首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A delay in intracellular degradation of the mutant alpha(1)-antitrypsin (alpha(1)AT)Z molecule is associated with greater retention within the endoplasmic reticulum (ER) and susceptibility to liver disease in a subgroup of patients with alpha(1)AT deficiency. Recent studies have shown that alpha(1)ATZ is ordinarily degraded in the ER by a mechanism that involves the proteasome, as demonstrated in intact cells using human fibroblast cell lines engineered for expression of alpha(1)ATZ and in a cell-free microsomal translocation assay system programmed with purified alpha(1)ATZ mRNA. To determine whether the ubiquitin system is required for proteasomal degradation of alpha(1)ATZ and whether specific components of the ubiquitin system can be implicated, we have now used two approaches. First, we overexpressed a dominant-negative ubiquitin mutant (UbK48R-G76A) by transient transfection in the human fibroblast cell lines expressing alpha(1)ATZ. The results showed that there was marked, specific, and selective inhibition of alpha(1)ATZ degradation mediated by UbK48R-G76A, indicating that the ubiquitin system is at least in part involved in ER degradation of alpha(1)ATZ. Second, we subjected reticulocyte lysate to DE52 chromatography and tested the resulting well-characterized fractions in the cell-free system. The results showed that there were both ubiquitin-dependent and -independent proteasomal mechanisms for degradation of alpha(1)ATZ and that the ubiquitin-conjugating enzyme E2-F1 may play a role in the ubiquitin-dependent proteasomal mechanism.  相似文献   

2.
Although there is evidence for specific subcellular morphological alterations in response to accumulation of misfolded proteins in the endoplasmic reticulum (ER), it is not clear whether these morphological changes are stereotypical or if they depend on the specific misfolded protein retained. This issue may be particularly important for mutant secretory protein alpha(1)-antitrypsin (alpha(1)AT) Z because retention of this mutant protein in the ER can cause severe target organ injury, the chronic hepatitis/hepatocellular carcinoma associated with alpha(1)AT deficiency. Here we examined the morphological changes that occur in human fibroblasts engineered for expression and ER retention of mutant alpha(1)ATZ and in human liver from three alpha(1)AT-deficient patients. In addition to marked expansion and dilatation of ER, there was an intense autophagic response. Mutant alpha(1)ATZ molecules were detected in autophagosomes by immune electron microscopy, and intracellular degradation of alpha(1)ATZ was partially reduced by chemical inhibitors of autophagy. In contrast to mutant CFTRDeltaF508, expression of mutant alpha(1)ATZ in heterologous cells did not result in the formation of aggresomes. These results show that ER retention of mutant alpha(1)ATZ is associated with a marked autophagic response and raise the possibility that autophagy represents a mechanism by which liver of alpha(1)AT-deficient patients attempts to protect itself from injury and carcinogenesis.  相似文献   

3.
In alpha1-antitrypsin (alpha1-AT) deficiency, a mutant form of alpha1-AT polymerizes in the endoplasmic reticulum (ER) of liver cells resulting in chronic hepatitis and hepatocellular carcinoma by a gain of toxic function mechanism. Although some aspects of the cellular response to mutant alpha1-AT Z have been partially characterized, including the involvement of several proteasomal and nonproteasomal mechanisms for disposal, other parts of the cellular response pathways, particularly the chaperones with which it interacts and the signal transduction pathways that are activated, are still not completely elucidated. The alpha1-AT Z molecule is known to interact with calnexin, but, according to one study, it does not interact with Grp78. To carry out a systematic search for the chaperones with which alpha1-AT Z interacts in the ER, we used chemical cross-linking of several different genetically engineered cell systems. Mutant alpha1-AT Z was cross-linked with Grp78, Grp94, calnexin, Grp170, UDP-glucose glycoprotein:glucosyltransferase, and two unknown proteins of approximately 110-130 kDa. Sequential immunoprecipitation/immunoblot analysis and coimmunoprecipitation techniques demonstrated each of these interactions without chemical cross-linking. The same chaperones were found to interact with two nonpolymerogenic alpha1-AT mutants that are retained in the ER, indicating that these interactions are not specific for the alpha1-AT Z mutant. Moreover, sucrose density gradient centrifugation studies suggest that approximately 85% of alpha1-AT Z exists in heterogeneous soluble complexes with multiple chaperones and approximately 15% in extremely large polymers/aggregates devoid of chaperones. Agents that perturb the synthesis and/or activity of ER chaperones such as tunicamycin and calcium ionophore A23187, have different effects on the solubility and degradation of alpha1-AT Z as well as on its residual secretion.  相似文献   

4.
In the classical form of alpha(1)-antitrypsin deficiency, a mutant protein accumulates in a polymerized form in the endoplasmic reticulum (ER) of liver cells causing liver damage and carcinogenesis by a gain-of-toxic function mechanism. Recent studies have indicated that the accumulation of mutant alpha(1)-antitrypsin Z in the ER specifically activates the autophagic response but not the unfolded protein response and that autophagy plays a critical role in disposal of insoluble alpha(1)-antitrypsin Z. In this study, we used genomic analysis of the liver in a novel transgenic mouse model with inducible expression to screen for changes in gene expression that would potentially define how the liver responds to accumulation of this mutant protein. There was no unfolded protein response. Of several distinct gene expression profiles, marked up-regulation of regulator of G signaling (RGS16) was particularly notable. RGS16 did not increase when model systems were exposed to classical inducers of ER stress, including tunicamycin and calcium ionophore, or when a nonpolymerogenic alpha(1)-antitrypsin mutant accumulated in the ER. RGS16 was up-regulated in livers from patients with alpha(1)-antitrypsin deficiency, and the degree of up-regulation correlated with the hepatic levels of insoluble alpha(1)-antitrypsin Z protein. Taken together, these results indicate that expression of RGS16 is an excellent marker for the distinct form of "ER stress" that occurs in alpha(1)-antitrypsin deficiency, presumably determined by the aggregation-prone properties of the mutant protein that characterizes the deficiency.  相似文献   

5.
The classical form of alpha 1-antitrypsin (alpha 1-AT) deficiency is associated with a mutant alpha 1-ATZ molecule that polymerizes in the endoplasmic reticulum (ER) of liver cells. A subgroup of individuals homozygous for the protease inhibitor (PI) Z allele develop chronic liver injury and are predisposed to hepatocellular carcinoma. In this study we evaluated the primary structure of alpha 1-AT in a family in which three affected members had severe liver disease associated with alpha 1-AT deficiency. We discovered that one sibling was a compound heterozygote with one PI Z allele and a second allele, the PI Z + saar allele, bearing the mutation that characterizes alpha 1-ATZ as well as the mutation that characterizes alpha 1-AT Saarbrucken (alpha 1-AT saar). The mutation in PI saar introduces a premature termination codon resulting in an alpha 1-AT protein truncated for 19 amino acids at its carboxyl terminus. Studies of a second sib with severe liver disease and other living family members did not reveal the presence of the alpha 1-AT saar mutation and therefore do not substantiate a role for this mutation in the liver disease phenotype of this family. However, studies of alpha 1-AT saar and alpha 1-ATZ + saar expressed in heterologous cells show that there is prolonged intracellular retention of these mutants even though they do not have polymerogenic properties. These results therefore have important implications for further understanding the fate of mutant alpha 1-AT molecules, the mechanism of ER retention, and the pathogenesis of liver injury in alpha 1-AT deficiency.  相似文献   

6.
Recent studies have shown independently that presenilin-1 (PS1) null mutants and familial Alzheimer's disease (FAD)-linked mutants should both down-regulate signaling of the unfolded protein response (UPR). However, it is difficult to accept that both mutants possess the same effects on the UPR. Furthermore, contrary to these observations, neither loss of PS1 and PS2 function nor expression of FAD-linked PS1 mutants were reported to have a discernable impact on the UPR. Therefore, re-examination and detailed analyses are needed to clarify the relationship between PS1 function and UPR signaling. Here, we report that PS1/PS2 null and dominant negative PS1 mutants, which are mutated at aspartate residue 257 or 385, did not affect signaling of the UPR. In contrast, FAD-linked PS1 mutants were confirmed to disturb UPR signaling by inhibiting activation of both Ire1alpha and ATF6, both of which are endoplasmic reticulum (ER) stress transducers in the UPR. Furthermore, PS1 mutants also disturbed activation of PERK (PKR-like ER kinase), which plays a crucial role in inhibiting translation during ER stress. Taken together, these observations suggested that PS1 mutations could affect signaling pathways controlled by each of the respective ER-stress transducers, possibly through a gain-of-function.  相似文献   

7.
8.
《Autophagy》2013,9(4):258-263
In the classical form of alpha-1-antitrypsin (AT) deficiency a point mutation renders aggregation-prone properties on a hepatic secretory protein. The mutant ATZ protein in retained in the endoplasmic reticulum (ER) of liver cells rather than secreted into the blood and body fluids where it ordinarily functions as an inhibitor of neutrophil proteases. A loss-of-function mechanism allows the neutrophil proteases to slowly destroy the connective tissue matrix of the lung, resulting in premature development of pulmonary emphysema as early as the third decade of life. A gain-of-toxic function mechanism is responsible for liver inflammation and carcinogenesis. Indeed this deficiency is the most common genetic cause of liver disease in children in the US. It also causes chronic liver inflammation and carcinoma that manifests itself later in life. However, the majority of affected homozygotes apparently escape liver disease. This last observation has led to the concept that genetic and/or environmental modifiers affect the disposal of mutant ATZ within the ER or affect the protective cellular responses activated by accumulation of ATZ in the ER and, in turn, these modifiers determine which homozygotes develop liver inflammation and carcinoma. In this article I review a series of studies published over the last 6 years showing that autophagy is specifically activated by ER accumulation of ATZ and that autophagy plays a critical role in the disposal of this mutant protein. Further, I review data suggesting that the autophagy is specifically designed for the cellular response to aggregated ATZ and aggregated proteins in general.  相似文献   

9.
α1-antitrypsin deficiency (ATD) predisposes patients to both loss-of-function (emphysema) and gain-of-function (liver cirrhosis) phenotypes depending on the type of mutation. Although the Z mutation (ATZ) is the most prevalent cause of ATD, >120 mutant alleles have been identified. In general, these mutations are classified as deficient (<20% normal plasma levels) or null (<1% normal levels) alleles. The deficient alleles, like ATZ, misfold in the ER where they accumulate as toxic monomers, oligomers and aggregates. Thus, deficient alleles may predispose to both gain- and loss-of-function phenotypes. Null variants, if translated, typically yield truncated proteins that are efficiently degraded after being transiently retained in the ER. Clinically, null alleles are only associated with the loss-of-function phenotype. We recently developed a C. elegans model of ATD in order to further elucidate the mechanisms of proteotoxicity (gain-of-function phenotype) induced by the aggregation-prone deficient allele, ATZ. The goal of this study was to use this C. elegans model to determine whether different types of deficient and null alleles, which differentially affect polymerization and secretion rates, correlated to any extent with proteotoxicity. Animals expressing the deficient alleles, Mmalton, Siiyama and S (ATS), showed overall toxicity comparable to that observed in patients. Interestingly, Siiyama expressing animals had smaller intracellular inclusions than ATZ yet appeared to have a greater negative effect on animal fitness. Surprisingly, the null mutants, although efficiently degraded, showed a relatively mild gain-of-function proteotoxic phenotype. However, since null variant proteins are degraded differently and do not appear to accumulate, their mechanism of proteotoxicity is likely to be different to that of polymerizing, deficient mutants. Taken together, these studies showed that C. elegans is an inexpensive tool to assess the proteotoxicity of different AT variants using a transgenic approach.  相似文献   

10.
Perlmutter DH 《Autophagy》2006,2(4):258-263
In the classical form of alpha-1-antitrypsin (AT) deficiency a point mutation renders aggregation-prone properties on a hepatic secretory protein. The mutant ATZ protein in retained in the endoplasmic reticulum (ER) of liver cells rather than secreted into the blood and body fluids where it ordinarily functions as an inhibitor of neutrophil proteases. A loss-of-function mechanism allows the neutrophil proteases to slowly destroy the connective tissue matrix of the lung, resulting in premature development of pulmonary emphysema as early as the third decade of life. A gain-of-toxic function mechanism is responsible for liver inflammation and carcinogenesis. Indeed this deficiency is the most common genetic cause of liver disease in children in the US. It also causes chronic liver inflammation and carcinoma that manifests itself later in life. However, the majority of affected homozygotes apparently escape liver disease. This last observation has led to the concept that genetic and/or environmental modifiers affect the disposal of mutant ATZ within the ER or affect the protective cellular responses activated by accumulation of ATZ in the ER and, in turn, these modifiers determine which homozygotes develop liver inflammation and carcinoma. In this article I review a series of studies published over the last six years showing that autophagy is specifically activated by ER accumulation of ATZ and that it plays a critical role in the disposal of this mutant protein. Indeed, the most recent studies suggest that there is specialization of the autophagic pathway in that it is specifically activated by, and designed for disposal of, the aggregated forms of ATZ while the proteasome is specialized for disposal of soluble forms of ATZ. Together, these studies provide further evidence for the importance of autophagy in the cellular adaptive response to aggregated proteins in general.  相似文献   

11.
Perturbance of endoplasmic reticulum (ER) function, either by the mutant proteins not folding correctly, or by an excessive accumulation of proteins in the organelle, will lead to the unfolded protein response (UPR) or ER overload response (EOR). The signal-transducing pathways for UPR have been identified, whereas the pathway for EOR remains to be elucidated. Our previous study demonstrated that the overexpression of reticulon 3 (RTN3, also named HAP, homologue of ASY protein) caused apoptosis with the depletion of ER Ca(2+) stores. In present research, we characterized RTN3 as a novel EOR-induced protein, triggering the apoptotic signals through the release of ER Ca(2+) and the elevation of cytosolic Ca(2+). Our studies showed that overexpressed RTN3 induced EOR, eliciting ER-specific apoptosis with activation of caspase-12 and mitochondrial dysfunction through ER Ca(2+) depletion and the sustained elevation of cytosolic Ca(2+). Furthermore, we demonstrated that overexpressed RTN3 and stimuli that activate both EOR and UPR, not UPR only, were able to induce up-regulation of inducible nitric oxide synthase (iNOS) in HeLa cells through ER Ca(2+) release and reactive oxygen intermediates (ROIs), resulting in endogenous calcium-dependent nitric oxide protecting cells against ER specific apoptosis, which suggested that the nitric oxide and iNOS represented a likely protective response to EOR, not the UPR. These results supported that the release of ER Ca(2+) stores triggered the initial signal-transducing pathways for EOR induced by overexpressed RTN3.  相似文献   

12.
Alzheimer’s disease (AD) is characterized by the deposition of aggregated amyloid-beta (Aβ), which triggers a cellular stress response called the unfolded protein response (UPR). The UPR signaling pathway is a cellular defense system for dealing with the accumulation of misfolded proteins but switches to apoptosis when endoplasmic reticulum (ER) stress is prolonged. ER stress is involved in neurodegenerative diseases including AD, but the molecular mechanisms of neuronal apoptosis and inflammation by Aβ-induced ER stress to exercise training are not fully understood. Here, we demonstrated that treadmill exercise (TE) prevented PS2 mutation-induced memory impairment and reduced Aβ-42 deposition through the inhibition of β-secretase (BACE-1) and its product, C-99 in cortex and/or hippocampus of aged PS2 mutant mice. We also found that TE down-regulated the expression of GRP78/Bip and PDI proteins and inhibited activation of PERK, eIF2α, ATF6α, sXBP1 and JNK-p38 MAPK as well as activation of CHOP, caspase-12 and caspase-3. Moreover, TE up-regulated the expression of Bcl-2 and down-regulated the expressions of Bax in the hippocampus of aged PS2 mutant mice. Finally, the generation of TNFα and IL-1α and the number of TUNEL-positive cells in the hippocampus of aged PS2 mutant mice was also prevented or decreased by TE. These results showed that TE suppressed the activation of UPR signaling pathways as well as inhibited the apoptotic pathways of the UPR and inflammatory response following Aβ-induced ER stress. Thus, therapeutic strategies that modulate Aβ-induced ER stress through TE could represent a promising approach for the prevention or treatment of AD.  相似文献   

13.
14.
FAD mutations in presenilin-1 (PS1) cause attenuation of the induction of the endoplasmic reticulum (ER)-resident chaperone GRP78/BiP under ER stress, due to disturbed function of IRE1, the sensor for accumulation of unfolded protein in the ER lumen. PERK, an ER-resident transmembrane protein kinase, is also a sensor for the unfolded protein response (UPR), causing phosphorylation of eukaryotic initiation factor 2alpha (eIF2alpha) to inhibit translation initiation. Here, we report that the FAD mutant PS1 disturbs the UPR by attenuating both the activation of PERK and the phosphorylation of eIF2alpha. Consistent with the results of a disturbed UPR, inhibition of protein synthesis under ER stress was impaired in cells expressing PS1 mutants. These results suggest that mutant PS1 impedes general translational attenuation regulated by PERK and eIF2alpha, resulting in an increased load of newly synthesized proteins into the ER and subsequently increasing vulnerability to ER stress.  相似文献   

15.
16.
17.
Recent papers have reported that neuronal death in patients with Alzheimer's disease, Parkinson's disease, and cerebral ischemia has its origin in the endoplasmic reticulum (ER). IRE1alpha is one of the ER stress transducers that detect the accumulation of unfolded proteins in the ER. IRE1alpha mediates two major cellular responses, which are the unfolded protein response (UPR), a defensive response, and apoptosis that leads to cell death. However, little is known about the regulatory mechanisms that select between the UPR and apoptosis. We identified Jun activation domain-binding protein-1 (JAB1) as a molecule that interacts with IRE1alpha using a yeast two-hybrid system. We demonstrated that JAB1 binds to IRE1alpha in the absence of stress, but that binding is decreased by ER stress inducers. Moreover, mutant JAB1 down-regulates the UPR signaling pathway through tight binding with IRE1alpha. These results suggested that JAB1 may act as a key molecule in selecting the UPR or cell death by association and dissociation with IRE1alpha.  相似文献   

18.
Genome-wide screening for sensitivity to chronic endoplasmic reticulum (ER) stress induced by dithiothreitol and tunicamycin (TM) identified mutants deleted for Cu, Zn superoxide dismutase (SOD) function (SOD1, CCS1) or affected in NADPH generation via the pentose phosphate pathway (TKL1, RPE1). TM-induced ER stress led to an increase in cellular superoxide accumulation and an increase in SOD1 expression and Sod1p activity. Prior adaptation of the hac1 mutant deficient in the unfolded protein response (UPR) to the superoxide-generating agent paraquat reduced cell death under ER stress. Overexpression of the ER oxidoreductase Ero1p known to generate hydrogen peroxide in vitro, did not lead to increased superoxide levels in cells subjected to ER stress. The mutants lacking SOD1, TKL1, or RPE1 exhibited decreased UPR induction under ER stress. Sensitivity of the sod1 mutant to ER stress and decreased UPR induction was partially rescued by overexpression of TKL1 encoding transketolase. These data indicate an important role for SOD and cellular NADP(H) in cell survival during ER stress, and it is proposed that accumulation of superoxide affects NADP(H) homeostasis, leading to reduced UPR induction during ER stress.  相似文献   

19.
Lactating sows have been shown to develop typical signs of an inflammatory condition in the liver during the transition from pregnancy to lactation. Hepatic inflammation is considered critical due to the induction of an acute phase response and the activation of stress signaling pathways like the endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR), both of which impair animal´s health and performance. Whether ER stress-induced UPR is also activated in the liver of lactating sows and whether dietary fish oil as a source of anti-inflammatory effects n-3 PUFA is able to attenuate hepatic inflammation and ER stress-induced UPR in the liver of sows is currently unknown. Based on this, two experiments with lactating sows were performed. The first experiment revealed that ER stress-induced UPR occurs also in the liver of sows during lactation. This was evident from the up-regulation of a set of genes regulated by the UPR and numerically increased phosphorylation of the ER stress-transducer PERK and PERK-mediated phosphorylation of eIF2α and IκB. The second experiment showed that fish oil inhibits ER stress-induced UPR in the liver of lactating sows. This was demonstrated by decreased mRNA levels of a number of UPR-regulated genes and reduced phosphorylation of PERK and PERK-mediated phosphorylation of eIF2α and IκB in the liver of the fish oil group. The mRNA levels of various nuclear factor-κB-regulated genes encoding inflammatory mediators and acute phase proteins in the liver of lactating sows were also reduced in the fish oil group. In line with this, the plasma levels of acute phase proteins were reduced in the fish oil group, although differences to the control group were not significant. In conclusion, ER stress-induced UPR is present in the liver of lactating sows and fish oil is able to inhibit inflammatory signaling pathways and ER stress-induced UPR in the liver.  相似文献   

20.
Accumulation of unfolded proteins in the endoplasmic reticulum (ER) causes ER overload, resulting in ER stress. To cope with ER stress, mammalian cells trigger a specific response known as the unfolded protein response (UPR). Although recent studies have indicated cross-talk between ER stress and oxidative stress, the mechanistic link is not fully understood. By using murine fibrosarcoma L929 cells, in which tumor necrosis factor (TNF) alpha induces accumulation of reactive oxygen species (ROS) and cell death, we show that TNFalpha induces the UPR in a ROS-dependent fashion. In contrast to TNFalpha, oxidative stresses by H2O2 or arsenite only induce eukaroytic initiation factor 2alpha phosphorylation, but not activation of PERK- or IRE1-dependent pathways, indicating the specificity of downstream signaling induced by various oxidative stresses. Conversely, the UPR induced by tunicamycin substantially suppresses TNFalpha-induced ROS accumulation and cell death by inhibiting reduction of cellular glutathione levels. Collectively, some, but not all, oxidative stresses induce the UPR, and pre-emptive UPR counteracts TNFalpha-induced ROS accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号