首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aging of cell-free chloroplasts at pH 7.0 and 9.0 causes a decline in the level of photosynthetic pigments, quenching of chlorophyll a fluorescence and enhancement in fluorescence polarization. These changes are correlated with photoinduced enhancement of thylakoid lipid peroxidation. The alkaline earth metal cations, namely magnesium and calcium, show opposite actions on lipid peroxidation and modulate thylakoid disorganisation differently. Magnesium ion may stabilise thylakoid membrane by retarding lipid peroxidation. It lowers aging-induced quenching of fluorescence intensity and enhancement of fluorescence polarization. Calcium ion, on the other hand, stimulates disorganisation of thylakoid membranes. It enhances membrane lipid peroxidation, quenching of chlorophyll a fluorescence intensity and fluorescence polarization.  相似文献   

2.
ABSTRACT: BACKGROUND: The thylakoid system in plant chloroplasts is organized into two distinct domains: granaarranged in stacks of appressed membranes and non-appressed membranes consisting ofstroma thylakoids and margins of granal stacks. It is argued that the reason for thedevelopment of appressed membranes in plants is that their photosynthetic apparatus need tocope with and survive ever-changing environmental conditions. It is not known however,why different plant species have different arrangements of grana within their chloroplasts. Itis important to elucidate whether a different arrangement and distribution of appressed andnon-appressed thylakoids in chloroplasts are linked with different qualitative and/orquantitative organization of chlorophyll-protein (CP) complexes in the thylakoid membranesand whether this arrangement influences the photosynthetic efficiency. RESULTS: Our results from TEM and in situ CLSM strongly indicate the existence of differentarrangements of pea and bean thylakoid membranes. In pea, larger appressed thylakoids areregularly arranged within chloroplasts as uniformly distributed red fluorescent bodies, whileirregular appressed thylakoid membranes within bean chloroplasts correspond to smaller andless distinguished fluorescent areas in CLSM images. 3D models of pea chloroplasts show adistinct spatial separation of stacked thylakoids from stromal spaces whereas spatial divisionof stroma and thylakoid areas in bean chloroplasts are more complex. Structural differencesinfluenced the PSII photochemistry, however without significant changes in photosyntheticefficiency. Qualitative and quantitative analysis of chlorophyll-protein complexes as well asspectroscopic investigations indicated a similar proportion between PSI and PSII corecomplexes in pea and bean thylakoids, but higher abundance of LHCII antenna in pea ones.Furthermore, distinct differences in size and arrangements of LHCII-PSII and LHCI-PSIsupercomplexes between species are suggested. CONCLUSIONS: Based on proteomic and spectroscopic investigations we postulate that the differences in thechloroplast structure between the analyzed species are a consequence of quantitativeproportions between the individual CP complexes and its arrangement inside membranes.Such a structure of membranes induced the formation of large stacked domains in pea, orsmaller heterogeneous regions in bean thylakoids. Presented 3D models of chloroplasts showed that stacked areas are noticeably irregular with variable thickness, merging with eachother and not always parallel to each other.  相似文献   

3.
The effect of ß-carotene on light-induced lipid peroxidationwas examined in heptane-extracted chloroplasts. Lipid peroxidationwas suppressed by 50% when the extracted chloroplasts were reconstitutedwith ß-carotene. However, ß-carotene addedto unextracted chloroplasts did not affect the lipid peroxidation.As the molal ratio of ß-carotene to chlorophyll duringthe reconstitution increased, the rate of the lipid peroxidationdecreased but became independent of the molal ratio above thevalue of 0.3. The results led to the conclusion that ß-carotenein thylakoid membranes functions as an efficient quencher ofsinglet molecular oxygen which induces the lipid peroxidation. (Received April 20, 1978; )  相似文献   

4.
To study the regulation of lipid transport from the chloroplast envelope to the thylakoid, intact chloroplasts, isolated from fully expanded or still-expanding pea (Pisum sativum) leaves, were incubated with radiolabeled lipid precursors and thylakoid membranes subsequently were isolated. Incubation with UDP[(3)H]Gal labeled monogalactosyldiacylglycerol in both envelope membranes and digalactosyldiacylglycerol in the outer chloroplast envelope. Galactolipid synthesis increased with incubation temperature. Transport to the thylakoid was slow below 12 degrees C, and exhibited a temperature dependency closely resembling that for the previously reported appearance and disappearance of vesicles in the stroma (D.J. Morré, G. Selldén, C. Sundqvist, A.S. Sandelius [1991] Plant Physiol 97: 1558-1564). In mature chloroplasts, monogalactosyldiacylglycerol transport to the thylakoid was up to three times higher than digalactosyldiacylglycerol transport, whereas the difference was markedly lower in developing chloroplasts. Incubation of chloroplasts with [(14)C]acyl-coenzyme A labeled phosphatidylcholine (PC) and free fatty acids in the inner envelope membrane and phosphatidylglycerol at the chloroplast surface. PC and phosphatidylglycerol were preferentially transported to the thylakoid. Analysis of lipid composition revealed that the thylakoid contained approximately 20% of the chloroplast PC. Our results demonstrate that lipids synthesized at the chloroplast surface as well as in the inner envelope membrane are transported to the thylakoid and that lipid sorting is involved in the process. Furthermore, the results also indicate that more than one pathway exists for galactolipid transfer from the chloroplast envelope to the thylakoid.  相似文献   

5.
R. C. Ford  J. Barber 《Planta》1983,158(1):35-41
The sterol, cholesteryl hemisuccinate, has been incorporated into isolated thylakoid membranes of pea and lettuce chloroplasts in order to modify the fluidity of the lipid matrix. Changes in fluidity have been monitored using fluorescence polarization of the hydrophobic probe, 1,6-diphenyl-1,3,5-hexatriene and the electron-spin-resonance, spin-label probe, 5-doxyl stearate. Both methods indicate that incorporation of increasing levels of sterol reduces the fluidity of the thylakoid lipid matrix. At room temperature the thylakoid lipid matrix is relatively fluid and the effect of increasing the viscosity is to inhibit partially the maximum rate of steady-state electron flow and reduce the dark rate of reduction of flash-oxidised cytochrome f. The results are discussed in terms of lipid fluidity influencing the rate of lateral diffusion of reduced plastoquinone from photosystem II to photosystem I.  相似文献   

6.
We have examined the assembly of the nuclear-encoded subunits of the oxygen-evolving complex (OEC) after their import into isolated intact chloroplasts. We showed that all three subunits examined (OE33, OE23, and OE17) partition between the thylakoid lumen and a site on the inner surface of the thylakoid membrane after import in a homologous system (e.g., pea or spinach subunits into pea or spinach chloroplasts, respectively). Although some interspecies protein import experiments resulted in OEC subunit binding, maize OE17 did not bind thylakoid membranes in chloroplasts isolated from peas. Newly imported OE33 and OE23 were washed from the membranes at the same concentrations of urea and NaCl as the native, indigenous proteins; this observation suggests that the former subunits are bound productively within the OEC. Inhibition of neither chloroplast protein synthesis nor light- or ATP-dependent energization of the thylakoid membrane significantly affected these assembly reactions, and we present evidence suggesting that incoming subunits actively displace those already bound to the thylakoid membrane. Transport of OE33 took place primarily in the stromal-exposed membranes and proceeded through a protease-sensitive, mature intermediate. Initial binding of OE33 to the thylakoid membrane occurred primarily in the stromal-exposed membranes, from where it migrated with measurable kinetics to the granal region. In contrast, OE23 assembly occurred in the granal membrane regions. This information is incorporated into a model of the stepwise assembly of oxygen-evolving photosystem II.  相似文献   

7.
《Phytochemistry》1987,26(12):3217-3219
Photoinduced peroxidation of thylakoid lipids in wheat chloroplasts is correlated with thylakoid membrane disorganisation as probed by Chl. α fluorescence during aging of cell free organelles. Manganese, at its different redox states, modulates lipid peroxidation differently with its consequent effect on Chl. α fluorescence.  相似文献   

8.
The intra-chloroplastic distribution of ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) between thylakoid membranes and stroma was studied by determining the enzyme activities in the two fractions, obtained by the rapid centrifugation of hypotonically disrupted chloroplast preparations of spinach and pea leaf tissues. The membrane-associated form of RuBisCO was found to increase in proportion to the concentration of MgCl2 in the disrupting medium; with 20 mM MgCl2 approximately 20% of the total RuBisCO of spinach chloroplasts and 10% of that of pea chloroplasts became associated with thylakoid membranes. Once released from membranes in the absence of MgCl2, addition of MgCl2 did not cause reassociation of the enzyme. The inclusion of KCl in the hypotonic disruption buffer also caused the association of RuBisCO with membranes; however, up to 30 mM KCl, only minimal enzyme activities could be detected in the membranes, whereas above 40 mM KCl there was a sharp increase in the membrane-associated form of the enzyme.Higher concentrations of chloroplasts during the hypotonic disruption, as well as addition of purified preparations of RuBisCO to the hypotonic buffer, resulted in an increase of membrane-associated activity. Therefore, the association of the enzyme with thylakoid membranes appears to be dependent on the concentration of RuBisCO. P-glycerate kinase and aldolase also associated to the thylakoid membranes but NADP-linked glyceraldehyde-3-P dehydrogenase did not. The optimal conditions for enzyme association with the thylakoid membranes were examined; maximal association occurred at pH 8.0. The association was temperature-insensitive in the range of 4° to 25° C. RuBisCO associated with the thylakoid membranes could be gradually liberated to the soluble form upon shaking in a Vortex mixer at maximal speed, indicating that the association is loose.Abbreviations DTT dithiothreitol - RuBP ribulose 1,5-bisphosphate - RuBisCO ribulose 1,5-bisphosphate carboxylase/oxygenase - MES 2-(N-morpholino) ethane sulfonic acid  相似文献   

9.
The formation of lipid peroxide and changes in the lipid compositionof isolated chloroplasts aged in the light or dark, were investigatedin more detail. Lipid peroxide formation was observed in thethylakoid membrane as well as in the supernatant from dark-agedchloroplasts. Light was necessary for its formation in bothsystems. We confirmed that the peroxidation of lipids formedduring aging did not induce the inhibition of photochemicalactivities in chloroplasts. Aged chloroplasts underwent decompositionof their endogeneous monogalactolipid and phosphatidylcholine(lecithin) resulting in free fatty acids and lysophosphatidylcholine(lysolecithin). Decomposition of monogalactolipid occurred inboth the light- and dark-aged chloroplasts. The change of lecithinto lysolecithin was stimulated by illumination. This suggeststhat the peroxidation of lipids occurs as a result of the illuminationof free fatty acids released from monogalactolipid and lecithinin the thylakoid membranes, and that the change of lecithinto lysolecithin is related to the inactivation of photochemicalactivities and to swelling in light-aged chloroplasts. 1 Present address: Department of Microbiology, Ishikawa ResearchLaboratory for Public Health and Environment, Minma, Kanazawa,Japan. (Received August 15, 1974; )  相似文献   

10.
Lipid-protein interactions in thylakoid membranes from lettuce, pea, tomato, and cucumber have been studied using spin-labeled analogues of the thylakoid membrane lipid components, monogalactosyl diglyceride and phosphatidylglycerol. The electron spin resonance spectra of the spin-labeled lipids all consist of two components, one corresponding to the fluid lipid environment in the membranes and the other to the motionally restricted lipids interacting with the integral membrane proteins. Comparison of the spectra from the same spin label in thylakoid membranes from different plants shows that the overall lipid fluidity in the membranes decreases with chilling sensitivity. Spectral subtraction has been used to quantitate the fraction of the membrane lipids in contact with integral membrane proteins. Thylakoid membranes of cucumber, a typical chilling-sensitive plant, have been found to have a higher proportion of motionally restricted lipids and a different lipid selectivity for lipid-protein interaction, as compared with those of pea, a typical chilling-resistant plant. This correlation with chilling sensitivity holds generally for the different plants studied. It seems likely that the chilling sensitivity in thylakoid membranes is not determined by lipid fluidity alone, but also by the lipid-protein interactions which could affect protein function in a more direct manner.  相似文献   

11.
Membrane-bound ribosomes of chloroplasts, isolated from pea seedlings during grana formation, can be partially liberated by 0.5 M KCl and 0.001 M puromycin. In case of mature chloroplasts, after the completion of grana formation process these agents are inefficient, and liberation of ribosomes and polyribosomes may be achieved only after solubilization of thylakoid membranes by 1% Triton X-100. Electron microscopic study of the heavy membrane fraction of young chloroplasts reveals electron-transparent membranes, containing rings and discs of thylakoids with a diameter of about 2 mum. These rings are liberated together with ribosomes under the action of 0.5 M KCl; Triton X-100 liberates equally-sized annular polyribosomes. The rings detected in chloroplast membranes at early stages of development are regarded as structures, precursor grana thylakoids, and the annular polyribosomes included into them as immediate participants of thylakoid morphogenesis.  相似文献   

12.
Copper transport across pea thylakoid membranes   总被引:6,自引:0,他引:6       下载免费PDF全文
The initial rate of Cu2+ movement across the thylakoid membrane of pea (Pisum sativum) chloroplasts was directly measured by stopped-flow spectrofluorometry using membranes loaded with the Cu(2+)-sensitive fluorophore Phen Green SK. Cu2+ transport was rapid, reaching completion within 0.5 s. The initial rate of uptake was dependent upon Cu2+ concentration and saturated at about 0.6 microm total Cu2+. Cu2+ uptake was maximal at a thylakoid lumen pH of 7.0. Cu2+ transport was inhibited by Zn2+ but was largely unaffected by Mn2+ and Cu+. Zn2+ inhibited Cu2+ transport to a maximum of 60%, indicating that there may be more than one transporter for copper in pea thylakoid membranes.  相似文献   

13.
Plastoglobules are lipoprotein particles inside chloroplasts. Their numbers have been shown to increase during the upregulation of plastid lipid metabolism in response to oxidative stress and during senescence. In this study, we used state-of-the-art high-pressure freezing/freeze-substitution methods combined with electron tomography as well as freeze-etch electron microscopy to characterize the structure and spatial relationship of plastoglobules to thylakoid membranes in developing, mature, and senescing chloroplasts. We demonstrate that plastoglobules are attached to thylakoids through a half-lipid bilayer that surrounds the globule contents and is continuous with the stroma-side leaflet of the thylakoid membrane. During oxidative stress and senescence, plastoglobules form linkage groups that are attached to each other and remain continuous with the thylakoid membrane by extensions of the half-lipid bilayer. Using three-dimensional tomography combined with immunolabeling techniques, we show that the plastoglobules contain the enzyme tocopherol cyclase (VTE1) and that this enzyme extends across the surface monolayer into the interior of the plastoglobules. These findings demonstrate that plastoglobules function as both lipid biosynthesis and storage subcompartments of thylakoid membranes. The permanent structural coupling between plastoglobules and thylakoid membranes suggests that the lipid molecules contained in the plastoglobule cores (carotenoids, plastoquinone, and tocopherol [vitamin E]) are in a dynamic equilibrium with those located in the thylakoid membranes.  相似文献   

14.
We performed for the first time three-dimensional (3D) modelling of the entire chloroplast structure. Stacks of optical slices obtained by confocal laser scanning microscope (CLSM) provided a basis for construction of 3D images of individual chloroplasts. We selected pea (Pisum sativum) and bean (Phaseolus vulgaris) chloroplasts since we found that they differ in thylakoid organization. Pea chloroplasts contain large distinctly separated appressed domains while less distinguished appressed regions are present in bean chloroplasts. Different magnesium ion treatments were used to study thylakoid membrane stacking and arrangement. In pea chloroplasts, as demonstrated by 3D modelling, the increase of magnesium ion concentration changed the degree of membrane appression from wrinkled continuous surface to many distinguished stacked areas and significant increase of the inter-grana area. On the other hand 3D models of bean chloroplasts exhibited similar but less pronounced tendencies towards formation of appressed regions. Additionally, we studied arrangements of thylakoid membranes and chlorophyll-protein complexes by various spectroscopic methods, Fourier-transform infrared spectroscopy (FTIR) among others. Based on microscopic and spectroscopic data we suggested that the range of chloroplast structure alterations under magnesium ions treatment is a consequence of the arrangement of supercomplexes. Moreover, we showed that stacking processes always affect the structural changes of chloroplast as a whole.  相似文献   

15.
The effect of exogenously applied polyamines in reversing the effect of atrazine stress on pea seedlings (Pisum sativum L., cv. Koray) was investigated. The plants treated with combinations of atrazine (14 mM) + spermidine (1 mM) and atrazine (14 mM) + spermine (1 mM) possessed improved growth (30–35% increase of leaf area and 10–20% increase of fresh weight 10 days after treatment) and chlorophyll content (50–60% increase) in comparison with atrazine-(14 mM) treated plants. Spermine and spermidine also diminished the inhibitory effect of atrazine on gas exchange and photosystem II function. This fact supports the hypothesis of Yordanov and Goltsev (1990, Plant Physiol 4:42–51) that the interaction of polyamines with the thylakoid membrane surface led to their stacking, to separation of the photosystems, and to the association of light-harvesting complex II with the photosystem II core complex.  相似文献   

16.
The possible involvement of polyamines in the chilling tolerance of spinach (Spinacia oleracea L.) was investigated focusing on photosynthesis. During chilling at 8/5C (day/night) for 6 d, S-adenosylmethionine decarboxylase (SAMDC) activity increased significantly in leaves in parallel with the increase in putrescine and spermidine (Spd) content in leaves and chloroplasts. Treatment of leaves with methylglyoxal-bis(guanylhydrazone) (MGBG), an SAMDC inhibitor, resulted in the deterioration of plant growth and photosynthesis under chilling conditions, which was reversed by the concomitant treatment with Spd through the roots. Plants treated with MGBG showed lower photochemical efficiency of PSII than either the control or plants treated with MGBG plus Spd during chilling and even after transfer to warm conditions, suggesting an increase of photoinhibition due to low Spd in chloroplasts. Indeed, MGBG-treated plants had much lower activities of thylakoid electron transport and enzymes in carbon metabolism as well as higher degrees of lipid peroxidation of thylakoid membranes compared to the control. These results indicate that the enhanced activity of SAMDC with a consequential rise of Spd in chloroplasts is crucial for the cold acclimation of the photosynthetic apparatus in spinach leaves.  相似文献   

17.
C M Anderson  J Gray 《FEBS letters》1991,280(2):383-386
Leader peptidase from Escherichia coli was able to process the precursor of pea cytochrome ƒ synthesised in vitro. N-Terminal sequencing established that cleavage by leader peptidase generated the same mature sequence as in pea chloroplasts. Processing by leader peptidase was much more efficient co-translationally rather than post-translationally, and the extent of post-translational processing declined with time suggesting that the cytochrome ƒ precursor folded to an uncleavable conformation. Detergent extracts of pea thylakoid membranes were unable to process the cytochrome ƒ precursor co- or post-translationally.  相似文献   

18.
Plant chloroplasts contain an intricate photosynthetic membrane system, the thylakoids, and are surrounded by two envelope membranes at which thylakoid lipids are assembled. The glycoglycerolipids mono- and digalactosyldiacylglycerol, and sulfoquinovosyldiacylglycerol as well as phosphatidylglycerol, are present in thylakoid membranes, giving them a unique composition. Fatty acids are synthesized in the chloroplast and are either directly assembled into thylakoid lipids at the envelope membranes or exported to the ER (endoplasmic reticulum) for extraplastidic lipid assembly. A fraction of lipid precursors is reimported into the chloroplast for the synthesis of thylakoid lipids. Thus polar lipid assembly in plants requires tight co-ordination between the chloroplast and the ER and necessitates inter-organelle lipid trafficking. In the present paper, we discuss the current knowledge of the export of fatty acids from the chloroplast and the import of chloroplast lipid precursors assembled at the ER. Direct membrane contact sites between the ER and the chloroplast outer envelopes are discussed as possible conduits for lipid transfer.  相似文献   

19.
The precursor to the nuclear-coded 22-kDa heat-shock protein of chloroplasts (HSP 22) has been transported into isolated intact chloroplasts from heat-shocked plants. The localization of the mature protein in the chloroplast membrane was investigated. We have shown that the processed HSP 22 of pea was not bound to envelopes and found predominantly in thylakoid membranes. The binding of HSP 22 was stable in the presence of high salt concentrations. Solubilization of thylakoid membranes with Triton X-100 and phase partitioning with Triton X-114 indicate an intrinsic localization of HSP 22 or, alternatively, a non-covalent association with integral membrane protein(s). After fractionation into grana and stroma lamellae, HSP 22 was found mostly in the grana-membrane subfraction.  相似文献   

20.
Envelope and thylakoid membranes from pea (Pisum sativum var. Laxton's Progress No. 9) chloroplasts were analyzed for the presence of glycoproteins using two different approaches. First, the sugar composition of delipidated membrane polypeptides was measured directly using gas chromatographic analysis. The virtual absence of sugars suggests that plastid membranes lack glycoproteins. Second, membrane polypeptides separated by sodium dodecyl sulfate gel electrophoresis were tested for reactivity toward three different lectins: Concanavalin A, Ricinus communis agglutinin, and wheat germ agglutinin. In each case, there was no reactivity between any of the lectins and the plastid polypeptides. Microsomal membranes from pea tissues were used as a positive control. Glycoproteins were readily detectable in microsomal membranes using either of the two techniques. From these results it was concluded that pea chloroplast membranes do not contain glycosylated polypeptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号