首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pathologies associated with protein misfolding have been observed in neurodegenerative diseases such as Alzheimer’s disease, metabolic diseases like phenylketonuria, and diseases affecting structural proteins like collagen or keratin. Misfolding of mutant proteins in these and many other diseases may result in premature degradation, formation of toxic aggregates, or incorporation of toxic conformations into structures. We review common traits of these diverse diseases under the unifying view of protein misfolding. The molecular pathogenesis is discussed in the context of protein quality control systems consisting of molecular chaperones and intracellular proteases that assist the folding and supervise the maintenance of the folded structure. Furthermore, genetic and environmental factors that may modify the severity of these diseases are underscored. The present article represents a partly revised and updated version of chapter 1 published earlier in volume 232 of the series Methods in Molecular Biology (Walker, J. M., ed., Humana Press, Totowa, NJ), Protein Misfolding and Disease: Principles and Protocols (Bross, P. & Gregersen, N., eds.), pp. 3–16 (2003).  相似文献   

2.
3.
Protein misfolding cyclic amplification (PMCA) is a cell-free assay mimicking the prion replication process. However, constraints affecting PMCA have not been well-defined. Although cellular prion protein (PrPC) is required for prion replication, the influence of PrPC abundance on PMCA has not been assessed. Here, we show that PMCA was enhanced by using mouse brain material in which PrPC was overexpressed. Tg(MoPrP)4112 mice overexpressing PrPC supported more sensitive and efficient PMCA than wild type mice. As brain homogenate of Tg(MoPrP)4112 mice was diluted with PrPC-deficient brain material, PMCA became less robust. Our studies suggest that abundance of PrPC is a determinant that directs enhancement of PMCA. PMCA established here will contribute to optimizing conditions to enhance PrPSc amplification by using concentrated PrPC source and expands the use of this methodology.  相似文献   

4.
5.
Jiang  Yanyan  Jiang  Fusong  Li  Ming  Wu  Qingkai  Xu  Chenming  Zhang  Rong  Song  Mingqiang  Wang  Yanzhong  Wang  Ying  Chen  Yating  Zhang  Juan  Ge  Xiaoxu  Zhu  Qihan  Zhuang  Langen  Yang  Di  Lu  Ming  Wang  Feng  Jiang  Meisheng  Liu  Xipeng  Liu  Yanjun  Liu  Limei 《Molecular and cellular biochemistry》2022,477(5):1629-1643
Molecular and Cellular Biochemistry - Precise differentiation of glucokinase (GCK) monogenic diabetes from gestational diabetes mellitus (GDM) is critical for accurate management of the pregnancy...  相似文献   

6.
The missense mutation pG46S in the regulatory (R) domain of human phenylalanine hydroxylase (hPAH), associated with a severe form of phenylketonuria, generates a misfolded protein which is rapidly degraded on expression in HEK293 cells. When overexpressed as a MBP-G46S fusion protein, soluble and fully active tetrameric/dimeric forms are assembled and recovered in a metastable conformational state. When MBP is cleaved off, G46S undergoes a conformational change and self-associates with a lag phase and an autocatalytic growth phase (tetramers ? dimers), as determined by light scattering. The self-association is controlled by pH, ionic strength, temperature, protein concentration and the phosphorylation state of Ser16; the net charge of the protein being a main modulator of the process. A superstoichiometric amount of WT dimers revealed a 2-fold enhancement of the rate of G46S dimer self-association. Electron microscopy demonstrates the formation of higher-order oligomers and linear polymers of variable length, partly as a branching network, and partly as individual long and twisted fibrils (diameter ~ 145-300 Å). The heat-shock proteins Hsp70/Hsp40, Hsp90 and a proposed pharmacological PAH chaperone (3-amino-2-benzyl-7-nitro-4-(2-quinolyl)-1,2-dihydroisoquinolin-1-one) partly inhibit the self-association process. Our data indicate that the G46S mutation results in a N-terminal extension of α-helix 1 which perturbs the wild-type α-β sandwich motif in the R-domain and promotes new intermolecular contacts, self-association and non-amyloid fibril formation. The metastable conformational state of G46S as a MBP fusion protein, and its self-association propensity when released from MBP, may represent a model system for the study of other hPAH missense mutations characterized by misfolded proteins.  相似文献   

7.
8.
9.

Background

Aggresomes are juxtanuclear inclusion bodies that have been proposed to represent a general cellular response to misfolded proteins in mammalian cells. Yet, why aggresomes are not a pathological characteristic of protein misfolding diseases is unclear. Here, we investigate if a misfolded protein inevitably forms aggresomes in mammalian cells.

Results

We show that a cytoplasmic form of the prion protein may form aggresomes or dispersed aggregates in different cell lines. In contrast to aggresomes, the formation of dispersed aggregates is insensitive to histone deacetylase 6 inhibitors and does not result in cytoskeleton rearrangements. Modulation of expression levels or proteasome inhibitors does not alter the formation of dispersed aggregates.

Conclusion

Our results establish that aggresomes are not obligatory products of protein misfolding in vivo.  相似文献   

10.
The mechanism by which the MHC class I allele, HLA-B27, contributes to spondyloarthritis pathogenesis is unknown. In contrast to other alleles that have been examined, HLA-B27 has a tendency to form high m.w. disulfide-linked H chain complexes in the endoplasmic reticulum (ER), bind the ER chaperone BiP/Grp78, and undergo ER-associated degradation. These aberrant characteristics have provided biochemical evidence that HLA-B27 is prone to misfold. Recently, similar biochemical characteristics of HLA-B27 were reported in cells from HLA-B27/human beta2-microglobulin transgenic (HLA-B27 transgenic) rats, an animal model of spondyloarthritis, and correlated with disease susceptibility. In this study, we demonstrate that the unfolded protein response (UPR) is activated in macrophages derived from the bone marrow of HLA-B27 transgenic rats with inflammatory disease. Microarray analysis of these cells also reveals an IFN response signature. In contrast, macrophages derived from premorbid rats do not exhibit a strong UPR or evidence of IFN exposure. Activation of macrophages from premorbid HLA-B27 transgenic rats with IFN-gamma increases HLA-B27 expression and leads to UPR induction, while no UPR is seen in cells from nondisease-prone HLA-B7 transgenic or wild-type (nontransgenic) animals. This is the first demonstration, to our knowledge, that HLA-B27 misfolding is associated with ER stress that results in activation of the UPR. These observations link HLA-B27 expression with biological effects that are independent of immunological recognition, but nevertheless may play an important role in the pathogenesis of inflammatory diseases associated with this MHC class I allele.  相似文献   

11.
《朊病毒》2013,7(1):16-21
Misfolded proteins are at the core of many neurodegenerative diseases, nearly all of them associated with cognitive impairment. For example Creutzfeldt-Jacob disease is associated with aggregation of prion protein,1,2 Lewy body dementia and Parkinson disease with alpha-synuclein3,4  相似文献   

12.
Lysosomal storage disorders are often caused by mutations that destabilize native folding and impair trafficking of secretory proteins. We demonstrate that endoplasmic reticulum (ER)-associated degradation (ERAD) prevents native folding of mutated lysosomal enzymes in patient-derived fibroblasts from two clinically distinct lysosomal storage disorders, namely Gaucher and Tay-Sachs disease. Prolonging ER retention via ERAD inhibition enhanced folding, trafficking, and activity of these unstable enzyme variants. Furthermore, combining ERAD inhibition with enhancement of the cellular folding capacity via proteostasis modulation resulted in synergistic rescue of mutated enzymes. ERAD inhibition was achieved by cell treatment with small molecules that interfere with recognition (kifunensine) or retrotranslocation (eeyarestatin I) of misfolded substrates. These different mechanisms of ERAD inhibition were shown to enhance ER retention of mutated proteins but were associated with dramatically different levels of ER stress, unfolded protein response activation, and unfolded protein response-induced apoptosis.  相似文献   

13.
Lipid-mediated, reversible misfolding of a sterol-sensing domain protein   总被引:1,自引:0,他引:1  
Cellular quality control requires recognition of common features of misfolding, and so is not typically associated with the specific targeting of individual proteins. However, physiologically regulated degradation of yeast HMG-CoA reductase (Hmg2p) occurs by the HRD endoplasmic reticulum quality control pathway, implying that Hmg2p undergoes a regulated transition to a quality control substrate in response to a sterol pathway molecule. Using in vitro structural assays, we now show that the pathway derivative farnesol causes Hmg2p to undergo a change to a less folded structure. The effect is reversible, biologically relevant by numerous criteria, highly specific for farnesol structure, and requires an intact Hmg2p sterol-sensing domain. This represents a distinct lipid-sensing function for this highly conserved motif that suggests novel approaches to cholesterol management. More generally, our observation of reversible small-molecule-mediated misfolding may herald numerous examples of regulated quality control to be discovered in biology or applied in the clinic.  相似文献   

14.
Xin Liu 《生物学前沿》2010,5(3):211-218
Protein misfolding is a general causation of classical conformational diseases and many pathogenic changes that are the result of structural conversion. Here I review recent progress in clinical and computational approaches for each stage of the misfolding process, aiming to present readers an outline for swift comprehension of this field.  相似文献   

15.
16.
Ryu SW  Woo JH  Kim YH  Lee YS  Park JW  Bae YS 《FEBS letters》2006,580(3):988-994
  相似文献   

17.
18.
The past 20 years have seen enormous progress in the understanding of the mechanisms used by the enteric bacterium Escherichia coli to promote protein folding, support protein translocation and handle protein misfolding. Insights from these studies have been exploited to tackle the problems of inclusion body formation, proteolytic degradation and disulfide bond generation that have long impeded the production of complex heterologous proteins in a properly folded and biologically active form. The application of this information to industrial processes, together with emerging strategies for creating designer folding modulators and performing glycosylation all but guarantee that E. coli will remain an important host for the production of both commodity and high value added proteins.  相似文献   

19.
Several chronic neurodegenerative disorders manifest deposits of misfolded or aggregated proteins. Genetic mutations are the root cause for protein misfolding in rare families, but the majority of patients have sporadic forms possibly related to environmental factors. In some cases, the ubiquitin-proteasome system or molecular chaperones can prevent accumulation of aberrantly folded proteins. Recent studies suggest that generation of excessive nitric oxide (NO) and reactive oxygen species (ROS), in part due to overactivity of the NMDA-subtype of glutamate receptor, can mediate protein misfolding in the absence of genetic predisposition. S-Nitrosylation, or covalent reaction of NO with specific protein thiol groups, represents one mechanism contributing to NO-induced protein misfolding and neurotoxicity. Here, we present evidence suggesting that NO contributes to protein misfolding via S-nitrosylating protein-disulfide isomerase or the E3 ubiquitin ligase parkin. We discuss how memantine/NitroMemantine can inhibit excessive NMDA receptor activity to ameliorate NO production, protein misfolding, and neurodegeneration.  相似文献   

20.
In vitro phosphorylation reactions with crude cellular extracts revealed that phosphorylation of a 17-kDa protein is associated with the onset of aerial mycelium formation in solid culture (but not submerged spore formation in liquid culture) of Streptomyces griseus. The possible importance of the 17-kDa protein phosphorylation in cellular differentiation was further indicated by inducing aerial mycelium formation in the presence of decoyinine and in studies using certain developmental mutants (relC, afsA, and M-1). It is proposed that the 17-kDa protein may play a role in cellular differentiation of S. griseus via its phosphorylation. Received: 17 July 1997 / Accepted: 20 September 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号