共查询到7条相似文献,搜索用时 0 毫秒
1.
Hereditary folate malabsorption (OMIM 229050) is a rare autosomal recessive disorder caused by loss-of-function mutations in the proton-coupled folate transporter gene (pcft/SLC46A1) resulting in impaired folate transport across the intestine and into the central nervous system. We report a novel, homozygous, deletion mutation in a child of Nicaraguan descent in exon 2 (c.558–588 del, ss778190447) at amino acid position I188 resulting in a frameshift with a premature stop. 相似文献
2.
Fatemeh Hadipour Peymaneh Sarkheil Mehrdad Noruzinia Zahra Hadipour Taghi Baghdadi Yousef Shafeghati 《Indian journal of human genetics》2013,19(1):84-86
Fanconi-Bickel syndrome is an extremely rare hereditary metabolic disease, characterized by hepatomegaly due to glycogen storage, refractory hypophosphatemic rickets, marked growth retardation and proximal renal tubular acidosis. Recurrent bone fractures are one of the hallmark findings. It is a single gene disorder; the responsible gene belongs to the facilitative glucose transporters 2 (GLUT2) family gene or (SLC2A2) mapped to the q26.1-26.3 locus on chromosome 3, and encodes the GLUT protein 2. This protein is expressed in pancreatic ί-cells, hepatocytes, renal tubules, and intestinal mucosa. Several mutations in the GLUT2 gene have been reported in different ethnicities. Herein we report an Iranian girl with a missed diagnosis of osteogenesis imperfecta. She was referred with the history of frequent fractures, and severe motor delay and was suspected to osteogenesis imperfecta. Following the case we detected refractory rickets instead of OI, sever growth failure, proximal renal tubulopathy and RTA, and enlarged kidneys, progressive hepatomegaly, and GSD on liver biopsy. Glucose and galactose tolerance tests confirmed abnormal carbohydrate metabolism. Molecular analysis on GLUT2 gene revealed a homozygous novel mutation in exon 5; it was 15 nucleotide deletion and 7 nucleotide insertion and caused a frame shift mutation, produced a premature truncated protein (P.A229QFsX19). This mutation has not been reported before in the relevant literature. 相似文献
3.
Maryam Sobhani Mohammad Amin Tabatabaiefar Asadollah Rajab Abdol-Mohammad Kajbafzadeh Mohammad Reza Noori-Daloii 《Gene》2013
Wolfram syndrome (WS) is a rare autosomal recessive neurodegenerative disorder that represents a likely source of childhood diabetes especially among countries in the consanguinity belt. The main responsible gene is WFS1 for which over one hundred mutations have been reported from different ethnic groups. The aim of this study was to identify the molecular etiology of WS and to perform a possible genotype–phenotype correlation in Iranian kindred. 相似文献
4.
Zehra Agha Zafar Iqbal Maleeha Azam Maimoona Siddique Marjolein H. Willemsen Tjitske Kleefstra Christiane Zweier Nicole de Leeuw Raheel Qamar Hans van Bokhoven 《Gene》2014
We report on a consanguineous Pakistani family with a severe congenital microcephaly syndrome resembling the Seckel syndrome and Jawad syndrome. The affected individuals in this family were born to consanguineous parents of whom the mother presented with mild intellectual disability (ID), epilepsy and diabetes mellitus. The two living affected brothers presented with microcephaly, white matter disease of the brain, hyponychia, dysmorphic facial features with synophrys, epilepsy, diabetes mellitus and ID. Genotyping with a 250K SNP array in both affected brothers revealed an 18 MB homozygous region on chromosome 18p11.21-q12.1 encompassing the SCKL2 locus of the Seckel and Jawad syndromes. Sequencing of the RBBP8 gene, underlying the Seckel and Jawad syndromes, identified the novel mutation c.919A > G, p.Arg307Gly, segregating in a recessive manner in the family. In addition, in the two affected brothers and their mother we have also found a heterozygous 607 kb deletion, encompassing exons 13–19 of NRXN1. Bidirectional sequencing of the coding exons of NRXN1 did not reveal any other mutation on the other allele. It thus appears that the phenotype of the mildly affected mother can be explained by the NRXN1 deletion, whereas the more severe and complex microcephalic phenotype of the two affected brothers is due to the simultaneous deletion in NRXN1 and the homozygous missense mutation affecting RBBP8. 相似文献
5.
6.
Gang Liu Xiaoming Wei Rui Chen Hanlin Zhou Xiaoyan Li Yan Sun Shuqi Xie Qian Zhu Ning Qu Guanghui Yang Yuxing Chu Haitao Wu Zhangzhang Lan Jinming Wang Yi Yang Xin Yi 《Gene》2014
Type II citrullinaemia, also known as citrin deficiency, is an autosomal recessive metabolic disorder, which is caused by pathogenic mutations in the SLC25A13 gene on chromosome 7q21.3. One of the clinical manifestations of type II citrullinaemia is neonatal intrahepatic cholestatic hepatitis caused by citrin deficiency (NICCD, OMIM# 605814). In this study, a 5-month-old female Chinese neonate diagnosed with type II citrullinaemia was examined. The diagnosis was based on biochemical and clinical findings, including organic acid profiling using a gas chromatography mass spectrometry (GC/MS), and the patient's parents were unaffected. Approximately 14 kb of the exon sequences of the SLC25A13 and two relative genes (ASS1 and FAH) from the proband and 100 case-unrelated controls were captured by array-based capture method followed by high-throughput next-generation sequencing. Two single-nucleotide mutations were detected in the proband, including the previous reported c.1177+1G>A mutation and a novel c.754G>A mutation in the SLC25A13 gene. Sanger sequence results showed that the patient was a compound heterozygote for the two mutations. The novel mutation (c.754G>A), which is predicted to affect the normal structure and function of citrin, is a candidate pathogenic mutation. Target sequence capture combined with high-throughput next-generation sequencing technologies is proven to be an effective method for molecular genetic testing of type II citrullinaemia. 相似文献
7.
Hong-Han Wang Hong-Sheng Chen Hai-Bo Li Hua Zhang Ling-Yun Mei Chu-Feng He Xing-Wei Wang Mei-Chao Men Lu Jiang Xin-Bin Liao Hong Wu Yong Feng 《Gene》2014
Waardenburg syndrome type IV (WS4) is a rare genetic disorder, characterized by auditory–pigmentary abnormalities and Hirschsprung disease. Mutations of the EDNRB gene, EDN3 gene, or SOX10 gene are responsible for WS4. In the present study, we reported a case of a Chinese patient with clinical features of WS4. In addition, the three genes mentioned above were sequenced in order to identify whether mutations are responsible for the case. We revealed a novel nonsense mutation, c.1063C>T (p.Q355*), in the last coding exon of SOX10. The same mutation was not found in three unaffected family members or 100 unrelated controls. Then, the function and mechanism of the mutation were investigated in vitro. We found both wild-type (WT) and mutant SOX10 p.Q355* were detected at the expected size and their expression levels are equivalent. The mutant protein also localized in the nucleus and retained the DNA-binding activity as WT counterpart; however, it lost its transactivation capability on the MITF promoter and acted as a dominant-negative repressor impairing function of the WT SOX10. 相似文献