首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jiang H  Guo W  Liang X  Rao Y 《Cell》2005,120(1):123-135
Axon-dendrite polarity is a cardinal feature of neuronal morphology essential for information flow. Here we report a differential distribution of GSK-3beta activity in the axon versus the dendrites. A constitutively active GSK-3beta mutant inhibited axon formation, whereas multiple axons formed from a single neuron when GSK-3beta activity was reduced by pharmacological inhibitors, a peptide inhibitor, or siRNAs. An active mechanism for maintaining neuronal polarity was revealed by the conversion of preexisting dendrites into axons upon GSK-3 inhibition. Biochemical and functional data show that the Akt kinase and the PTEN phosphatase are upstream of GSK-3beta in determining neuronal polarity. Our results demonstrate that there are active mechanisms for maintaining as well as establishing neuronal polarity, indicate that GSK-3beta relays signaling from Akt and PTEN to play critical roles in neuronal polarity, and suggest that application of GSK-3beta inhibitors can be a novel approach to promote generation of new axons after neural injuries.  相似文献   

2.
Role of the integrin-linked kinase (ILK) in determining neuronal polarity   总被引:2,自引:0,他引:2  
The establishment of axon-dendrite polarity in mammalian neurons has recently been shown to involve the kinases Akt and GSK-3beta. Here we report the function of the integrin-linked kinase (ILK) in neuronal polarization. ILK distribution is differential: with more of it present in the axonal tips than that in the dendritic tips of a polarized neuron. Inactivation of ILK by chemical inhibitors, a kinase-inactive mutant or siRNAs inhibited axon formation, whereas a kinase hyperactive ILK mutant induced the formation of multiple axons. Biochemical studies indicate that ILK is upstream of Akt and GSK-3beta. Manipulations of multiple intracellular components indicate that ILK is functionally upstream of Akt and GSK-3beta but downstream of PI3K in neuronal polarity. These results reveal a key role of ILK in the formation of neuronal polarity and suggest a signaling pathway important for neuronal polarity.  相似文献   

3.
The establishment of a polarized morphology is an essential event in the differentiation of neurons into a single axon and dendrites. We previously showed that glycogen synthase kinase-3beta (GSK-3beta) is critical for specifying axon/dendrite fate by the regulation of the phosphorylation of collapsin response mediator protein-2 (CRMP-2). Here, we found that the overexpression of the small GTPase Ras induced the formation of multiple axons in cultured hippocampal neurons, whereas the ectopic expression of the dominant negative form of Ras inhibited the formation of axons. Inhibition of phosphatidylinositol-3-kinase (PI3-kinase) or extracellular signal-related kinase (ERK) kinase (MEK) suppressed the Ras-induced formation of multiple axons. The expression of the constitutively active form of PI3-kinase or Akt (also called protein kinase B) induced the formation of multiple axons. The overexpression of Ras prevented the phosphorylation of CRMP-2 by GSK-3beta. Taken together, these results suggest that Ras plays critical roles in establishing neuronal polarity upstream of the PI3-kinase/Akt/GSK-3beta/CRMP-2 pathway and mitogen-activated protein kinase cascade.  相似文献   

4.
The initial event in establishing a polarized neuron is the specification of a single axon. Spatially regulated glycogen synthase kinase-3beta (GSK-3beta) activity is critical for specifying axon-dendrite fate; however, the upstream signaling of GSK-3beta in the determination of neuronal polarity still remains obscure. Here, we found that, in cultured hippocampal neurons, the small GTPase R-Ras selectively localized in a single neurite of stage 2 neurons and that its activity increased after plating and peaked between stages 2 and 3. Ectopic expression of R-Ras induced global inactivation of GSK-3beta and formation of multiple axons, whereas knockdown of endogenous R-Ras by RNA interference blocked GSK-3beta inactivation and axon formation. GSK-3beta inactivation and axon formation by R-Ras required integrin-linked kinase (ILK), and subcellular localization of ILK was strictly regulated by R-Ras-mediated phosphatidylinositol 3-kinase activity. In addition, membrane targeting of ILK was sufficient to inactivate GSK-3beta and to form multiple axons. Our study demonstrates a novel role of R-Ras and ILK upstream of GSK-3beta in the regulation of neuronal polarity.  相似文献   

5.
Numerous studies reveal that phosphatidylinositol (PI) 3-kinase and Akt protein kinase are important mediators of cell survival. However, the survival-promoting mechanisms downstream of these enzymes remain uncharacterized. Glycogen synthase kinase-3 beta (GSK-3 beta), which is inhibited upon phosphorylation by Akt, was recently shown to function during cell death induced by PI 3-kinase inhibitors. In this study, we tested whether GSK-3 beta is critical for the death of sympathetic neurons caused by the withdrawal of their physiological survival factor, the nerve growth factor (NGF). Stimulation with NGF resulted in PI 3-kinase-dependent phosphorylation of GSK-3 beta and inhibition of its protein kinase activity, indicating that GSK-3 beta is targeted by PI 3-kinase/Akt in these neurons. Expression of the GSK-3 beta inhibitor Frat1, but not a mutant Frat1 protein that does not bind GSK-3 beta, rescued neurons from death caused by inhibiting PI 3-kinase. Similarly, expression of Frat1 or kinase-deficient GSK-3 beta reduced death caused by inhibiting Akt. In NGF-maintained neurons, overexpression of GSK-3 beta caused a small but significant decrease in survival. However, expression of neither Frat1, kinase-deficient GSK-3 beta, nor GSK-3-binding protein inhibited NGF withdrawal-induced death. Thus, although GSK-3 beta function is required for death caused by inactivation of PI 3-kinase and Akt, neuronal death caused by NGF withdrawal can proceed through GSK-3 beta-independent pathways.  相似文献   

6.
Zinc is an essential catalytic and structural element of many proteins and a signaling messenger that is released by neuronal activity at many central excitatory synapses. Excessive synaptic release of zinc followed by entry into vulnerable neurons contributes severe neuronal cell death. We have previously observed that zinc-induced neuronal cell death is accompanied by Akt activation in embryonic hippocampal progenitor (H19-7) cells. In the present study, we examined the role of Akt activation and its downstream signaling events during extracellular zinc-induced neuronal cell death. Treatment of H19-7 cells with 10 microM of zinc plus zinc ionophore, pyrithione, led to increased phosphorylation of Akt at Ser-473/Thr-308 and increased Akt kinase activity. Zinc-induced Akt activation was accompanied by increased Tyr-phosphorylated GSK-3beta as well as increased GSK-3beta kinase activity. Transient overexpression of a kinase-deficient Akt mutant remarkably suppressed GSK-3beta activation and cell death. Furthermore, tau phosphorylation, but not the degradation of beta-catenin, was dependent upon zinc-induced GSK-3beta activation and contributed to cell death. The current data suggest that, following exposure to zinc, the sequential activation of Akt and GSK-3beta plays an important role directing hippocampal neural precursor cell death.  相似文献   

7.
8.
Agents that elevate intracellular cyclic AMP (cAMP) levels promote neuronal survival in a manner independent of neurotrophic factors. Inhibitors of phosphatidylinositol 3 kinase and dominant-inactive mutants of the protein kinase Akt do not block the survival effects of cAMP, suggesting that another signaling pathway is involved. In this report, we demonstrate that elevation of intracellular cAMP levels in rat cerebellar granule neurons leads to phosphorylation and inhibition of glycogen synthase kinase 3beta (GSK-3beta). The increased phosphorylation of GSK-3beta by protein kinase A (PKA) occurs at serine 9, the same site phosphorylated by Akt. Purified PKA is able to phosphorylate recombinant GSK-3beta in vitro. Inhibitors of GSK-3 block apoptosis in these neurons, and transfection of neurons with a GSK-3beta mutant that cannot be phosphorylated interferes with the prosurvival effects of cAMP. These data suggest that activated PKA directly phosphorylates GSK-3beta and inhibits its apoptotic activity in neurons.  相似文献   

9.
During central nervous system development, growth factors and their associated receptor protein tyrosine kinases regulate many neuronal functions such as neurite extension and dendrite maturation. Hepatocyte growth factor (HGF) and its receptor, c-Met, can promote formation of neurites and enhance elaboration of dendrites in mature neurons, but their effects on the early stages of dendrite maturation in hippocampal neurons and the signaling pathways by which they promote dendrite formation have not been studied. Exogenous HGF treatment effectively enhanced the phosphorylation and activation of c-Met in cultured hippocampal neurons at 4 days in vitro. HGF treatment increased the number of dendrites and promoted dendrite elongation in these neurons. Consistent with these results, HGF activated Akt, which phosphorylates glycogen synthase kinase-3beta (GSK-3beta) to inactivate it, and reduced phosphorylation of microtubule-associated protein 2 (MAP2), which can promote microtubule polymerization and dendrite elongation when dephosphorylated. Conversely, pharmacological inhibition of c-Met with its specific inhibitor, PHA-665752, or genetic knock-down of c-Met with short hairpin RNAs (shRNAs) suppressed HGF-induced phosphorylation of Akt and GSK-3beta, increased phosphorylation of MAP2, and reduced dendrite number and length in cultured hippocampal neurons. Moreover, suppressing c-Met with PHA-665752 or by shRNA decreased MAP2 expression. Inhibiting Akt activity with the phosphoinositide-3-kinase inhibitor LY294002 or Akt inhibitor X suppressed HGF-induced phosphorylation of GSK-3beta, increased MAP2 phosphorylation, and blocked the ability of HGF to enhance dendritic length. These observations indicate that HGF and c-Met can regulate the early stages of dendrite maturation via activation of the Akt/GSK-3beta pathway.  相似文献   

10.
11.
Two signaling pathways, phosphoinositide 3-kinase (PI-3k)/Akt and Ras/MAPK, are major effectors triggered by nerve growth factor (NGF). Rac1, Cdc42 and GSK-3beta are reported to be targets of PI-3k in the signal transduction for neurite outgrowth. Immediately after NGF was added, broad ruffles were observed temporarily around the periphery of PC12 cells prior to neurite growth. As PC12D cells are characterized by a very rapid extension of neurites in response to various agents, the signaling pathways described above were studied in relation to the NGF-induced formation of ruffles and outgrowth of neurites. Wortmannin, an Akt inhibitor (V), and GSK-3beta inhibitor (SB425286) suppressed the neurite growth in NGF-treated cells, but not in dbcAMP-treated cells. The outgrowth of neurites induced by NGF but not by dbcAMP was inhibited with the expression of mutant Ras. But upon the expression of dominant-negative Rac1, cells often extended protrusions, incomplete neurites, lacking F-actin. Intact neurites were observed in cells with dominant-negative Cdc42. These results suggest that NGF-dependent neurite outgrowth occurs via a mechanism involving activation of the Ras/PI-3K/Akt/GSK-3beta pathway, while dbcAMP-dependent neurite growth might be induced in a distinct manner. However, inhibitors for GSK-3beta and PI-3k (wortmannin) did not suppress the NGF-dependent formation of ruffles. In addition, the formation of ruffles was not inhibited by the expression of mutant Ras. On the other hand, it was suppressed by the expression of dominant-negative Rac1 or Cdc42. These results suggest that the NGF-induced ruffling requires activation of Rac1 and Cdc42, but does not require Ras, PI-3k, Akt and GSK-3beta. Taken together, the NGF-dependent formation of ruffles might not require Ras/PI-3k/Akt/GSK-3beta, but these pathways might contribute to the formation of intact neurites due to combined actions including Rac1.  相似文献   

12.
Dishevelled has been implicated in the regulation of cell fate decisions, cell polarity, and neuronal function. However, the mechanism of Dishevelled action remains poorly understood. Here we examine the cellular localization and function of the mouse Dishevelled protein, DVL-1. Endogenous DVL-1 colocalizes with axonal microtubules and sediments with brain microtubules. Expression of DVL-1 protects stable microtubules from depolymerization by nocodazole in both dividing cells and differentiated neuroblastoma cells. Deletion analyses reveal that the PDZ domain, but not the DEP domain, of DVL-1 is required for microtubule stabilization. The microtubule stabilizing function of DVL-1 is mimicked by lithium-mediated inhibition of glycogen synthase kinase-3beta (GSK-3beta) and blocked by expression of GSK-3beta. These findings suggest that DVL-1, through GSK-3beta, can regulate microtubule dynamics. This new function of DVL-1 in controlling microtubule stability may have important implications for Dishevelled proteins in regulating cell polarity.  相似文献   

13.
Human immunodeficiency virus type 1 (HIV-1) Tat induces neuronal apoptosis. To examine the mechanism(s) that contribute to this process, we studied Tat's effects on glycogen synthase kinase-3beta (GSK-3beta), an enzyme that has been implicated in the regulation of apoptosis. Addition of Tat to rat cerebellar granule neurons resulted in an increase in GSK-3beta activity, which was not associated with a change in protein expression and could be abolished by the addition of an inhibitor of GSK-3beta (lithium). Lithium also enhanced neuronal survival following exposure to Tat. Coprecipitation experiments revealed that Tat can associate with GSK-3beta, but direct addition of Tat to purified GSK-3beta had no effect on enzyme activity, suggesting that Tat's effects might be mediated indirectly. As the activation of platelet activating factor (PAF) receptors is critical for the induction of neuronal death by several candidate HIV-1 neurotoxins, we determined whether PAF can also activate GSK-3beta. Application of PAF to neuronal cultures activated GSK-3beta, and coincubation with lithium ameliorated PAF-induced neuronal apoptosis. These findings are consistent with the existence of one or more pathways that can lead to GSK-3beta activation in neurons, and they suggest that the dysregulation of this enzyme could contribute to HIV-induced neuronal apoptosis.  相似文献   

14.
Catecholamines, acting through adrenergic receptors, play an important role in modulating the effects of insulin on glucose metabolism. Insulin activation of glycogen synthesis is mediated in part by the inhibitory phosphorylation of glycogen synthase kinase-3 (GSK-3). In this study, catecholamine regulation of GSK-3beta was investigated in Rat-1 fibroblasts stably expressing the alpha1A-adrenergic receptor. Treatment of these cells with either insulin or phenylephrine (PE), an alpha1-adrenergic receptor agonist, induced Ser-9 phosphorylation of GSK-3beta and inhibited GSK-3beta activity. Insulin-induced GSK-3beta phosphorylation is mediated by the phosphatidylinositol 3-kinase/Akt signaling pathway. PE treatment does not activate phosphatidylinositol 3-kinase or Akt (Ballou, L. M., Cross, M. E., Huang, S., McReynolds, E. M., Zhang, B. X., and Lin, R. Z. (2000) J. Biol. Chem. 275, 4803-4809), but instead inhibits insulin-induced Akt activation and GSK-3beta phosphorylation. Experiments using protein kinase C (PKC) inhibitors suggest that phorbol ester-sensitive novel PKC and G? 6983-sensitive atypical PKC isoforms are involved in the PE-induced phosphorylation of GSK-3beta. Indeed, PE treatment of Rat-1 cells increased the activity of atypical PKCzeta, and expression of PKCzeta in COS-7 cells stimulated GSK-3beta Ser-9 phosphorylation. In addition, PE-induced GSK-3beta phosphorylation was reduced in Rat-1 cells treated with a cell-permeable PKCzeta pseudosubstrate peptide inhibitor. These results suggest that the alpha1A-adrenergic receptor regulates GSK-3beta through two signaling pathways. One pathway inhibits insulin-induced GSK-3beta phosphorylation by blocking insulin activation of Akt. The second pathway stimulates Ser-9 phosphorylation of GSK-3beta, probably via PKC.  相似文献   

15.
Glycogen synthase kinase-3beta (GSK-3beta) is a multifunctional enzyme involved in a variety of biological events including development, glucose metabolism and cell death. Its activity is inhibited by phosphorylation of the Ser9 residue and up-regulated by Tyr216 phosphorylation. Activated GSK-3beta increases phosphorylation of tau protein and induces cell death in a variety of cultured neurons, whereas phosphorylation of phosphatidylinositol-3 (PI-3) kinase-dependent protein kinase B (Akt), which inhibits GSK-3beta activity, is one of the best characterized cell survival signaling pathways. In the present study, the cholinergic immunotoxin 192 IgG-saporin was used to address the potential role of GSK-3beta in the degeneration of basal forebrain cholinergic neurons, which are preferentially vulnerable in Alzheimer's disease (AD) brain. GSK-3beta co-localized with a subset of forebrain cholinergic neurons and loss of these neurons was accompanied by a transient decrease in PI-3 kinase, phospho-Ser473Akt and phospho-Ser9GSK-3beta levels, as well as an increase in phospho-tau levels, in the basal forebrain and hippocampus. Total Akt, GSK-3beta, tau and phospho-Tyr216GSK-3beta levels were not significantly altered in these brain regions in animals treated with 192 IgG-saporin. Systemic administration of the GSK-3beta inhibitor LiCl did not significantly affect cholinergic marker or phospho-Ser9GSK-3beta levels in control rats but did preclude 192-IgG saporin-induced alterations in PI-3 kinase/phospho-Akt, phospho-Ser9GSK-3beta and phospho-tau levels, and also partly protected cholinergic neurons against the immunotoxin. These results provide the first evidence that increased GSK-3beta activity, via decreased Ser9 phosphorylation, can mediate, at least in part, 192-IgG saporin-induced in vivo degeneration of forebrain cholinergic neurons by enhancing tau phosphorylation. The partial protection of these neurons following inhibition of GSK-3beta kinase activity suggests a possible therapeutic role for GSK-3beta inhibitors in attenuating the loss of basal forebrain cholinergic neurons observed in AD.  相似文献   

16.
17.
The purpose of this study was to determine whether exogenous zinc prevents cardiac reperfusion injury by targeting the mitochondrial permeability transition pore (mPTP) via glycogen synthase kinase-3beta (GSK-3beta). The treatment of cardiac H9c2 cells with ZnCl2 (10 microM) in the presence of zinc ionophore pyrithione for 20 min significantly enhanced GSK-3beta phosphorylation at Ser9, indicating that exogenous zinc can inactivate GSK-3beta in H9c2 cells. The effect of zinc on GSK-3beta activity was blocked by the phosphatidylinositol 3-kinase (PI3K) inhibitor LY-294002 but not by the mammalian target of rapamycin (mTOR) inhibitor rapamycin or the PKC inhibitor chelerythrine, implying that PI3K but not mTOR or PKC accounts for the action of zinc. In support of this interpretation, zinc induced a significant increase in Akt but not mTOR phosphorylation. Further experiments found that zinc also increased mitochondrial GSK-3beta phosphorylation. This may indicate an involvement of the mitochondria in the action of zinc. The effect of zinc on mitochondrial GSK-3beta phosphorylation was not altered by the mitochondrial ATP-sensitive K+ channel blocker 5-hydroxydecanoic acid. Zinc applied at reperfusion reduced cell death in cells subjected to simulated ischemia/reperfusion, indicating that zinc can prevent reperfusion injury. However, zinc was not able to exert protection in cells transfected with the constitutively active GSK-3beta (GSK-3beta-S9A-HA) mutant, suggesting that zinc prevents reperfusion injury by inactivating GSK-3beta. Cells transfected with the catalytically inactive GSK-3beta (GSK-3beta-KM-HA) also revealed a significant decrease in cell death, strongly supporting the essential role of GSK-3beta inactivation in cardioprotection. Moreover, zinc prevented oxidant-induced mPTP opening through the inhibition of GSK-3beta. Taken together, these data suggest that zinc prevents reperfusion injury by modulating the mPTP opening through the inactivation of GSK-3beta. The PI3K/Akt signaling pathway is responsible for the inactivation of GSK-3beta by zinc.  相似文献   

18.
GSK-3beta regulates phosphorylation of CRMP-2 and neuronal polarity   总被引:2,自引:0,他引:2  
Neurons are highly polarized and comprised of two structurally and functionally distinct parts, an axon and dendrites. We previously showed that collapsin response mediator protein-2 (CRMP-2) is critical for specifying axon/dendrite fate, possibly by promoting neurite elongation via microtubule assembly. Here, we showed that glycogen synthase kinase-3beta (GSK-3beta) phosphorylated CRMP-2 at Thr-514 and inactivated it. The expression of the nonphosphorylated form of CRMP-2 or inhibition of GSK-3beta induced the formation of multiple axon-like neurites in hippocampal neurons. The expression of constitutively active GSK-3beta impaired neuronal polarization, whereas the nonphosphorylated form of CRMP-2 counteracted the inhibitory effects of GSK-3beta, indicating that GSK-3beta regulates neuronal polarity through the phosphorylation of CRMP-2. Treatment of hippocampal neurons with neurotrophin-3 (NT-3) induced inactivation of GSK-3beta and dephosphorylation of CRMP-2. Knockdown of CRMP-2 inhibited NT-3-induced axon outgrowth. These results suggest that NT-3 decreases phosphorylated CRMP-2 and increases nonphosphorylated active CRMP-2, thereby promoting axon outgrowth.  相似文献   

19.
This study was to investigate the role of glycogen synthase kinase-3beta (GSK-3beta) in cardiomyocyte tumor necrosis factor-alpha (TNF-alpha) expression induced by lipopolysaccharide (LPS). In cultured neonatal mouse cardiomyocytes, LPS induced TNF-alpha expression and increased GSK-3beta activation. Inhibition of GSK-3beta by SB216763 or by over-expression of a dominant negative mutant of GSK-3beta significantly enhanced TNF-alpha expression in LPS-stimulated cardiomyocytes, in association with an increase in p65 phosphorylation. In contrast, over-expression of GSK-3beta by adenoviral vectors containing wild-type GSK-3beta or a constitutively active GSK-3beta attenuated TNF-alpha expression induced by LPS. Further evidence to support the inhibitory role of GSK-3beta in TNF-alpha expression is that protein kinase B (Akt) signaling, an upstream inhibitor of GSK-3beta, promotes TNF-alpha expression in LPS-stimulated cardiomyocytes and this action of Akt signaling can be mimicked by GSK-3beta inactivation. Our study demonstrates that GSK-3beta plays an inhibitory role in cardiomyocyte TNF-alpha expression during LPS stimulation, and it may be a potential therapeutic target for sepsis.  相似文献   

20.
Protein kinase B (PKB)/Akt is known to promote cell migration, and this may contribute to the enhanced invasiveness of malignant cells. To elucidate potential mechanisms by which PKB/Akt promotes the migration phenotype, we have investigated its role in the endosomal transport and recycling of integrins. Whereas the internalization of alpha v beta 3 and alpha 5 beta 1 integrins and their transport to the recycling compartment were independent of PKB/Akt, the return of these integrins (but not internalized transferrin) to the plasma membrane was regulated by phosphatidylinositol 3-kinases and PKB/Akt. The blockade of integrin recycling and cell spreading on integrin ligands effected by inhibition of PKB/Akt was reversed by inhibition of glycogen synthase kinase 3 (GSK-3). Moreover, expression of nonphosphorylatable active GSK-3 beta mutant GSK-3 beta-A9 suppressed recycling of alpha 5 beta 1 and alpha v beta 3 and reduced cell spreading on ligands for these integrins, indicating that PKB/Akt promotes integrin recycling by phosphorylating and inactivating GSK-3. We propose that the ability of PKB/Akt to act via GSK-3 to promote the recycling of matrix receptors represents a key mechanism whereby integrin function and cell migration can be regulated by growth factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号