首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
S-Adenosylmethionine serves as a methyl group donor in numerous transmethylation reactions and plays a role in the biosynthesis of polyamines and ethylene. We have cloned and sequenced an S-adenosylmethionine synthetase gene (sam-1) of Arabidopsis thaliana. The deduced polypeptide sequence of the enzyme has extensive homology with the corresponding enzymes of Escherichia coli and yeast. Genomic hybridization indicates the presence of two adenosylmethionine synthetase genes per haploid Arabidopsis genome. RNA gel blot analysis shows that adenosylmethionine synthetase mRNA levels are high in stems and roots, correlating well with the higher enzyme activity in stems, compared with leaves. Histochemical analysis of transgenic Arabidopsis plants transformed with a chimeric beta-glucuronidase gene, under the control of 748-base pair 5' sequences of the sam-1 gene, demonstrates that the gene is expressed primarily in vascular tissues. In addition, high expression was observed in sclerenchyma and in the root cortex. A hypothesis for the strong cellular preference in the expression of the sam-1 gene is presented.  相似文献   

3.
4.
K D Pruitt  R L Last 《Plant physiology》1993,102(3):1019-1026
Expression of the two Arabidopsis thaliana genes encoding tryptophan synthase beta (TSB1 and TSB2) was investigated by gene-specific RNA blot hybridization and reporter gene analysis. TSB1 mRNA abundance varies in an organ-specific manner, whereas TSB2 mRNA does not. Quantitative analysis of transgenic plants expressing TSB1 and TSB2 translational fusions to the beta-glucuronidase (GUS) gene (gusA) indicates that TSB1-GUS activity is 15-fold higher than TSB2-GUS. Histochemical analysis of these transgenic A. thaliana plants indicates that GUS expression occurs in a developmentally regulated manner. GUS activity driven from the TSB1 promoter is predominantly associated with the stem, root tips, foliar vasculature, mesophyll cells, base of developing seed pods, and tips of anther filaments in plants 15 d and older. Sections through the vegetative stem reveal GUS staining in all cell types including the shoot apical meristem. Although TSB2-GUS expression is consistently detected in root tips and at the base of developing seed pods, it is observed later in plant development than is TSB1-GUS expression.  相似文献   

5.
6.
7.
8.
9.
从水稻基因组文库中筛选得到一个水稻GST基因,命名为OsGSTL1.半定量RT-PCR分析表明OsGSTL1基因的表达不受绿磺隆、乙烯利、脱落酸、水杨酸和茉莉酸甲酯的诱导,因此该基因可能与植物抗逆性无关.为了研究OsGSTL1启动子在植物体内的表达特性,将OsGSTL1起始位点5'端上游不同长度的调控序列与报告基因GUS融合,并在洋葱表皮瞬间表达和拟南芥中稳定表达.研究表明:在洋葱表皮细胞中,160bp及更长的上游调控序列均能启动GUS基因的表达;而在转基因拟南芥中,含有2155 bp的上游序列的PGZ2.1::GUS具有时空表达的特性,在转基因的早期幼苗中GUS基因在子叶中特异性表达,但在根中没有表达;而在幼苗生长的后期,根、茎、叶中都有少量的表达.但包含1 224 bp的上游序列的PGZ1.2::GUS却表现为组成型表达的特性.由此推测,OsGSTL1启动子启动的基因表达可能与幼苗的营养代谢相关;而OsGSTL1启动子的时空表达相关元件可能位于OsGSTL1翻译起始位点5'端上游-2155 bp至-1224 bp范围内.  相似文献   

10.
There are three non-allelic isogenes encoding phosphoribosylanthranilate isomerase (PAI) in Arabidopsis thaliana. The expression plasmids were constructed by fusion of the GUS reporter gene to the three PAI promoters with or without the 5' region encoding PAI N-terminal polypeptides and transferred into Arabidopsis plants by Agrobacterium tumefaciens. Analysis of GUS activity revealed that the PAI 5' coding region was necessary for high expression of GUS activity. GUS activity in transgenic plants transformed with the expression plasmids containing the 5' coding region of PAI1 or PAI3 was 60—100-fold higher than that without the corresponding 5' region. However, the effect of 5' coding region of PAI2 gene on the GUS activity was very small (only about 1 time difference). The GUS histochemical staining showed a similar result as revealed by GUS activity assay. It was expressed in the mesophyll cells and guard cells, but not in the epidermic cells, indicating that the N-terminal polypeptides encoded by t  相似文献   

11.
Promoters of phosphate transporter genes MtPT1 and MtPT2 of Medicago truncatula were isolated by utilizing the gene-space sequence information and by screening of a genomic library, respectively. Two reporter genes, beta-glucuronidase (GUS) and green fluorescent protein (GFP) were placed under the control of the MtPT1 and MtPT2 promoters. These chimeric transgenes were introduced into Arabidopsis thaliana and transgenic roots of M. truncatula, and expression patterns of the reporter genes were assayed in plants grown under different phosphate (Pi) concentrations. The expression of GUS and GFP was only observed in root tissues, and the levels of expression decreased with increasing concentrations of Pi. GUS activities in roots of transgenic plants decreased 10-fold when the plants were transferred from 10 microM to 2 mM Pi conditions, however, when the plants were transferred back to 10 microM Pi conditions, GUS expression reversed back to the original level. The two promoters lead to different expression patterns inside root tissues. The MtPT1 promoter leads to preferential expression in root epidermal and cortex cells, while MtPT2 promoter results in strong expression in the vascular cylinder in the center of roots. Promoter deletion analyses revealed possible sequences involved in root specificity and Pi responsiveness. The promoters are valuable tools for defined engineering of plants, particularly for root-specific expression of transgenes.  相似文献   

12.
Introns are important sequence elements that modulate the expression of genes. Using the GUS reporter gene driven by the promoter of the rice (Oryza sativa L.) polyubiquitin rubi3 gene, we investigated the effects of the 5' UTR intron of the rubi3 gene and the 5' terminal 27 bp of the rubi3 coding sequence on gene expression in stably transformed rice plants. While the intron enhanced GUS gene expression, the 27-bp fused to the GUS coding sequence further augmented GUS expression level, with both varying among different tissues. The intron elevated GUS gene expression mainly at mRNA accumulation level, but also stimulated enhancement at translational level. The enhancement on mRNA accumulation, as determined by realtime quantitative RT-PCR, varied remarkably with tissue type. The augmentation by the intron at translational level also differed by tissue type, but to a lesser extent. On the other hand, the 27-bp fusion further boosted GUS protein yield without affecting mRNA accumulation level, indicating stimulation at translation level, which was also affected by tissue type. The research revealed substantial variation in the magnitudes of intron-mediated enhancement of gene expression (IME) among tissues in rice plants and the importance of using transgenic plants for IME studies.  相似文献   

13.
根据wml1 5‘端启动子区域内部的限制性酶切位点,分离得到长度分别为1573bp、1197bp、896bp、795bp的片段,并与GUS基因融合构成转录融合体。用农杆菌介导法将这些片段转入番茄中,对转基因植株进行GUS活性分析,发现1573bp、1197bp、896bp的片段都能诱导GUS在授粉后15天、30天、45天的番茄果实中表达,且表达强度随果实发育而增强,而在叶片、茎、根中未检测到GUS基因表达。而795bp的片段转化的植株中则未检测到GUS基因表达。推定857bp至957bp之间的序列中包含了启动子行使正常功能必需的元件。  相似文献   

14.
根据wml1 5’端启动子区域内部的限制性酶切位点,分离得到长度分别为1573bp、1197bp、896bp、795bp的片段,并与GUS基因融合构成转录融合体。用农杆菌介导法将这些片段转入番茄中,对转基因植株进行GUS活性分析,发现1573bp、1197bp、896bp的片段都能诱导GUS在授粉后15天、30天、45天的番茄果实中表达,且表达强度随果实发育而增强,而在叶片、茎、根中未检测到GUS基因表达。而795bp的片段转化的植株中则未检测到GUS基因表达。推定857bp至957bp之间的序列中包含了启动子行使正常功能必需的元件。  相似文献   

15.
16.
Liu XY  Wuyun TN  Zeng HY 《Gene》2012,505(2):246-253
The 5'-flanking region of the S(12)-, S(13)-, S(21)-RNase with a length of 854 bp, 1448 bp and 1137 bp were successfully isolated by TAIL-PCR from genomic DNA from 'Jinhua', 'Maogong' (Pyrus pyrifolia) and 'Yali' (Pyrus bretschneideri) genomic DNA. Sequence alignment and analysis of S(13)-, S(12)-, S(21)-RNase gene promoter sequences with S(2)-, S(3)-, S(4)-, S(5)-RNase 5'-flanking sequences indicated that a homology region of about 240 bp exists in the regions just upstream of the putative TATA boxes of the seven Chinese/Japanese pear S-RNase genes. Phylogenetic tree suggests that the homology region between the Chinese/Japanese pear and apple S-RNase gene promoter regions reflects the divergence of S-RNase gene was formed before the differentiation of subfamilies. Full length and a series of 5'-deletion fragments-GUS fusions were constructed and introduced into Arabidopsis thaliana plants. GUS activity were detected in S(12)-pro-(1 to 5)-GUS-pBll01.2 transgenic pistils and progressively decreased from S(12)-pro-1-GUS-pBI l01.2 to S(12)-pro-5-GUS-pBll01.2. No GUS activity was detected in S(12)-pro-6-GUS-pBll01.2 transgenic pistil and other tissues of non-transformants and all transgenic plants. The result suggested S(12)-RNase promoter is pistil specific expression promoter.  相似文献   

17.
番茄rbcS3A启动子控制的GUS融合基因在转基因水稻中的表达   总被引:1,自引:0,他引:1  
为研究不同启动子用于转基因水稻,克隆了番茄Rubisco小亚基rbcS3A基因的5′上游调控区,构建了由rbcS3A启动子引导的GUS嵌合基因,并经农杆菌介导导入到水稻中。对转基因水稻植株中GUS活性的定性与定量测定结果表明,rbcS3A启动子可驱动GUS报告基因在转基因水稻植株茎和叶组织中高效表达,而在根和种子等器官中不表达或表达活性极弱,表现出一定的组织特异性。在转基因水稻中,番茄rbcS3A启动子驱动外源基因的表达不受光诱导。  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号