首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
以戊二醛交联尼龙6膜载体固定化面包酵母DX213,采用固定化酵母细胞催化2-辛酮不对称还原得到(R)-2-辛醇。系统考察了有机溶剂、反应时间、pH、底物、辅助底物和热处理等因素对反应的产率和光学选择性的影响。结果表明,上述因素对酵母细胞催化不对称合成(R)-2-辛醇反应均有显著影响。二氯甲烷为该反应最适有机溶剂,在固定化细胞57 g/L(50℃预热50 min),水相与有机溶剂相体积比4/1,pH 7.0,初始2-辛酮浓度为60 mmoL/L(分别在反应0,10,17 h等分添加),蔗糖5.7 g/L和28℃条件下反应48 h,(R)-2-辛醇的产率和e.e.值分别达到89.3%和96.8%。  相似文献   

2.
生命与手性密切相关,凡涉及到生命现象和生理活性物质几乎都离不开有关分子的空间立体构型问题,不同构型的手性分子具有不同的生理活性。利用酶反应的立体专一性,用生物转化法取代部分传统的化学方法,可以很方便地制备具有所需手性中心的化合物。因此,近年来生物转化...  相似文献   

3.
研究了葡萄酒酵母不对称还原制备(R)-扁桃酸的转化,并将其放大至反应罐进行小试研究。通过转化条件的优化,在密闭条件下,当底物质量浓度为10g/L时,苯甲酰甲酸的产率达到72%,扁桃酸的对应过量值(e.e)值达到99%以上。实验发现,该微生物具有很好的催化稳定性,全细胞经过10批次反应,产率无明显降低,产物对映体过量值均高于98%。转化反应放大至7L反应罐体系后,S.ellipsoideus,仍然具有良好的催化性能,产率提高到81%,e.e值保持在99%。  相似文献   

4.
从 11株微生物中筛选出 4株具有不对称还原 2′ 氯 苯乙酮能力的酵母 ,其中酿酒酵母B5的还原产率与对映体选择性最佳。确定了酿酒酵母B5对 2′ 氯 苯乙酮还原的最佳反应时间为 2 4h ;最佳pH 8 0 ;最佳反应温度为2 5℃ ;最佳共底物为 5 % (体积比 )乙醇。同时研究了底物浓度、微生物的量、微生物的培养条件等对反应产率和立体选择性的影响。细胞浓度为 10 75mg mL(细胞干重 反应体积 )的酿酒酵母B5可将 6 47mmol L的 2′ 氯 苯乙酮10 0 %地转化为R 2′ 氯 1 苯乙醇 ,其对映体选择性为 10 0 %。酿酒酵母B5可重复利用的特点可提高产物的产量。  相似文献   

5.
从11株微生物中筛选出4株具有不对称还原2′-氯-苯乙酮能力的酵母,其中酿酒酵母B5的还原产率与对映体选择性最佳。确定了酿酒酵母B5对2′-氯-苯乙酮还原的最佳反应时间为24h;最佳pH 8.0;最佳反应温度为25℃;最佳共底物为5%(体积比)乙醇。同时研究了底物浓度、微生物的量、微生物的培养条件等对反应产率和立体选择性的影响。细胞浓度为10.75mg/mL(细胞干重/反应体积)的酿酒酵母B5可将647mmol/L的2′-氯-苯乙酮100%地转化为R-2′-氯-1-苯乙醇,其对映体选择性为100%。酿酒酵母B5可重复利用的特点可提高产物的产量。  相似文献   

6.
羰基不对称还原作为合成手性醇的重要方法,已成为近年来有机合成的研究热点。与传统化学法相比,利用还原酶催化前手性羰基化合物的不对称还原具有显著优势。介绍了还原酶的来源与形式,对完整细胞还原酶与游离还原酶在手性药物不对称合成中的应用进行了简要综述。  相似文献   

7.
面包酵母催化不对称合成4-氯-(R)-3-羟基丁酸乙酯   总被引:1,自引:0,他引:1  
以4 氯乙酰乙酸乙酯为原料,以面包酵母为手性生物催化剂,选择性合成光学活性4 氯 (R) 3 羟基丁酸乙酯。经IR、GC MS、1HNMR和旋光度测定,表明所得产品的结构与预期的结构一致。分别考察了面包酵母用量、葡萄糖浓度、底物投入量、pH值、反应时间以及反应温度等因素对产品比旋光度的影响。结果表明,4 氯乙酰乙酸乙酯不对称生物还原反应的适宜条件为:面包酵母6 0 0g/L、葡萄糖2 0g/L、反应温度34℃、底物加量16mL/L、反应时间4 8h、pH为5 ,产品的比旋光度为[α]2 0D = 13 9°。  相似文献   

8.
固定化细胞有机相催化不对称还原β-羰基酯   总被引:1,自引:0,他引:1  
将酵母细胞用海藻酸钙包埋后用于有机相催化不对称还原4-氯乙酰乙酸乙酯制备光学活性的4-氯-3-羟基丁酸乙酯,从中筛选得到具有较高立体选择性和还原能力的菌株假丝酵母SW0401,将此菌株的细胞固定化细胞作为研究对象,系统考察了固定化条件、固定化细胞大小、反应溶剂、初始底物浓度、辅助底物、固定化细胞热处理和抑制剂对还原反应的影响。结果表明,上述因素对反应的摩尔转化率和产物(S)-CHBE光学纯度有显著影响。固定化时所用缓冲液的pH值为7.0时和固定化细胞颗粒平均直径为2.5mm较合适,以正己烷为反应介质时反应的摩尔转化率和产物光学纯度最优,初始底物浓度以54.7mmol/L为宜,辅助底物以1-己醇为佳。对固定化细胞的热处理和添加抑制剂烯丙醇均能够明显改善产物的光学纯度,但对提高摩尔转化率有负面影响。  相似文献   

9.
阿托伐他汀可通过抑制HMG-CoA还原酶与底物的结合来抑制胆固醇的合成,而 (R)-3-羟基-5-邻苯二甲酰亚胺基戊酸乙酯是阿托伐他汀合成的重要中间体。通过对实验室保藏菌种进行筛选,得到一株巴氏毕赤酵母X-33可将5-邻苯二甲酰亚胺-3-氧代戊酸乙酯还原为 (R)-3-羟基-5-邻苯二甲酰亚胺基戊酸乙酯。在磷酸盐缓冲液体系中考察了初始底物浓度、反应时间、辅助底物、葡萄糖添加量、pH、温度等因素对产物收率和对映体选择性的影响,获得了较佳的反应条件。选择底物投料量为7 g/L时,当菌体浓度120 g/L,葡萄  相似文献   

10.
不对称生物还原制备手性药物   总被引:2,自引:0,他引:2  
近年来手性药物的发展非常迅速,手性合成药物的出现不仅提高了药效,而且有利于克服现行消旋体药物在治疗上的副作用。本文介绍了用生物还原法制备高光学纯度手性醇前体的一些方法。  相似文献   

11.
Bacillus sp. Z018, a novel strain producing epoxide hydrolase, was isolated from soil. The epoxide hydrolase catalyzed the stereospecific hydrolysis of (R)-phenyl glycidyl ether to generate (R)-3-phenoxy-1,2-propanediol. Epoxide hydrolase from Bacillus sp. Z018 was inducible, and (R)-phenyl glycidyl ether was able to act as an inducer. The fermentation conditions for epoxide hydrolase were 35°C, pH 7.5 with glucose and NH4Cl as the best carbon and nitrogen source, respectively. Under optimized conditions, the biotransformation yield of 45.8% and the enantiomeric excess of 96.3% were obtained for the product (R)-3-phenoxy-1,2-propanediol.  相似文献   

12.
The influence of using an anaerobically pre-treated baker’s yeast on the reduction of (R)-1-hydroxy-1-phenyl-2-propanone (2) and (S)-2-hydroxy-1-phenyl-1-propanone (4) was investigated in comparison with non-pre-treated baker’s yeast reduction (control experiments). We observed that there is no significant difference between the anaerobically pre-treated yeast and the control experiment on the reduction rates of 2. On the other hand, the rate of reduction of 4 mediated by the anaerobically pre-treated yeast is much slower than the aerobic experiment. To improve the regioselectivity of reduction of 1-phenyl-1,2-propanedione (1), a baker’s yeast suspension was pre-treated with nitrogen (60 min) followed by oxygen (20 min), to give 2 in 28–31% of yields (96% e.e.) and 3 in 42–62% (>99% e.e.) after 75–90 min of reaction.  相似文献   

13.
Compared to sugars, a major advantage of using glycerol as a feedstock for industrial bioprocesses is the fact that this molecule is more reduced than sugars. A compound whose biotechnological production might greatly profit from the substrate's higher reducing power is 1,2-propanediol (1,2-PDO). Here we present a novel metabolic engineering approach to produce 1,2-PDO from glycerol in S. cerevisiae. Apart from implementing the heterologous methylglyoxal (MG) pathway for 1,2-PDO formation from dihydroxyacetone phosphate (DHAP) and expressing a heterologous glycerol facilitator, the employed genetic modifications included the replacement of the native FAD-dependent glycerol catabolic pathway by the 'DHA pathway' for delivery of cytosolic NADH and the reduction of triosephosphate isomerase (TPI) activity for increased precursor (DHAP) supply. The choice of the medium had a crucial impact on both the strength of the metabolic switch towards fermentation in general (as indicated by the production of ethanol and 1,2-PDO) and on the ratio at which these two fermentation products were formed. For example, virtually no 1,2-PDO but only ethanol was formed in synthetic glycerol medium with urea as the nitrogen source. When nutrient-limited complex YG medium was used, significant amounts of 1,2-PDO were formed and it became obvious that the concerted supply of NADH and DHAP are essential for boosting 1,2-PDO production. Additionally, optimizing the flux into the MG pathway improved 1,2-PDO formation at the expense of ethanol. Cultivation of the best-performing strain in YG medium and a controlled bioreactor set-up resulted in a maximum titer of > 4 g L−1 1,2-PDO which, to the best of our knowledge, has been the highest titer of 1,2-PDO obtained in yeast so far. Surprisingly, significant 1,2-PDO production was also obtained in synthetic glycerol medium after changing the nitrogen source towards ammonium sulfate and adding a buffer.  相似文献   

14.
Aims: To assess the effects of inoculation of Lactobacillus buchneri on the ensiling properties and aerobic stability of maize silage. Methods and Results: Chopped whole crop maize was ensiled in 0.5 litre airtight polyethylene bottles (0.4 kg per bottle) and in double-layered, thin polyethylene bags (15 kg per bag), with or without inoculation of Lact. buchneri. The silos were stored for two to four months and the chemical composition, microbial numbers and aerobic stability were determined. Inoculation lowered lactic acid and yeasts, and increased acetic acid and pH value, resulting in improved aerobic stability of the silages. Inoculated silages produced 1,2-propanediol, the content of which increased as ensiling was prolonged, and nearly 50 g kg-1 dry matter had accumulated after four months of storage. The effects of inoculation, however, were much less pronounced in silages prepared in bags. Mannitol was found in all silages; the production was lowered by Lact. buchneri treatment and appeared to be unrelated to the accumulation of 1,2-propanediol. Conclusions: Inoculation of Lact. buchneri occasionally causes accumulation of 1,2-propanediol in silages without further degradation into propionic acid and 1-propanol. Significance and Impact of the Study: Substantial amounts of 1,2-propanediol could be consumed by ruminants when fed on silages inoculated with Lact. buchneri. In addition to increasing acetic acid, attention needs to be paid to 1,2-propanediol because the two fermentation products might affect the intake and utilization of silage-based diets.  相似文献   

15.
A bacterium capable of assimilating 3-chloro-1,2-propanediol was isolated from soil by enrichment culture. The strain was identified as Alcaligenes sp. by taxonomic studies. The crude extracts of the cells had dehalogenating activities and converted various halohydrins to the corresponding epoxides. 3-Chloro-1,2-propanediol was degraded stereospecifically by the strain, liberating chloride ion. The residual isomer was found to be the (S)-form (99.4% enantiomeric excess). (S)-3-Chloro-1,2-propanediol was obtained from the racemate by use of this strain in 38% yield, and (S)-glycidol (99.4% enantiomeric excess) was subsequently synthesized from the obtained (S)-3-chloro-1,2-propanediol by alkaline treatment.  相似文献   

16.
An (R)-specific carbonyl reductase from Candida parapsilosis CCTCCM203011 (CprCR) was shown to catalyze the asymmetric reduction of 2-hydroxyacetophenone to (R)-1-phenyl-1,2-ethanediol (PED), which is a critical chiral building block in organic synthesis. The gene (rcr) encoding CprCR was cloned based on the amino acid sequences of tryptic fragments of the enzyme. Sequence analysis revealed that rcr is comprised of 1008 nucleotides encoding a 35 977 Da polypeptide, and shares similarity to proteins of the medium-chain dehydrogenase/reductase (MDR) superfamily. Recombinant rcr expressed in Escherichia coli showed a specific 2-hydroxyacetophenone-reducing activity. Using rcr expressing cells, (R)-PED was obtained by asymmetric reduction, which is complementary in enantiomeric configuration to (S)-PED obtained by using whole cells of C. parapsilosis. After optimization of reaction conditions, (R)-PED was produced at 95.5% enantiomeric excess with a yield of 92.6% when isopropanol was used for cofactor regeneration.  相似文献   

17.
1,2-Propanediol (1,2-PD) is a major commodity chemical currently derived from propylene. Previously, we have demonstrated the production of enantiomerically pure (R)-1,2-propanediol from glucose by an engineered E. coli expressing genes for NADH-linked glycerol dehydrogenase and methylglyoxal synthase. In this work, we investigate three methods to improve 1,2-PD in E. coli. First, we investigated improving the host by eliminating production of a byproduct, lactate. To do this, we constructed strains with mutations in two enzymes involved in lactate production, lactate dehydrogenase and glyoxalase I. (Surprisingly, when mutations were made in its ability to produce lactate, one strain of E. coli [MM294], produced a small amount of 1,2-PD without any added genes.) Second, we constructed a complete pathway to 1,2-PD from the glycolytic intermediate, dihydroxyacetone phosphate. Our previous 1, 2-PD producing strains relied on at least one endogenous E. coli activity and only produced 0.7 g/L of 1,2-PD. The complete pathway involved the coexpression of methylglyoxal synthase (mgs), glycerol dehydrogenase (gldA), and either yeast alcohol dehydrogenase (adhI) or E. coli 1,2-propanediol oxidoreductase (fucO). Third, we investigated bioprocessing improvements by carrying out a fed-batch fermentation with the best engineered strain (expressing mgs, gldA, and fucO). A final titer of 4.5 g/L of (R)-1,2-PD was produced, with a final yield of 0.19 g of 1,2-PD per gram of glucose consumed. This work provides a basis for further strain and process improvement.  相似文献   

18.
Clostridium sphenoides was grown on glucose in a phosphate-limited medium. Below 80 M phosphate two new products were formed in addition to ethanol, acetate, H2 and CO2: d(-)-1,2-propanediol and d(-)-lactate. These compounds were apparently synthesized via the methylglyoxal by-pass. The activity of the enzymes involvedmethylglyoxal synthase, methylglyoxal reductase, 1,2-propanediol dehydrogenase and glyoxalase-could be demonstrated in cell extracts of C. sphenoides. The formation of 1,2-propanediol from methylglyoxal proceeded via lactaldehyde. The enzyme methylgloxal synthase was inhibited by phosphate. Clostridium glycolicum, C. nexile, C. cellobioparum, C. oroticum and C. indolis did not produce propanediol under the condition of phosphate limitation. The latter two species, however, formed d(-)-lactate.Dedicated to Prof. Dr. G. Drews on the occasion of his 60th birthday  相似文献   

19.
A mathematic model was developed to simulate the asymmetric reduction of ethyl 4-chloro acetoacetate (ECA) by bakers’ yeast. The model of the process considered the kinetics of enzymatic reaction, the effect of substrate inhibition and the spontaneous degradation of the substrate. The reaction kinetics of the ECA degradation was determined empirically. The inhibition by the substrate was analyzed and the apparent kinetic constants of the overall enzymatic reaction, of the S-enzymes and of the R-enzymes, were estimated individually. The system of equations was solved numerically using the Runge–Kutta method. The close correlation between the predicted and experimental results concerning product formation, reaction yield and optical purity of product under various substrate concentrations, implied the reliability of the established model.  相似文献   

20.
Synechocystis sp. PCC 6803 PG is a cyanobacterial strain capable of synthesizing 1,2-propanediol from carbon dioxide (CO2) via a heterologous three-step pathway and a methylglyoxal synthase (MGS) originating from Escherichia coli as an initial enzyme. The production window is restricted to the late growth and stationary phase and is apparently coupled to glycogen turnover. To understand the underlying principle of the carbon partitioning between the Calvin-Benson-Bassham (CBB) cycle and glycogen in the context of 1,2-propanediol production, experiments utilizing 13C labeled CO2 have been conducted. Carbon fluxes and partitioning between biomass, storage compounds, and product have been monitored under permanent illumination as well as under dark conditions. About one-quarter of the carbon incorporated into 1,2-propanediol originated from glycogen, while the rest was derived from CO2 fixed in the CBB cycle during product formation. Furthermore, 1,2-propanediol synthesis was depending on the availability of photosynthetic active radiation and glycogen catabolism. We postulate that the regulation of the MGS from E. coli conflicts with the heterologous reactions leading to 1,2-propanediol in Synechocystis sp. PCC 6803 PG. Additionally, homology comparison of the genomic sequence to genes encoding for the methylglyoxal bypass in E. coli suggested the existence of such a pathway also in Synechocystis sp. PCC 6803. These findings are critical for all heterologous pathways coupled to the CBB cycle intermediate dihydroxyacetone phosphate via a MGS and reveal possible engineering targets for rational strain optimization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号