首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cytochrome c oxidase (COX), the last enzyme of the respiratory chain of aerobic organisms, catalyzes the reduction of molecular oxygen to water. It is a redox-linked proton pump, whose mechanism of proton pumping has been controversially discussed, and the coupling of proton and electron transfer is still not understood. Here, we investigated the kinetics of proton transfer reactions following the injection of a single electron into the fully oxidized enzyme and its transfer to the hemes using time-resolved absorption spectroscopy and pH indicator dyes. By comparison of proton uptake and release kinetics observed for solubilized COX and COX-containing liposomes, we conclude that the 1-μs electron injection into Cu(A), close to the positive membrane side (P-side) of the enzyme, already results in proton uptake from both the P-side and the N (negative)-side (1.5 H(+)/COX and 1 H(+)/COX, respectively). The subsequent 10-μs transfer of the electron to heme a is accompanied by the release of 1 proton from the P-side to the aqueous bulk phase, leaving ~0.5 H(+)/COX at this side to electrostatically compensate the charge of the electron. With ~200 μs, all but 0.4 H(+) at the N-side are released to the bulk phase, and the remaining proton is transferred toward the hemes to a so-called "pump site." Thus, this proton may already be taken up by the enzyme as early as during the first electron transfer to Cu(A). These results support the idea of a proton-collecting antenna, switched on by electron injection.  相似文献   

2.
Respiratory heme-copper oxidases are integral membrane proteins that catalyze the reduction of molecular oxygen to water using electrons donated by either quinol (quinol oxidases) or cytochrome c (cytochrome c oxidases, CcOs). Even though the X-ray crystal structures of several heme-copper oxidases and results from functional studies have provided significant insights into the mechanisms of O2 -reduction and, electron and proton transfer, the design of the proton-pumping machinery is not known. Here, we summarize the current knowledge on the identity of the structural elements involved in proton transfer in CcO. Furthermore, we discuss the order and timing of electron-transfer reactions in CcO during O2 reduction and how these reactions might be energetically coupled to proton pumping across the membrane.  相似文献   

3.
Cytochrome c oxidase is essential for aerobic life as a membrane-bound energy transducer. O(2) reduction at the haem a(3)-Cu(B) centre consumes electrons transferred via haem a from cytochrome c outside the membrane. Protons are taken up from the inside, both to form water and to be pumped across the membrane (M.K.F. Wikstr?m, Nature 266 (1977) 271; M. Wikstr?m, K. Krab, M. Saraste, Cytochrome Oxidase, A Synthesis, Academic Press, London, 1981 ). The resulting electrochemical proton gradient drives ATP synthesis (P. Mitchell, Chemiosmotic Coupling in Oxidative and Photosynthetic Phosphorylation, Glynn Research, Bodmin, UK, 1966 ). Here we present a molecular mechanism for proton pumping coupled to oxygen reduction that is based on the unique properties of water in hydrophobic cavities. An array of water molecules conducts protons from a conserved glutamic acid, either to the Delta-propionate of haem a(3) (pumping), or to haem a(3)-Cu(B) (water formation). Switching between these pathways is controlled by the redox-state-dependent electric field between haem a and haem a(3)-Cu(B), which determines the water-dipole orientation, and therefore the proton transfer direction. Proton transfer via the propionate provides a gate to O(2) reduction. This pumping mechanism explains the unique arrangement of the metal cofactors in the structure. It is consistent with the large body of biochemical data, and is shown to be plausible by molecular dynamics simulations.  相似文献   

4.
We have investigated the effect of Zn ions on proton-transfer reactions in cytochrome c oxidase. In the absence of Zn(2+) the transition from the "peroxy" (P(R)) to the "ferryl" (F) intermediate has a time constant of approximately 100 micros and it is associated with proton transfer from the bulk solution with an intrinsic time constant of <100 micros, but rate limited by the P(R)-->F transition. While in the presence of 100 microM Zn(2+) the P(R)-->F transition was slowed by a factor of approximately 2, proton uptake from the bulk solution was impaired to a much greater extent. Instead, about two protons (one proton in the absence of Zn(2+)) were taken up during the next reaction step, i.e. the decay of F to the oxidized (O) enzyme with a time constant of approximately 2.5 ms. Thus, the results show that there is one proton available within the enzyme that can be used for oxygen reduction and confirm our previous observation that F can be formed without proton uptake from the bulk solution. No effect of Zn(2+) was observed with a mutant enzyme in which Asp(I-132), at the entry point of the D-pathway, was replaced by its non-protonatable analogue Asn. In addition, no effect of Zn(2+) was observed on the F-->O transition rate when measured in D(2)O, because in D(2)O, the transition is internally slowed to approximately 10 ms, which is already slower than with bound Zn(2+). Together with earlier results showing that both the P(R)-->F and F-->O transitions are associated with proton uptake through the D-pathway, the results from this study indicate that Zn(2+) binds to and blocks the entrance of the D-pathway.  相似文献   

5.
6.
The catalytic core of cytochrome c oxidase is composed of three subunits where subunits I and II contain all of the redox-active metal centers and subunit III is a seven transmembrane helix protein that binds to subunit I. The N-terminal region of subunit III is adjacent to D132 of subunit I, the initial proton acceptor of the D pathway that transfers protons from the protein surface to the buried active site approximately 30 A distant. The absence of subunit III only slightly alters the initial steady-state activity of the oxidase at pH 6.5, but activity declines sharply with increasing pH, yielding an apparent pK(a) of 7.2 for steady-state O(2) reduction. When subunit III is present, cytochrome oxidase is more active at higher pH, and the apparent pK(a) of steady-state O(2) reduction is 8.5. Single-turnover experiments show that proton uptake through the D pathway at pH 8 slows from >10000 s(-1) in the presence of subunit III to 350 s(-1) in its absence. At low pH (5.5) the D pathway of the oxidase lacking subunit III regains its capacity for rapid proton uptake. Analysis of the F --> O transition indicates that the apparent pK(a) of the D pathway in the absence of subunit III is 6.8, similar to that of steady-state O(2) reduction (7.2). The pK(a) of D132 itself may decline in the absence of subunit III since its carboxylate group will be more exposed to solvent water. Alternatively, part of a proton antenna for the D pathway may be lost upon removal of subunit III. It is proposed that one role of subunit III in the normal oxidase is to maintain rapid proton uptake through the D pathway at physiologic pH.  相似文献   

7.
Beef heart cytochrome c oxidase has been depleted of subunit III by treatment with chymotrypsin. The removal of subunit III has been evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel fluorography of preparations of the oxidase labeled with [14C]dicyclohexylcarbodiimide prior to proteolysis. Removal of subunit III resulted in a perturbation of the visible spectrum of reduced cytochrome oxidase. Subunit III-depleted oxidase is spectroscopically very similar to the oxidase from Paracoccus denitrificans. When reconstituted into liposomes, the depleted enzyme still pumped protons in response to a pulse of reduced cytochrome c. The H+/e- stoichiometry averaged 0.5. Redox-linked proton translocation could be observed only when respiratory control ratios were higher than 3 and the reductant pulse was of a magnitude that allowed for no more than 5 turnovers of the oxidase.  相似文献   

8.
Cytochrome c oxidase is a redox-driven proton pump, which couples the reduction of oxygen to water to the translocation of protons across the membrane. The recently solved x-ray structures of cytochrome c oxidase permit molecular dynamics simulations of the underlying transport processes. To eventually establish the proton pump mechanism, we investigate the transport of the substrates, oxygen and protons, through the enzyme. Molecular dynamics simulations of oxygen diffusion through the protein reveal a well-defined pathway to the oxygen-binding site starting at a hydrophobic cavity near the membrane-exposed surface of subunit I, close to the interface to subunit III. A large number of water sites are predicted within the protein, which could play an essential role for the transfer of protons in cytochrome c oxidase. The water molecules form two channels along which protons can enter from the cytoplasmic (matrix) side of the protein and reach the binuclear center. A possible pumping mechanism is proposed that involves a shuttling motion of a glutamic acid side chain, which could then transfer a proton to a propionate group of heme α3. Proteins 30:100–107, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

9.
Protons are transferred from the inner surface of cytochrome c oxidase to the active site by the D and K pathways, as well as from the D pathway to the outer surface by a largely undefined proton exit route. Alteration of the initial proton acceptor of the D pathway, D132, to alanine has previously been shown to greatly inhibit oxidase turnover and slow proton uptake into the D pathway. Here it is shown that the removal of subunit III restores a substantial rate of O(2) reduction to D132A. Presumably an alternative proton acceptor for the D pathway becomes active in the absence of subunit III and D132. Thus, in the absence of subunit III cytochrome oxidase shows greater flexibility in terms of proton entry into the D pathway. In the presence of DeltaPsi and DeltapH, turnover of the wild-type oxidase or D132A is slower in the absence of subunit III. Comparison of the turnover rates of subunit III-depleted wild-type oxidase to those of the zinc-inhibited wild-type oxidase containing subunit III, both reconstituted into vesicles, leads to the hypothesis that the absence of subunit III inhibits the ability of the normal proton exit pathway to take up protons from the outside in the presence of DeltaPsi and DeltapH. Thus, subunit III appears to affect the transfer of protons from both the inner and outer surfaces of cytochrome oxidase, perhaps accounting for the long-observed lower efficiency of proton pumping by the subunit III-depleted oxidase.  相似文献   

10.
As a consumer of 95% of the oxygen we breathe, cytochrome c oxidase plays a major role in the energy balance of the cell. Regulation of its oxygen reduction and proton pumping activity is therefore critical to physiological function in health and disease. The location and structure of pathways for protons that are required to support cytochrome c oxidase activity are still under debate, with respect to their requirements for key residues and fixed waters, and how they are gated to prevent (or allow) proton backflow. Recent high resolution structures of bacterial and mammalian forms reveal conserved lipid and steroid binding sites as well as redox-linked conformational changes that provide new insights into potential regulatory ligands and gating modes. Mechanistic interpretation of these findings and their significance for understanding energy regulation is discussed.  相似文献   

11.
The interaction of solvent water protons with the bound paramagnetic metal ions of beef heart cytochrome c oxidase has been examined. The observed proton relaxation rates of enzyme solutions had a negative temperature dependence, indicating a rapid exchange between solvent protons in the coordination sphere of the metal ions and bulk solvent. An analysis of the dependence of the proton relaxation rate on the observation frequency indicated that the correlation time, which modulates the interaction between solvent protons and the unpaired electrons on the metal ions, is due to the electron spin relaxation time of the heme irons of cytochrome c oxidase. This means that at least one of the hemes is exposed to solvent. The proton relaxation rate of the oxidized enzyme was found to be sensitive to changes in ionic strength and to changes in the spin states of the metal ions. Heme a3 was found to be relatively inaccessible to bulk solvent. Partial reduction of the enzyme caused a slight increase in the relaxation rate, which may be due to a change in the antiferromagnetic coupling between two of the bound paramagnetic centers. Further reduction resulted in a decreased relaxation rate, and the fully reduced enzyme was no longer sensitive to changes in ionic strength. The binding of cytochrome c to cytochrome c oxidase had little effect on the proton relaxation rates of oxidized cytochrome oxidase indicating that cytochrome c binding has little effect on solvent accessibility to the metal ion sites.  相似文献   

12.
Electrostatic control of proton pumping in cytochrome c oxidase   总被引:2,自引:0,他引:2  
As part of the mitochondrial respiratory chain, cytochrome c oxidase utilizes the energy produced by the reduction of O2 to water to fuel vectorial proton transport. The mechanism coupling proton pumping to redox chemistry is unknown. Recent advances have provided evidence that each of the four observable transitions in the complex catalytic cycle consists of a similar sequence of events. However, the physico-chemical basis underlying this recurring sequence has not been identified. We identify this recurring pattern based on a comprehensive model of the catalytic cycle derived from the analysis of oxygen chemistry and available experimental evidence. The catalytic cycle involves the periodic repetition of a sequence of three states differing in the spatial distribution of charge in the active site: [0|1], [1|0], and [1|1], where the total charge of heme a and the binuclear center appears on the left and on the right, respectively. This sequence recurs four times per turnover despite differences in the redox chemistry. This model leads to a simple, robust, and reproducible sequence of electron and proton transfer steps and rationalizes the pumping mechanism in terms of electrostatic coupling of proton translocation to redox chemistry. Continuum electrostatic calculations support the proposed mechanism and suggest an electrostatic origin for the decoupled and inactive phenotypes of ionic mutants in the principal proton-uptake pathway.  相似文献   

13.
Cytochrome c oxidase vesicles were used to show that, under appropriate experimental conditions: (1) no net deprotonation of the vesicular membrane or of the incorporated enzyme occurs during the oxidation of ferrocytochrome c; (2) the pH equilibration kinetics of a respiration-induced pH gradient across the bilayer are a simple function of the ohmic proton-conductance properties of the membrane; (3) a fairly constant stoichiometry (0.8-0.7) of the numbers of protons pumped per molecule of ferrocytochrome c oxidized, i.e. the H+/e- ratio, over a wide range of dioxygen molecules reduced (1-12) is observed.  相似文献   

14.
T Haltia  M Saraste    M Wikstrm 《The EMBO journal》1991,10(8):2015-2021
Subunit III (COIII) is one of the three core subunits of the aa3-type cytochrome c oxidase. COIII does not contain any of the redox centres and can be removed from the purified enzyme but has a function during biosynthesis of the enzyme. Dicyclohexyl carbodiimide (DCCD) modifies a conserved glutamic acid residue in COIII and abolishes the proton translocation activity of the enzyme. In this study, the invariant carboxylic acids E98 (the DCCD-binding glutamic acid) and D259 of COIII were changed by site-directed mutagenesis to study their role in proton pumping. Spectroscopy and activity measurements show that a structurally normal enzyme, which is active in electron transfer, is formed in the presence of the mutagenized COIII. Experiments with bacterial spheroplasts indicate that the mutant oxidases are fully competent in proton translocation. In the absence of the COIII gene, only a fraction of the oxidase is assembled into an enzyme with low but significant activity. This residual activity is also coupled to proton translocation. We conclude that, in contrast to numerous earlier suggestions, COIII is not an essential element of the proton pump.  相似文献   

15.
Polyclonal antibodies have been obtained against a synthetic dodecapeptide identical to the aminoacid sequence 120-131 DSPIKDGVWPPE (inferred from its DNA sequence) of Paracoccus denitrificans cytochrome c oxidase subunit III. The antibodies had a titer higher than 1:10000 when tested against the antigen. These antibodies have been used to produce immunological evidence that, despite the fact that subunit III is not isolated with cytochrome c oxidase, it exists in Paracoccus denitrificans lysates. The antibodies did not show reactivity with bovine heart cytochrome c oxidase either by ELISA or immunoblotting. It was also shown that the antibodies react with a single polypeptide present in Paracoccus denitrificans cell lysates, having an apparent molecular weight close to that of subunit III of bovine heart oxidase.  相似文献   

16.
Prevention of leak in the proton pump of cytochrome c oxidase   总被引:1,自引:0,他引:1  
The cytochrome c oxidases (CcO), which are responsible for most O(2) consumption in biology, are also redox-linked proton pumps that effectively convert the free energy of O(2) reduction to an electrochemical proton gradient across mitochondrial and bacterial membranes. Recently, time-resolved measurements have elucidated the sequence of events in proton translocation, and shed light on the underlying molecular mechanisms. One crucial property of the proton pump mechanism has received less attention, viz. how proton leaks are avoided. Here, we will analyse this topic and demonstrate how the key proton-carrying residue Glu-242 (numbering according to the sequence of subunit I of bovine heart CcO) functions as a valve that has the effect of minimising back-leakage of the pumped proton.  相似文献   

17.
The existence of a proton pump associated with bovine cytochrome c oxidase (EC 1.9.3.1) has over the last few years been a matter of considerable dispute. In an attempt to resolve some of the problems with the measuring system we have synthesized fluorescein-phosphatidylethanolamine which when reconstituted with cytochrome c oxidase into phospholipid vesicles provided a reliable indicator of the intravesicular pH. It was observed that cytochrome c oxidase catalyzed the abstraction of almost 2 protons from the intravesicular medium/molecule of ferrocytochrome c oxidized. In parallel experiments whereby the extravesicular pH was measured with an electrode it was found that the enzyme appeared to be responsible for the appearance of almost 1.0 proton/molecule of ferrocytochrome c oxidized. Taken together these data unequivocally demonstrate that cytochrome c oxidase behaves as a proton pump. Furthermore, the other proton which was abstracted is believed to be used for the process of the reduction of oxygen. Similar experiments were performed with a cytochrome c oxidase preparation which was devoid of subunit III. Under these circumstances the enzyme appeared to be unable to translocate protons across the vesicular membrane but was competent to abstract protons from the intravesicular medium for the reduction of oxygen.  相似文献   

18.
Bovine cytochrome c oxidase subunits were separated by reverse phase high performance liquid chromatography using a C4 column eluted with water and an acetonitrile gradient, both containing 0.1% trifluoroacetic acid. Subunits I and III precipitated in this solvent and could not be analyzed; the remaining eleven subunits were dissociated, denatured, soluble and could be resolved by elution from the column. The protein subunit eluting in each chromatographic peak was identified by a combination of polyacrylamide gel electrophoresis in sodium dodecyl sulfate, NH2-terminal amino acid sequencing, and amino acid analysis. Each subunit produced a single elution peak with the exception of subunit VIc (nomenclature of Kadenbach et al., 1983, Anal. Biochem. 129, 517-521), which eluted from the column as two well-resolved peaks. Sequence analysis showed that the two subunit VIc elution peaks resulted from partial chemical blockage of the alpha-amino serine residue of subunit VIc. The C4 reverse phase HPLC was used to document specific subunit removal from bovine cytochrome c oxidase either by tryptic digestion or by dodecyl maltoside extraction. The described HPLC method for separating cytochrome c oxidase subunits should be applicable for the analysis of other multisubunit proteins, especially other multisubunit membrane protein complexes.  相似文献   

19.
The H+/e- stoichiometry of reconstituted cytochrome c oxidase from bovine kidney, containing subunit VIaL (liver type), is 0.5 under standard conditions but 1.0 on addition of 1% cardiolipin to the lipid mixture (asolectin). Low concentrations of palmitate (half-maximal effect at 0.5 microm), but not laurate, myristate, stearate, oleate, 1-hexadecanol, palmitoyl glycerol and palmitoyl CoA, decreased the H+/e- ratio in the presence of cardiolipin from 1.0 to 0.5, accompanied by an increase of coupled, but not of uncoupled respiration of proteoliposomes. Cardiolipin and palmitate did not influence the H+/e- stoichiometry and respiration of reconstituted cytochrome c oxidase from bovine heart, containing subunit VIaH (heart-type). The H+/e- stoichiometry of the heart enzyme, however, is decreased from 1.0 to 0.5 by 5 mm intraliposomal ATP (instead of 5 mm ADP). It is assumed that palmitate binds to subunit VIaL. The partial uncoupling of proton pumping in cytochrome c oxidase is suggested to participate in mammalian thermogenesis.  相似文献   

20.
In mitochondria and many aerobic bacteria cytochrome c oxidase is the terminal enzyme of the respiratory chain where it catalyses the reduction of oxygen to water. The free energy released in this process is used to translocate (pump) protons across the membrane such that each electron transfer to the catalytic site is accompanied by proton pumping. To investigate the mechanism of electron-proton coupling in cytochrome c oxidase we have studied the pH-dependence of the kinetic deuterium isotope effect of specific reaction steps associated with proton transfer in wild-type and structural variants of cytochrome c oxidases in which amino-acid residues in proton-transfer pathways have been modified. In addition, we have solved the structure of one of these mutant enzymes, where a key component of the proton-transfer machinery, Glu286, was modified to an Asp. The results indicate that the P3-->F3 transition rate is determined by a direct proton-transfer event to the catalytic site. In contrast, the rate of the F3-->O4 transition, which involves simultaneous electron transfer to the catalytic site and is characteristic of any transition during CytcO turnover, is determined by two events with similar rates and different kinetic isotope effects. These reaction steps involve transfer of protons, that are pumped, via a segment of the protein including Glu286 and Arg481.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号