首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Knee joint motion and ligament forces before and after ACL reconstruction   总被引:4,自引:0,他引:4  
The goal of this in vitro study was to investigate the initial postoperative mechanical state of the knee with various types of anterior cruciate ligament (ACL) reconstructions. An experimental knee testing system was developed for the in vitro measurement of ligament forces and three-dimensional joint motion as external loads were applied to fresh knee specimens. Two groups of knee specimens were tested. In test series #1, two intraarticular reconstructions were performed in each of five specimens using semifree and free patellar tendon grafts with bone blocks. In test series #2, a more carefully controlled intraarticular reconstruction was performed in five specimens using a semifree composite graft consisting of the semitendinosus and gracilis tendons augmented with the Ligament Augmentation Device. Ligament force and joint motion data were collected as anteriorly directed tibial loads were applied to the normal joint, the joint with a cut ACL and the reconstructed joint. These knee joint states were compared on the basis of ACL or graft forces, joint motion and load sharing by the collateral ligaments. The dominate result of the study was that the forces and motions defining the mechanical state of the knee after the ACL reconstructions in both test series were highly variable and abnormal when compared to the normal knee state. The higher level of surgical control series #2 did not decrease this variability. There was a poor correlation between motion of the reconstructed knee relative to normal, and the ACL graft force. There was little consistent difference in force and motion results between the surgical procedures tested.  相似文献   

2.
Minimising post-operative donor site morbidity is an important consideration when selecting a graft for surgical reconstruction of the torn anterior cruciate ligament (ACL). One of the most common procedures, the bone-patellar tendon-bone (BPTB) graft involves removal of the central third from the tendon. However, it is unknown whether the mechanical properties of the donor site (patellar tendon) recover. The present study investigated the mechanical properties of the human patellar tendon in 12 males (mean±S.D. age: 37±14 years) who had undergone surgical reconstruction of the ACL using a BPTB graft between 1 and 10 years before the study (operated knee; OP). The uninjured contralateral knee served as a control (CTRL). Patellar tendon mechanical properties were assessed in vivo combining dynamometry with ultrasound imaging. Patellar tendon stiffness was calculated from the gradient of the tendon's force–elongation curve. Tendon stiffness was normalised to the tendon's dimensions to obtain the tendon's Young's modulus. Cross-sectional area (CSA) of OP patellar tendons was larger by 21% than CTRL tendons (P<0.01). Patellar tendon stiffness was not significantly different between OP and CTRL tendons, but the Young's modulus was lower by 24% in OP tendons (P<0.01). A compensatory enlargement of the patellar tendon CSA, presumably due to scar tissue formation, enabled a recovery of tendon stiffness in the OP tendons. The newly formed tendon tissue had inferior properties as indicated by the reduced tendon Young's modulus, but it increased to a level that enabled recovery of tendon stiffness.  相似文献   

3.
冯会成  黄迅悟  孙继桐  常青 《生物磁学》2011,(14):2727-2729
目的:探讨应用无内固定装置技术双束双隧道重建前交叉韧带(ACL)的治疗效果。方法:2006年1月至2008年1月,我科应用无内固定装置技术双束重建ACL损伤患者33例,男31例,女2例。患者排除手术禁忌后,分别在关节镜下采用双股半腱肌腱重建前内侧束,双股股薄肌腱重建后外侧束。韧带采用无内固定装置固定,股骨端行悬吊固定,胫骨端行拴桩固定。术后1~3周内指导患者在支具保护下进行康复训练,并逐渐提高训练强度。结果:术后切口均一期愈合,无并发症。病例随访时间24~48个月,平均36个月。术后12月时:Lysholm评分由术前的52.2±2.5,升至96.4±7.2分,IKDC评分55.3±3.7分,升至94.1±5.3分,其中A级19例,B级:11例。术前与术后Lysholm评分及IKDC评分有显著差别(P〉0.05)。结论:采用无内固定装置双束ACL重建方法能够较好的平衡患者前内侧束和后外侧束张力,并有利于保留ACL韧带残余结构、节约经费,具有令人满意的临床效果。  相似文献   

4.
A three-dimensional mathematical model of the human knee joint was developed to examine the role of single ligaments, such as an anterior cruciate ligament (ACL) graft in ACL reconstruction, on joint motion and tissue forces. The model is linear and valid for small motions about an equilibrium position. The knee joint is modeled as two rigid bodies (the femur and the tibia) interconnected by deformable structures, including the ACL or ACL graft, the cartilage layer, and the remainder of the knee tissues (modeled as a single element). The model was demonstrated for the equilibrium condition of the knee in extension with an anterior tibial force, causing anterior drawer and hyperextension. The knee stiffness matrix for this condition was measured for a human right knee in vitro. Predicted model response was compared with experimental observations. Qualitative agreement was found between model and experiment, validating the model and its assumptions. The model was then used to predict the change in graft and cartilage forces and joint motion of the knee due to an increment of load in the normal joint both after ACL removal and with various altered states simulating ACL reconstructions. Results illustrate the interdependence between loads in the ACL graft, other knee structures, and contact force. Stiffer grafts and smaller maximum unloaded length of the ligament lead to higher graft and contact forces. Changes in cartilage stiffness alter load sharing between ACL graft and other joint tissues.  相似文献   

5.
Tendon orientations in knee models are often taken from cadaver studies. The aim of this study was to investigate the effect of muscle activation on tendon orientation in vivo. Magnetic resonance imaging (MRI) images of the knee were made during relaxation and isometric knee extensions and flexions with 0 degrees , 15 degrees and 30 degrees of knee joint flexion. For six tendons, the orientation angles in sagittal and frontal plane were calculated. In the sagittal plane, muscle activation pulled the patellar tendon to a more vertical orientation and the semitendinosus and sartorius tendons to a more posterior orientation. In the frontal plane, the semitendinosus had a less lateral orientation, the biceps femoris a more medial orientation and the patellar tendon less medial orientation in loaded compared to unloaded conditions. The knee joint angle also influenced the tendon orientations. In the sagittal plane, the patellar tendon had a more anterior orientation near full extension and the biceps femoris had an anterior orientation with 0 degrees and 15 degrees flexions and neutral with 30 degrees flexions. Within 0 degrees to 30 degrees of flexion, the biceps femoris cannot produce a posterior shear force and the anterior angle of the patellar tendon is always larger than the hamstring tendons. Therefore, co-contraction of the hamstring and quadriceps is unlikely to reduce anterior shear forces in knee angles up to 30 degrees . Finally, inter-individual variation in tendon angles was large. This suggests that the amount of shear force produced and the potential to counteract shear forces by co-contraction is subject-specific.  相似文献   

6.
目的:探讨关节镜下应用带跟骨异体跟腱一期联合重建治疗膝关节脱位合并不稳定的治疗效果。方法:2008年1月至2010年1月,我们于关节镜下应用带跟骨异体跟腱一期联合重建治疗膝关节脱位合并不稳定患者11例,男9例,女2例;年龄17~45岁,平均22.3岁;右膝6例,左膝5例。患者在排除手术禁忌后,分别在关节镜下采用带跟骨异体跟腱一期联合重建后交叉韧带(PCL)、内侧副韧带(MCL)、前交叉韧带(ACL)和外侧副韧带(LCL)。结果:术后所有切口均于2周后I期愈合。10例获得随访,随访时间24~36个月,平均30个月。术后24个月,Lysholm评分由术前的42.2±3.5,升至84.5±6.2分,其中A级9例,B级1例,C级0例;国际膝关节文献委员会(IKDC)评分有术前的41.7±6.5分,升至82.3±10.3分。术前与术后Lysholm评分及IKDC评分有显著差别(P〈0.05)。术后膝关节活动范围,与术前相比具有显著性差异(P〈0.05)。结论:关节镜下应用带跟骨异体跟腱一期联合重建治疗膝关节脱位能够较好的恢复患者膝关节稳定和活动范围,具有令人满意的临床效果。  相似文献   

7.

Objective

The aim of the study was to: 1) evaluate the differences in pre-post operative knee functioning, mechanical stability, isokinetic knee muscle strength in simultaneous arthroscopic patients after having undergone an anterior cruciate ligament (ACL) and the posterior cruciate ligament (PCL) with hamstring tendons reconstruction, 2) compare the results of ACL/PCL patients with the control group.

Design

Controlled Laboratory Study.

Materials and Methods

Results of 11 ACL/PCL patients had been matched with 22 uninjured control participants (CP). Prior to surgery, and minimum 2 years after it, functional assessment (Lysholm and IKDC 2000), mechanical knee joint stability evaluation (Lachman and “drawer” test) and isokinetic tests (bilateral knee muscle examination) had been performed. Different rehabilitation exercises had been used: isometric, passive exercises, exercises increasing the range of motion and proprioception, strength exercises and specific functional exercises.

Results

After arthroscopy no significant differences had been found between the injured and uninjured leg in all isokinetic parameters in ACL/PCL patients. However, ACL/PCL patients had still shown significantly lower values of strength in relative isokinetic knee flexors (p = 0.0065) and extensors (p = 0.0171) compared to the CP. There were no differences between groups regarding absolute isokinetic strength and flexors/extensors ratio. There was statistically significant progress in IKDC 2000 (p = 0.0044) and Lysholm (p = 0.0044) scales prior to (44 and 60 points respectively) and after the reconstruction (61 for IKDC 2000 and 94 points for Lysholm).

Conclusions

Although harvesting tendons of semitendinosus and/or gracilis from the healthy extremity diminishes muscle strength of knee flexors in comparison to the CP, flexor strength had improved. Statistically significant improvement of the knee extensor function may indicate that the recreation of joint mechanical stability is required for restoring normal muscle strength. Without restoring normal muscle function and strength, surgical intervention alone may not be sufficient enough to ensure expected improvement of the articular function.  相似文献   

8.
The hamstring muscles have been recognized as an important element in compensating for the loss of stability in the ACL-deficient knee, but it is still not clear whether the hamstring muscle force can completely compensate for the loss of ACL, and the consequences of increased hamstring muscle force. A two-dimensional anatomical knee model in the sagittal plane was developed to examine the effect of various levels of hamstring muscle activation on restraining anterior tibial translation in the ACL-deficient knee during level walking. The model included the tibiofemoral and patellofemoral joints, four major ligaments, the medial capsule, and five muscle units surrounding the knee. Simulations were conducted to determine anterior tibial translation and internal joint loading at a single selected position when the knee was under a peak external flexion moment during early stance phase of gait. Incremental hamstring muscle forces were applied to the modeled normal and the ACL-deficient knees. Results of simulations showed that the ACL injury increased the anterior tibial translation by 11.8mm, while 56% of the maximal hamstring muscle force could reduce the anterior translation of the tibia to a normal level during the stance phase of gait. The consequences of increased hamstring muscle force included increased quadriceps muscle force and joint contact force.  相似文献   

9.
We present findings on the way in which to use electromyographic (EMG) measurements from muscles acting on the knee in planning rehabilitation of subjects after rupture of anterior cruciate ligament (ACL). ACL subjects demonstrated an earlier recruitment and a tendency to prolonged activity in muscles around the deficient knee as compared with a control group. Especially the hamstring lateralis and the gastrocnemius medialis (GM) muscles showed an earlier EMG onset and a longer EMG burst duration. The clinical relevance of the EMG findings was assessed by comparing the muscle coordination and relative levels of activity between a functionally excellent/good and a functionally poor ACL patient group. Significant differences between the two groups were noted in EMG onset and burst duration of the GM muscle. A rehabilitation program based on the EMG findings from the GM muscle was designed. In this program, the ACL subjects with poor stability were trained to change the EMG activity of the gastrocnemius muscles according to the recruitment pattern of the good/excellent ACL-group. We were able to train the subjects to change their muscle recruitment and to improve their knee stability. The stability of the knee joint depends on the stiffness of the muscles and ligaments around and within the knee. We discuss the importance of the gastrocnemius muscles with regard to knee joint stiffness.  相似文献   

10.
The purpose of this study was to examine the moment-arm and cross-sectional area (CSA) of the patellar tendon (PT) and the hamstrings after anterior cruciate ligament (ACL) reconstruction. The right knee of five males who underwent ACL reconstruction with a PT graft and five age-matched controls was scanned using magnetic resonance image scans. Based on three-dimensional (3D) solids of the PT, CSAs and moment-arms of semitendinous (ST), biceps femoris (BF) long head and semimembranosus (SM) were estimated. Analysis of variance indicated no significant group differences in muscle moment-arms (p>0.05). 3D moment-arms of PT, ST and BF were significantly lower than the corresponding 2D values (p < 0.05). The ACL group displayed a significantly higher maximum BF CSA, a lower ST CSA (p < 0.05) but similar PT and SM CSAs compared with controls. It is concluded that any alterations in PT properties 1 year after harvesting do not affect knee muscle moment-arms compared with age-matched controls. Moment-arm estimation differed between 3D and 2D data, although it did not affect comparisons between ACL reconstruction group and controls. Design of rehabilitation programmes should take into consideration a potential alteration in hamstring morphology following surgery with a PT graft.  相似文献   

11.
摘要 目的:探讨虚拟现实平衡训练联合神经肌肉电刺激(NMES)对前交叉韧带重建术(ACLR)后患者膝关节功能、腘绳肌肌力和步行功能的影响。方法:选择2019年8月~2021年12月期间我院收治的前交叉韧带(ACL)损伤患者96例,并成功实施ACLR,采用随机数字表法分为对照组(n=48,常规康复训练、虚拟现实平衡训练)和研究组(n=48,常规康复训练、虚拟现实平衡训练联合NMES干预)。对比两组膝关节功能优良率、膝关节功能、腘绳肌肌力和步行功能。结果:研究组的临床膝关节功能优良率93.75%(45/48)高于对照组68.75%(33/48),差异有统计学意义(P<0.05)。两组干预后膝关节功能评分、膝关节活动度对均升高,且研究组高于对照组(P<0.05)。两组干预后患侧腘绳肌等长肌力升高,且研究组高于对照组(P<0.05),两组干预后健侧腘绳肌等长肌力对比无明显差异(P>0.05)。两组干预后步长、步速升高,且研究组高于对照组,患侧摆动相降低,且研究组低于对照组(P<0.05)。两组干预后被动活动察觉阀值、进行被动角度再生试验降低,且研究组低于对照组(P<0.05)。结论:虚拟现实平衡训练联合NMES应用于ACLR术后患者的疗效显著,有助于其膝关节功能恢复,提高腘绳肌肌力,改善步行功能。  相似文献   

12.
Ligament balancing in total knee arthroplasty may have an important influence on joint stability and prosthesis lifetime. In order to provide quantitative information and assistance during ligament balancing, a device that intraoperatively measures knee joint forces and moments was developed. Its performance and surgical advantages were evaluated on six cadaver specimens mounted on a knee joint loading apparatus allowing unconstrained knee motion as well as compression and varus-valgus loading. Four different experiments were performed on each specimen. (1) Knee joints were axially loaded. Comparison between applied and measured compressive forces demonstrated the accuracy and reliability of in situ measurements (1.8N). (2) Assessment of knee stability based on condyle contact forces or varus-valgus moments were compared to the current surgical method (difference of varus-valgus loads causing condyle lift-off). The force-based approach was equivalent to the surgical method while the moment-based, which is considered optimal, showed a tendency of lateral imbalance. (3) To estimate the importance of keeping the patella in its anatomical position during imbalance assessment, the effect of patellar eversion on the mediolateral distribution of tibiofemoral contact forces was measured. One fourth of the contact force induced by the patellar load was shifted to the lateral compartment. (4) The effect of minor and major medial collateral ligament releases was biomechanically quantified. On average, the medial contact force was reduced by 20% and 46%, respectively. Large variation among specimens reflected the difficulty of ligament release and the need for intraoperative force monitoring. This series of experiments thus demonstrated the device's potential to improve ligament balancing and survivorship of total knee arthroplasty.  相似文献   

13.
Altered joint motion has been thought to be a contributing factor in the long-term development of osteoarthritis after ACL reconstruction. While many studies have quantified knee kinematics after ACL injury and reconstruction, there is limited in vivo data characterizing the effects of altered knee motion on cartilage thickness distributions. Thus, the objective of this study was to compare cartilage thickness distributions in two groups of patients with ACL reconstruction: one group in which subjects received a non-anatomic reconstruction that resulted in abnormal joint motion and another group in which subjects received an anatomically placed graft that more closely restored normal knee motion. Ten patients with anatomic graft placement (mean follow-up: 20 months) and 12 patients with non-anatomic graft placement (mean follow-up: 18 months) were scanned using high-resolution MR imaging. These images were used to generate 3D mesh models of both knees of each patient. The operative and contralateral knee models were registered to each other and a grid sampling system was used to make site-specific comparisons of cartilage thickness. Patients in the non-anatomic graft placement group demonstrated a significant decrease in cartilage thickness along the medial intercondylar notch in the operative knee relative to the intact knee (8%). In the anatomic graft placement group, no significant changes were observed. These findings suggest that restoring normal knee motion after ACL injury may help to slow the progression of degeneration. Therefore, graft placement may have important implications on the development of osteoarthritis after ACL reconstruction.  相似文献   

14.
This study investigated the effect of hamstring co-contraction with quadriceps on the kinematics of the human knee joint and the in-situ forces in the anterior cruciate ligament (ACL) during a simulated isometric extension motion of the knee. Cadaveric human knee specimens (n = 10) were tested using the robotic universal force moment sensor (UFS) system and measurements of knee kinematics and in-situ forces in the ACL were based on reference positions on the path of passive flexion/extension motion of the knee. With an isolated 200 N quadriceps load, the knee underwent anterior and lateral tibial translation as well as internal tibial rotation with respect to the femur. Both translation and rotation increased when the knee was flexed from full extension to 30 of flexion; with further flexion, these motion decreased. The addition of 80 N antagonistic hamstrings load significantly reduced both anterior and lateral tibial translation as well as internal tibial rotation at knee flexion angles tested except at full extension. At 30 of flexion, the anterior tibial translation, lateral tibial translation, and internal tibial rotation were significantly reduced by 18, 46, and 30%, respectively (p<0.05). The in-situ forces in the ACL under the quadriceps load were found to increase from 27.8+/-9.3 N at full extension to a maximum of 44.9+/-13.8 N at 15 of flexion and then decrease to 10 N beyond 60 of flexion. The in-situ force at 15 was significantly higher than that at other flexion angles (p<0.05). The addition of the hamstring load of 80 N significantly reduced the in-situ forces in the ACL at 15, 30 and 60 of flexion by 30, 43, and 44%, respectively (p<0.05). These data demonstrate that maximum knee motion may not necessarily correspond to the highest in-situ forces in the ACL. The data also suggest that hamstring co-contraction with quadriceps is effective in reducing excessive forces in the ACL particularly between 15 and 60 of knee flexion.  相似文献   

15.
The effects of changes in cruciate ligament material and prestrain on knee joint biomechanics following ligament reconstruction surgery by a tendon are not adequately known. A 3D nonlinear finite element model of the entire knee joint was used to investigate the joint response at different flexion angles under a quadriceps force while varying ACL and PCL initial strains or material properties. The ACL and PCL forces as well as tibiofemoral contact forces/areas substantially increased with greater ACL or PCL initial strains or stiffness. The patellofemoral contact force slightly increased whereas the tibial extensor moment slightly decreased with tenser or stiffer ACL. Reverse trends were predicted with slacker ACL. Results confirm the hypotheses that changes in the prestrain of one cruciate ligament substantially influence the force in the other cruciate ligament and the entire joint and that the use of the patellar tendon (PT) as a replacement for cruciate ligaments markedly alters the joint biomechanics with trends similar to those predicted when increasing prestrains. Forces in both ACL and PCL ligaments increased as one of them became tenser or stiffer and diminished as it became slacker. These results have important consequences in joint biomechanics following ligament injuries or replacement and tend to recommend the use of grafts with smaller prestrains (i.e. slacker than intact) when using the PT as the replacement material with stiffness greater than that of replaced ligament itself.  相似文献   

16.
The effects of changes in cruciate ligament material and prestrain on knee joint biomechanics following ligament reconstruction surgery by a tendon are not adequately known. A 3D nonlinear finite element model of the entire knee joint was used to investigate the joint response at different flexion angles under a quadriceps force while varying ACL and PCL initial strains or material properties. The ACL and PCL forces as well as tibiofemoral contact forces/areas substantially increased with greater ACL or PCL initial strains or stiffness. The patellofemoral contact force slightly increased whereas the tibial extensor moment slightly decreased with tenser or stiffer ACL. Reverse trends were predicted with slacker ACL. Results confirm the hypotheses that changes in the prestrain of one cruciate ligament substantially influence the force in the other cruciate ligament and the entire joint and that the use of the patellar tendon (PT) as a replacement for cruciate ligaments markedly alters the joint biomechanics with trends similar to those predicted when increasing prestrains. Forces in both ACL and PCL ligaments increased as one of them became tenser or stiffer and diminished as it became slacker. These results have important consequences in joint biomechanics following ligament injuries or replacement and tend to recommend the use of grafts with smaller prestrains (i.e. slacker than intact) when using the PT as the replacement material with stiffness greater than that of replaced ligament itself.  相似文献   

17.
The anterior cruciate ligament (ACL) is the most commonly-injured knee ligament during sporting activities. After injury, most individuals experience episodes of the knee giving way during daily activities (non-copers). Non-copers demonstrate asymmetrical quadriceps strength and movement patterns, which could have long-term deleterious effects on the integrity of the knee joint. The purpose of this study was to determine if non-copers resolve their strength and movement asymmetries within two years after surgery. 26 Non-copers were recruited to undergo pre-operative quadriceps strength testing and 3-dimensional gait analysis. Subjects underwent surgery to reconstruct the ligament followed by physical therapy focused on restoring normal range of motion, quadriceps strength, and function. Subjects returned for quadriceps strength testing and gait analysis six months and two years after surgery. Acutely after injury, quadriceps strength was asymmetric between limbs, but resolved six months after surgery. Asymmetric knee angles, knee moments, and knee and hip power profiles were also observed acutely after injury and persisted six months after surgery despite subjects achieving symmetrical quadriceps strength. Two years after surgery, quadriceps strength in the involved limb continued to improve and most kinematic and kinetic asymmetries resolved. These findings suggest that adequate quadriceps strength does not immediately resolve gait asymmetries in non-copers. They also suggest that non-copers have the capacity to improve their quadriceps strength and gait symmetry long after ACL reconstruction.  相似文献   

18.
Patterns of fibre elongation and orientation for the cruciate and collateral ligaments of the human knee joint and for the patellar tendon have not yet been established in three-dimensions. These patterns are essential for understanding thoroughly the contribution of these soft tissues to joint function and of value in surgical treatments for a more conscious assessment of the knee status. Measurements from 10 normal cadaver knees are here reported using an accurate surgical navigation system and consistent anatomical references, over a large flexion arc, and according to current recommended conventions. The contours of relevant sub-bundles were digitised over the corresponding origins and insertions on the bones. Representative fibres were calculated as the straight line segments joining the centroids of these attachment areas. The most isometric fibre was also taken as that whose attachment points were at the minimum change in length over the flexion arc. Changes in length and orientation of these fibres were reported versus the flexion angle. A good general repeatability of intra- and inter-specimens was found. Isometric fibres were found in the locations reported in the literature. During knee flexion, ligament sub-bundles slacken in the anterior cruciate ligament, and in the medial and lateral collateral ligaments, whereas they tighten in the posterior cruciate ligament. In each cruciate ligament the two compounding sub-bundles have different extents for the change in fibre length, and also bend differently from each other on both tibial planes. In the collateral ligaments and patellar tendon all fibres bend posteriorly. Patellar tendon underwent complex changes in length and orientation, on both the tibial sagittal and frontal planes. For the first time thorough and consistent patterns of geometrical changes are provided for the main knee ligaments and tendons after careful fibre mapping.  相似文献   

19.
The purpose of this study was to predict and explain the pattern of shear force and ligament loading in the ACL-deficient knee during walking, and to compare these results to similar calculations for the healthy knee. Musculoskeletal modeling and computer simulation were combined to calculate ligament forces in the ACL-deficient knee during walking. Joint angles, ground-reaction forces, and the corresponding lower-extremity muscle forces obtained from a whole-body dynamic optimization simulation of walking were input into a second three-dimensional model of the lower extremity that represented the knee as a six degree-of-freedom spatial joint. Anterior tibial translation (ATT) increased throughout the stance phase of gait when the model ACL was removed. The medial collateral ligament (MCL) was the primary restraint to ATT in the ACL-deficient knee. Peak force in the MCL was three times greater in the ACL-deficient knee than in the ACL-intact knee; however, peak force sustained by the MCL in the ACL-deficient knee was limited by the magnitude of the total anterior shear force applied to the tibia. A decrease in anterior tibial shear force was brought about by a decrease in the patellar tendon angle resulting from the increase in ATT. These results suggest that while the MCL acts as the primary restraint to ATT in the ACL-deficient knee, changes in patellar tendon angle reduce total anterior shear force at the knee.  相似文献   

20.
目的:探讨关节镜下前交叉韧带(ACL)重建术中保留韧带残端对ACL损伤患者膝关节功能及本体感觉恢复的影响。方法:回顾性分析2010年1月~2016年3月解放军第174医院收治的ACL损伤患者266例,所有患者均行关节镜下ACL重建,其中保留韧带残端的163例为保留残端组,术中完全清理韧带残端的103例为非保留残端组,所有患者术后随访12个月以上,评价两组患者的膝关节功能及本体感觉恢复情况。结果:术前、术后9个月、术后12个月两组膝关节患侧Lysholm评分、国际膝关节文献委员会膝关节评估表(IKDC)评分、被动活动察觉阀值、被动角度再生试验结果比较差异无统计学意义(P0.05);两组术后各检测时间点的Lysholm评分、IKDC评分较术前均显著提高,被动活动察觉阀值、被动角度再生试验结果较术前明显降低(P0.05);保留残端组术后3个月、6个月的Lysholm评分、IKDC评分高于非保留残端组,被动活动察觉阀值、被动角度再生试验结果低于非保留残端组,差异有统计学意义(P0.05)。结论:关节镜下ACL重建中保留残端可加快膝关节功能及本体感觉恢复速度,获得满意的临床疗效,值得推广应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号