首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antizyme is a polyamine-induced cellular protein that binds to ornithine decarboxylase (ODC), and targets it to rapid ubiquitin-independent degradation by the 26S proteasome. However, the metabolic fate of antizyme is not clear. We have tested the stability of antizyme in mammalian cells. In contrast with previous studies demonstrating stability in vitro in a reticulocyte lysate-based degradation system, in cells antizyme is rapidly degraded and this degradation is inhibited by specific proteasome inhibitors. While the degradation of ODC is stimulated by the presence of cotransfected antizyme, degradation of antizyme seems to be independent of ODC, suggesting that antizyme degradation does not occur while presenting ODC to the 26S proteasome. Interestingly, both species of antizyme, which represent initiation at two in-frame initiation codons, are rapidly degraded. The degradation of both antizyme proteins is inhibited in ts20 cells containing a thermosensitive ubiquitin-activating enzyme, E1. Therefore we conclude that in contrast with ubiquitin-independent degradation of ODC, degradation of antizyme requires a functional ubiquitin system.  相似文献   

2.
Reticulocyte lysate contains all the components of the ubiquitin-dependent proteolytic system. Several proteins are degraded in reticulocyte lysate in a ubiquitin-dependent manner. However, none of the proteins studied has a short intracellular half-life. We have investigated the degradation of ornithine decarboxylase (ODC), one of the most labile proteins in mammalian cells. ODC is efficiently degraded in reticulocyte lysate depleted of the ubiquitin activating enzyme, E1, in fraction II of reticulocyte lysate completely lacking ubiquitin, and in fraction II depleted of the entire complex of enzymes responsible for the ligation of ubiquitin to target proteins. The degradation of ODC is ATP dependent. Therefore, our results demonstrate that in addition to the ubiquitin-dependent proteolytic pathway, reticulocyte lysate contains at least one additional ATP-dependent proteolytic pathway. In vitro synthesized ODC served as a substrate in the present degradation study. Its successful utilization establishes a general strategy for investigating the degradation of short-lived proteins (for which a corresponding cDNA is available), that constitute a very small fraction of cellular proteins and for which purification is difficult or impossible. In contrast to ODC synthesized in vitro, that isolated from cells was not degraded by the reticulocyte lysate degradation system, suggesting that post-translational modifications may be involved in regulating ODC degradation.  相似文献   

3.
Intracellular proteolysis plays an important role in regulating fundamental cellularprocesses such as cell cycle, immune and inflammation responses, development,differentiation, and transformation. The ubiquitin-proteasome system accounts for thedegradation of the majority of cellular short-lived proteins. This system involves theconjugation of multiple ubiquitin residues to the target protein and its recognition by the26S proteasome through the poly-ubiquitin chain. Studies on the degradation of ornithinedecarboxylase (ODC) demonstrated that poly-ubiquitin is not the only signal recognizedby the 26S proteasome. The recognition of ODC by the 26S proteasome is mediated byinteraction with a polyamine-induced protein termed, antizyme (Az). While thedegradation of ODC is ubiquitin-independent, the degradation of its regulator Az, and ofantizyme-inhibitor (AzI), an ODC homologous protein that regulates Az availability, areubiquitin dependent. Interestingly, ODC undergoes another type of ubiquitin-independentdegradation by the 20S proteasome that is regulated by NAD(P)H quinoneoxidoreductase 1 (NQO1). Considering the prevalence of the ubiquitin system in theprocess of cellular protein degradation it is rather remarkable that a key cellular enzymeis subjected to two different proteolytic pathways that are different from the ubiquitindependent one. This exceptional behavior of ODC provides us with valuable insightsregarding protein degradation in general.  相似文献   

4.
Ornithine decarboxylase (ODC), the first rate-limiting enzyme in the polyamine biosynthesis is one of the most rapidly degraded proteins in eukaryotic cells. Mammalian ODC is a notable exception to the widely accepted dogma that ubiquitination is always required for targeting a protein to degradation by the 26S proteasome. However, while it is well established that in mammalian cells degradation of ODC is ubiquitin independent, the requirement of ubiquitination for degradation of ODC in yeast cells remained undetermined. We have investigated ODC degradation in three mutant strains of Saccharomyces cerevisiae in which ubiquitin-dependent protein degradation activity is severely compromised. While yeast ODC was rapidly degraded in all these mutant strains the degradation of N-end rule substrates was inhibited. A mutant mouse ODC that fails to interact with Az was rapidly degraded in yeast cells but was stable in mammalian cells suggesting that interaction with a mammalian Az like yeast protein is not necessary for the degradation of ODC in yeast cells. Deletion analysis revealed that sequences from its unique N-terminus are involved in targeting yeast ODC to rapid degradation in yeast cells.  相似文献   

5.
ts85, a cell line that harbors a mutant thermolabile ubiquitin-activating enzyme, E1, fails to degrade short lived proteins at the restrictive temperature (Ciechanover, A., Finley, D., and Varshavsky, A. (1984) Cell 37, 57-66). However, the involvement of the ubiquitin system in the degradation of long lived proteins (most cellular proteins fall in this category) has not been addressed. In the present study we show that upon shifting the mutant cells to the restrictive temperature, there is no change in the rate of degradation of long lived proteins. In contrast, shifting the wild-type cells (FM3A) to the high temperature is accompanied by a 2-fold increase in the rate of proteolysis of this group of proteins. This heat-induced accelerated degradation can be inhibited completely by NH4Cl and chloroquine. Similarly, exposure of the cells to starvation, a stimulus that activates the autophagic-lysosomal pathway, has no effect on the degradation of long lived proteins in the mutant cells after inactivation of E1. Under the same conditions, the degradation rate in the wild-type cells increases almost 4-fold. Analogous results were obtained using a different cell line that also harbors a thermolabile E1 (ts20 (Kulka, R. G., Raboy, B., Schuster, R., Parag, H. A., Diamond, G., Ciechanover, A., and Marcus, M. (1988) J. Biol. Chem. 263, 15726-15731)). Cycloheximide and 3-methyladenine, known inhibitors of formation of autophagic vacuoles, inhibit the heat-induced accelerated degradation of long lived proteins in wild-type cells. Taken together, the results suggest that 1) heat stress induces enhanced degradation of intracellular proteins; 2) the process occurs most probably in autophagic vacuoles; and 3) activation of ubiquitin is required for the formation of these vacuoles. As there is no change in the basal rate of degradation of intracellular proteins in the mutant cells at the restrictive temperature, it appears that the ubiquitin system is not involved in their breakdown.  相似文献   

6.
Exposure of cultured rat hepatoma (HTC) cells to a 43 degrees C heat shock transiently accelerates the degradation of the long-lived fraction of cellular proteins. The rapid phase of proteolysis which lasts approximately 2 h after temperature step-up is followed by a slower phase of proteolysis. During the first 2 h after temperature step-up there is a wave of ubiquitin conjugation to cellular proteins which is accompanied by a fall in ubiquitin and ubiquitinated histone 2A (uH2A) levels. Upon continued incubation at 43 degrees C the levels of ubiquitin conjugates fall with a corresponding increase of ubiquitin and uH2A to initial levels. The burst of protein degradation and ubiquitin conjugation after temperature step-up is not affected by the inhibition of heat shock protein synthesis. Cells of the FM3A ts85 mutant, which have a thermolabile ubiquitin activating enzyme (E1), do not accelerate protein degradation in response to a 43 degrees C heat shock, whereas wild-type FM3A mouse cells do. This observation indicates that the ubiquitin system is involved in the degradation of heat-denatured proteins. Sequential temperature jump experiments show that the extent of proteolysis at temperatures up to 43 degrees C is related to the final temperature and not to the number of steps taken to attain it. Temperature step-up to 45 degrees C causes the inhibition of intracellular proteolysis. We propose the following explanation of the above observations. Heat shock causes the conformational change or denaturation of a subset of proteins stable at normal temperatures.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The polyamine biosynthetic enzyme ornithine decarboxylase (ODC) is degraded by the 26 S proteasome via a ubiquitin-independent pathway in mammalian cells. Its degradation is greatly accelerated by association with the polyamine-induced regulatory protein antizyme 1 (AZ1). Mouse ODC (mODC) that is expressed in the yeast Saccharomyces cerevisiae is also rapidly degraded by the proteasome of that organism. We have now carried out in vivo and in vitro studies to determine whether S. cerevisiae proteasomes recognize mODC degradation signals. Mutations of mODC that stabilized the protein in animal cells also did so in the fungus. Moreover, the mODC degradation signal was able to destabilize a GFP or Ura3 reporter in GFP-mODC and Ura3-mODC fusion proteins. Co-expression of AZ1 accelerated mODC degradation 2-3-fold in yeast cells. The degradation of both mODC and the endogenous yeast ODC (yODC) was unaffected in S. cerevisiae mutants with various defects in ubiquitin metabolism, and ubiquitinylated forms of mODC were not detected in yeast cells. In addition, recombinant mODC was degraded in an ATP-dependent manner by affinity-purified yeast 26 S proteasomes in the absence of ubiquitin. Degradation by purified yeast proteasomes was sensitive to mutations that stabilized mODC in vivo, but was not accelerated by recombinant AZ1. These studies demonstrate that cell constituents required for mODC degradation are conserved between animals and fungi, and that both mammalian and fungal ODC are subject to proteasome-mediated proteolysis by ubiquitin-independent mechanisms.  相似文献   

8.
We have shown that covalent conjugation of ubiquitin to proteins is temperature-sensitive in the mouse cell cycle mutant ts85 due to a specifically thermolabile ubiquitin-activating enzyme (accompanying paper). We show here that degradation of short-lived proteins is also temperature sensitive in ts85 , in contrast to wild-type and revertant cells. While more than 70% of the prelabeled abnormal proteins (containing amino acid analogs) or puromycyl peptides are degraded within 4 hr at the permissive temperature in both ts85 and wild-type cells, less than 15% are degraded in ts85 cells at the nonpermissive temperature. Degradation of abnormal proteins and puromycyl peptides in both ts85 cells and wild-type cells is nonlysosomal and ATP-dependent. Immunochemical analysis shows a strong and specific reduction in the levels of in vivo labeled ubiquitin-protein conjugates at the nonpermissive temperature in ts85 cells. Degradation of normal, short-lived proteins is also specifically temperature sensitive in ts85 . We suggest that the contribution of ubiquitin-independent pathways to the degradation of short-lived proteins in this higher eucaryotic cell is no more than 10%, and possibly less.  相似文献   

9.
The mechanism of spermidine-induced ornithine decarboxylase (ODC, E.C. 4.1.1.17) inactivation was investigated using Chinese hamster ovary (CHO) cells, maintained in serum-free medium, which display a stabilization of ODC owing to the lack of accumulation of putrescine and spermidine (Glass and Gerner: Biochem. J., 236:351-357, 1986; Sertich et al.: J. Cell Physiol., 127:114-120, 1986). Treatment of cells with 10 microM exogenous spermidine leads to rapid decay of ODC activity accompanied by a parallel decrease in enzyme protein. Analysis of the decay of [35S]methionine-labeled ODC and separation by two-dimensional electrophoresis revealed no detectable modification in ODC structure during enhanced degradation. Spermidine-mediated inactivation of ODC occurred in a temperature-dependent manner exhibiting pseudo-first-order kinetics over a temperature range of 22-37 degrees C. In cultures treated continuously, an initial lag was observed after treatment with spermidine, followed by a rapid decline in activity as an apparent critical concentration of intracellular spermidine was achieved. Treating cells at 22 degrees C for 3 hours with 10 microM spermidine, followed by removal of exogenous polyamine, and then shifting to varying temperatures, resulted in rates of ODC inactivation identical with that determined with a continuous treatment. Arrhenius analysis showed that polyamine mediated inactivation of ODC occurred with an activation energy of approximately 16 kcal/mol. Treatment of cells with lysosomotrophic agents (NH4Cl, chloroquine, antipain, leupeptin, chymostatin) had no effect on ODC degradation. ODC turnover was not dependent on ubiquitin-dependent proteolysis. Shift of ts85 cells, a temperature-sensitive mutant for ubiquitin conjugation, to 39 degrees C (nonpermissive for ubiquitin-dependent proteolysis) followed by addition of spermidine led to a rapid decline in ODC activity, with a rate similar to that seen at 32 degrees C (the permissive temperature). In contrast, spermidine-mediated ODC degradation was substantially decreased by inhibitors of protein synthesis (cycloheximide, emetine, and puromycin). These data support the hypothesis that spermidine regulates ODC degradation via a mechanism requiring new protein synthesis, and that this occurs via a non-lysosomal, ubiquitin-independent pathway.  相似文献   

10.
Red blood cell-mediated microinjection was used to introduce radioiodinated ubiquitin into ts85 cells, a mouse cell line that contains a thermolabile ubiquitin-activating enzyme (E1). The proportion of ubiquitin present as histone conjugates, high molecular weight conjugates, and free molecules was then determined by gel electrophoresis and autoradiography. When ts85 cells were incubated at the nonpermissive temperature, 39.5 degrees C, high molecular weight conjugates accumulated. This unexpected result was confirmed by Western blot analyses. To determine whether ubiquitin conjugates formed under nonpermissive conditions or merely persisted after the temperature increase, ts85 cells were incubated at 39.5 degrees C to generate large amounts of conjugates and then shifted to 42 degrees C. The higher temperature resulted in a 25% reduction in conjugates, but upon return to 39.5 degrees C, the ubiquitin conjugates were restored to pre-42 degrees C amounts. Since all changes in ubiquitin conjugate levels occurred above 39.5 degrees C, ts85 cells can couple ubiquitin to cellular proteins even after prolonged culture at nonpermissive temperatures. Western blot analyses showed that less than 10% of the E1 molecules present in ts85 cells at 31 degrees C remained after 2 h at 39.5 degrees C. However, when 125I-ubiquitin was added to extracts from heated ts85 cells an apparent high molecular weight form of E1 and thiol ester adducts between ubiquitin and the E2 carrier proteins were detected by electrophoresis at 4 degrees C. Considering both in vivo and in vitro demonstrations that heated ts85 cells retain the ability to conjugate ubiquitin to endogenous proteins, considerable caution must be exercised in the design and interpretation of proteolysis experiments using this mutant cell line.  相似文献   

11.
Antizymes are key regulators of cellular polyamine metabolism that negatively regulate cell proliferation and are therefore regarded as tumor suppressors. Although the regulation of antizyme (Az) synthesis by polyamines and the ability of Az to regulate cellular polyamine levels suggest the centrality of polyamine metabolism to its antiproliferative function, recent studies have suggested that antizymes might also regulate cell proliferation by targeting to degradation proteins that do not belong to the cellular polyamine metabolic pathway. Using a co-degradation assay, we show here that, although they efficiently stimulated the degradation of ornithine decarboxylase (ODC), Az1 and Az2 did not affect or had a negligible effect on the degradation of cyclin D1, Aurora-A, and a p73 variant lacking the N-terminal transactivation domain whose degradation was reported recently to be stimulated by Az1. Furthermore, we demonstrate that, although Az1 and Az2 could not be constitutively expressed in transfected cells, they could be stably expressed in cells that express trypanosome ODC, a form of ODC that does not bind Az and therefore maintains a constant level of cellular polyamines. Taken together, our results clearly demonstrate that Az1 and Az2 affect cell proliferation and viability solely by modulating cellular polyamine metabolism.  相似文献   

12.
Kahana C 《Amino acids》2007,33(2):225-230
Summary. Protein degradation mediated by the ubiquitin/proteasome system is the major route for the degradation of cellular proteins. In this pathway the ubiquitination of the target proteins is manifested via the concerted action of several enzymes. The ubiquinated proteins are then recognized and degraded by the 26S proteasome. There are few reports of proteins degraded by the 26S protesome without ubiquitination, with ornithine decarboxylase being the most notable representative of this group. Interestingly, while the degradation of ODC is independent of ubiquitination, the degradation of other enzymes of the polyamine biosynthesis pathway is ubiquitin dependent. The present review describes the degradation of enzymes and regulators of the polyamine biosynthesis pathway.  相似文献   

13.
Ubiquitin conjugation (ubiquitylation) plays important roles not only in protein degradation but also in many other cellular functions. However, the sites of proteins that are targeted for such modification have remained poorly characterized at the proteomic level. We have now developed a method for the efficient identification of ubiquitylation sites in target proteins with the use of an engineered form of ubiquitin (K0-Ub), in which all seven lysine residues are replaced with arginine. K0-Ub is covalently attached to lysine residues of target proteins via an isopeptide bond, but further formation of a polyubiquitin chain does not occur on K0-Ub. We identified a total of 1392 ubiquitylation sites of 794 proteins from HEK293T cells. Profiling of ubiquitylation sites indicated that the sequences surrounding lysine residues targeted for ubiquitin conjugation do not share a common motif or structural feature. Furthermore, we identified a critical ubiquitylation site of the cyclin-dependent kinase inhibitor p27(Kip1). Mutation of this site thus inhibited ubiquitylation of and stabilized p27(Kip1), suggesting that this lysine residue is the target site of p27(Kip1) for ubiquitin conjugation in vivo. In conclusion, our method based on K0-Ub is a powerful tool for proteome-wide identification of ubiquitylation sites of target proteins.  相似文献   

14.
Conjugation of ubiquitin to certain proteins can trigger their degradation in the in vitro reticulocyte system. In order to determine whether ubiquitin conjugation serves as an intermediate step in the turnover of cellular proteins in vivo, it is necessary to isolate proteolytic intermediates, i.e. ubiquitin-protein adducts of specific cellular proteins. While the steady-state level of conjugates of rapidly turning over proteins is relatively high, that of long-lived proteins is presumably extremely low, and therefore undetectable. Therefore, mutant cell lines with conditionally altered function(s) of the ubiquitin system can serve as powerful tools in studying the degradation of stable cellular proteins. We have characterized a temperature sensitive cell cycle arrest mutant cell (ts85) with a thermolabile ubiquitin-activating enzyme (E1; Finley, D., Ciechanover, A., and Varshavsky, A. (1984) Cell 37, 43-55). Following incubation at the restrictive temperature (39.5 degrees C), these cells fail to degrade short-lived proteins (Ciechanover, A., Finley, D., and Varshavsky, A. (1984) Cell 37, 57-66). However, involvement of the ubiquitin system in the turnover of long-lived proteins has not been addressed in these cells. A slow rate of inactivation of E1 in vivo, and significant rate of cell death following long incubation periods at the restrictive temperature, make this question difficult to address experimentally. In the present study we show that incubation of the cells for 1 h at 43 degrees C leads to rapid inactivation of ubiquitin conjugation in the intact mutant cell. Following heat treatment, the cells can be incubated at 39.5 degrees C for at least 6 h in order to study the possible involvement of the system in the turnover of long-lived cellular proteins. The viability of the cells is excellent at the end of the incubation. Following extraction, we have shown that inactivation occurs much more rapidly in the cell lysate in vitro than in the intact cell (t1/2 of 10 min compared to 4 h at 39.5 degrees C). The enzyme from both the mutant cell and the wild-type cell was purified to homogeneity. The molecular mass of the native enzyme from both cells is approximately 220 kDa with a subunit molecular mass of about 108 kDa. The structure of the enzyme is therefore very similar to that purified from rabbit reticulocytes. At the permissive temperature, the enzymes from both cells catalyze ATP-PPi and ATP-AMP exchange in similar kinetics. However, at the high temperature, the mutated enzyme is at least 7-fold less stable than the wild-type enzyme.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Ornithine decarboxylase (ODC) is feedback regulated by polyamines. ODC antizyme mediates this process by forming a complex with ODC and enhancing its degradation. It has been reported that polyamines induce ODC antizyme and inhibit ODC activity. Since exogenous polyamines can be converted to each other after they are taken up into cells, we used an inhibitor of S-adenosylmethionine decarboxylase, diethylglyoxal bis(guanylhydrazone) (DEGBG), to block the synthesis of spermidine and spermine from putrescine and investigated the specific roles of individual polyamines in the regulation of ODC in intestinal epithelial crypt (IEC-6) cells. We found that putrescine, spermidine, and spermine inhibited ODC activity stimulated by serum to 85, 46, and 0% of control, respectively, in the presence of DEGBG. ODC activity increased in DEGBG-treated cells, despite high intracellular putrescine levels. Although exogenous spermidine and spermine reduced ODC activity of DEGBG-treated cells close to control levels, spermine was more effective than spermidine. Exogenous putrescine was much less effective in inducing antizyme than spermidine or spermine. High putrescine levels in DEGBG-treated cells did not induce ODC antizyme when intracellular spermidine and spermine levels were low. The decay of ODC activity and reduction of ODC protein levels were not accompanied by induction of antizyme in the presence of DEGBG. Our results indicate that spermine is the most, and putrescine the least, effective polyamine in regulating ODC activity, and upregulation of antizyme is not required for the degradation of ODC protein.  相似文献   

16.
The induction of thermotolerance was studied in a temperature sensitive mouse cell line, ts85, and results were compared with those for the wild-type FM3A cells. At the nonpermissive temperature of 39 degrees C, ts85 cells are defective in the degradation of short-lived abnormal proteins, apparently because of loss of activity of a ubiquitin-activating enzyme. The failure of the ts85 cells to develop thermotolerance to 41-43 degrees C after incubation at the nonpermissive temperature of 39 degrees C correlated with the failure of the cells to degrade short-lived abnormal proteins at 39 degrees C. However, the failure of the ts85 cells to develop thermotolerance to 43 degrees C during incubation at 33 degrees C after either arsenite treatment or heating at 45.5 degrees C for 6 or 10 min did not correlate with protein degradation rates. Although the rate of degrading abnormal protein was reduced after heating at 45.5 degrees C for 10 min, the rates were normal after arsenite treatment or heating at 45.5 degrees C for 6 min. In addition, when protein synthesis was inhibited with cycloheximide both during incubation at 33 degrees C or 39 degrees C and during heating at 41-43 degrees C, resistance to heating was observed, but protein degradation rates at 39 degrees C or 43 degrees C were not altered by the cycloheximide treatment. Therefore, there is apparently no consistent relationship between rates of degrading abnormal proteins and the ability of cells to develop thermotolerance and resistance to heating in the presence of cycloheximide.  相似文献   

17.
Ubiquitin, a 76 residue protein, occurs in eucaryotic cells either free or covalently joined to a variety of protein species. Previous work suggested that ubiquitin may function as a signal for attack by proteinases specific for ubiquitin-protein conjugates. We show that the mouse cell line ts85 , a previously isolated cell cycle mutant, is temperature-sensitive in ubiquitin-protein conjugation, and that this effect is due to the specific thermolability of the ts85 ubiquitin-activating enzyme (E1). From E1 thermoinactivation kinetics in mixed (wild-type plus ts85 ) extracts, and from copurification of the determinant of E1 thermolability with E1 in ubiquitin-affinity chromatography, we conclude that the determinant of E1 thermolability is contained within the E1 polypeptide. ts85 cells fail to degrade otherwise short-lived intracellular proteins at the nonpermissive temperature (accompanying paper), demonstrating that degradation of the bulk of short-lived proteins in this higher eucaryotic cell proceeds through a ubiquitin-dependent pathway. We discuss possible roles of ubiquitin-dependent pathways in DNA transactions, the cell cycle, and the heat shock response.  相似文献   

18.
Ornithine decarboxylase (ODC), the key enzyme of polyamine biosynthesis, becomes upregulated during cell proliferation and transformation. Here we show that intact ODC activity is needed for the acquisition of a transformed phenotype in rat 2R cells infected with a temperature-sensitive mutant of Rous sarcoma virus. Addition of the ODC inhibitor alpha-difluoromethyl ornithine (DFMO) to the cells (in polyamine-free medium) before shift to permissive temperature prevented the depolymerization of filamentous actin and morphological transformation. Polyamine supplementation restored the transforming potential of pp60v-src. DFMO did not interfere with the expression of pp60v-src or its in vitro tyrosine kinase activity. The tyrosine phosphorylation of most cellular proteins, including ras GAP, did not either display clear temperature- or DFMO-sensitive changes. A marked increase was, however, observed in the tyrosine phosphorylation of phosphatidylinositol 3-kinase and proteins of 33 and 36 kD upon the temperature shift, and these hyperphosphorylations were partially inhibited by DFMO. A DFMO-sensitive increase was also found in the total phosphorylation of calpactins I and II. The well-documented association of GAP with the phosphotyrosine-containing proteins p190 and p62 did not correlate with transformation, but a novel 42-kD tyrosine phosphorylated protein was complexed with GAP in a polyamine- and transformation-dependent manner. Further, tyrosine phosphorylated proteins of 130, 80/85, and 36 kD were found to coimmunoprecipitate with pp60v-src in a transformation-related manner. Altogether, this model offers a tool for sorting out the protein phosphorylations and associations critical for the transformed phenotype triggered by pp60v- src, and implicates a pivotal role for polyamines in cell transformation.  相似文献   

19.
The effect of restrictive temperature on ubiquitin conjugation activity has been studied in cells of ts20, a temperature-sensitive cell cycle mutant of the Chinese hamster cell line E36. Ts20 is arrested in early G2 phase at nonpermissive temperature. Immunoblotting with antibodies to ubiquitin conjugates shows that conjugates disappear rapidly at restrictive temperatures in ts20 mutant but not in wild type E36 cells. The incorporation of 125I-ubiquitin into permeabilized ts20 cells is temperature-sensitive. Addition of extracts of another G2 phase mutant, FM3A ts85, with a temperature-sensitive ubiquitin activation enzyme (E1), to permeabilized ts20 cells at restrictive temperatures fails to complement their ubiquitin ligation activity. This indicates that the lesions in the two mutants are similar. Purified E1 from reticulocytes restores the conjugation activity of heat-inactivated permeabilized ts20 cells. Ubiquitin conjugation activity of cell-free extracts of ts20 cells was temperature-sensitive and could be restored by adding purified reticulocyte E1. Purified reticulocyte E2 or E3, on the other hand, did not restore the ubiquitin conjugation activity of heat-treated ts20 extracts. These results are consistent with the conclusion that ts20 has temperature-sensitive ubiquitin-activating enzyme (E1). The fact that two E1 mutants (ts20 and ts85) derived from different cell lines are arrested at the S/G2 boundary at restrictive temperatures strongly indicates that ubiquitin ligation is necessary for passage through this part of the cell cycle. The temperature thresholds of heat shock protein synthesis of ts20 and wild type E36 cells were identical. The implications of these findings with respect to a suggested role of ubiquitin in coupling between protein denaturation and the heat shock response are discussed.  相似文献   

20.
Ornithine decarboxylase (ODC) is extremely unstable in mammalian cells. This unusual characteristic facilitates rapid fluctuations in the activity of this enzyme in response to variations in its biosynthesis. Unfortunately, very little is known about the mechanism or regulation of this ODC-specific proteolytic pathway. This study describes the production and characterization of a variant of the rat hepatoma HTC cell line that is strikingly deficient in this pathway. This cell variant was induced by selection for growth in stepwise increasing concentrations (up to 10 mM) of the irreversible ODC inhibitor, alpha-difluoromethylornithine (DFMO). Resistance to this inhibitor appears to result from a combination of elevated (10X) ODC biosynthesis and inhibited degradation, producing greater than a 2000-fold increase in the level of ODC protein. In these variant cells (DH23b) inhibition of protein synthesis by cycloheximide did not result in rapid loss of enzyme activity or ODC protein determined by radioimmunoassay. Pulse-chase studies with [35S]methionine confirmed that this enzyme was not preferentially degraded, even when spermidine was added to the media. ODC purified from the variant cells was found to be identical to the control cell enzyme in size, isoelectric point, substrate binding kinetics, and sensitivity to the inhibitor DFMO. Also, as in the control cells, a major fraction of the ODC molecules extracted from DH23b cells was shown to be phosphorylated on a serine residue. The inability to detect physical or kinetic differences between the parent and the variant cell ODC suggests that the unusual stability of ODC in this cell is associated with a defect in a cellular mechanism for ODC-specific degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号