-out the remaining members of the BMT family culminating in a quadruple bmt2,4,1,3 knock-out strain. Data presented here conclude that the additive elimination of Bmt2p, Bmt3p and Bmt1p activities are required for total abolition of β-Man-associated glycans and their related antigenicity. Taken together, the elimination of β-Man containing glycoforms represents an important step forward for the Pichia production platform as a suitable system for the production of therapeutic glycoproteins.  相似文献   

20.
Chinese hamster ovary (CHO) cells are the predominant host cell line for the production of biopharmaceuticals, a growing industry currently worth more than $188 billion USD in global sales. CHO cells undergo programmed cell death (apoptosis) following different stresses encountered in cell culture, such as substrate limitation, accumulation of toxic by-products, and mechanical shear, hindering production. Genetic engineering strategies to reduce apoptosis in CHO cells have been investigated with mixed results. In this review, a contemporary understanding of the real complexity of apoptotic mechanisms and signaling pathways is described; followed by an overview of antiapoptotic cell line engineering strategies tested so far in CHO cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号