首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
X连锁的凋亡抑制蛋白(X-linked inhibitor of apoptosis protein,XIAP)是凋亡抑制蛋白家族中的一员,具有抗凋亡作用.研究发现XIAP在胰腺癌中呈高表达,并且能诱导胰腺癌细胞及组织对化疗耐药.通过在基因水平及蛋白水平降低XIAP的表达对胰腺癌的治疗具有重要意义.AEG 35156是针对XIAP的反义寡核苷酸分子,能够抑制胰腺癌细胞及组织生长.RNAi能够稳定下调胰腺癌细胞中XIAP水平,从而加强TRAIL诱导的细胞凋亡,并能提高胰腺癌细胞对化疗的敏感性.针对XIAP的小分化合物能够抑制XIAP的功能,释放被XIAP抑制的凋亡起始和效应分子以及XIAP抑制的其他促凋亡蛋白,提高多种肿瘤细胞的凋亡指数及对放化疗的敏感性.XAFl能抑制XIAP的抗凋亡作用.本文就XIAP在胰腺癌化疗耐药及治疗中的研究进展做一综述.  相似文献   

2.
XIAP(X链锁凋亡抑制蛋白,X-linked inhibitor-of-apoptosis protain)是凋亡抑制蛋白(IAPs)家族中最有效力的caspase抑制物,具有抑制细胞凋亡,参与肿瘤的发生、发展。本文就XIAP在肿瘤中的作用机制、表达及治疗情况做一综述,有望为肿瘤的诊断及治疗提供一个新方法。  相似文献   

3.
目的:证实酒精可诱导AC16心肌细胞凋亡及其与酒精浓度和作用时间的关系,研究不同浓度酒精干预下AC16心肌细胞中miR-186-5p与X连锁凋亡抑制蛋白(XIAP)表达水平以及心肌细胞凋亡水平的改变,探究miR-186-5p以XIAP为靶基因调控酒精诱导的心肌细胞凋亡。方法:流式细胞术检测细胞凋亡水平,Western blot、实时定量PCR技术分别在蛋白质及基因水平检测细胞miR-186-5p与XIAP表达水平的变化,双萤光素酶报告基因靶基因荧光检测miR-186-5p与XIAP的靶际关系。结果:酒精诱导AC16心肌细胞发生凋亡,且与酒精浓度及作用时间呈正相关;酒精摄入上调AC16心肌细胞中miR-186-5p表达,下调XIAP表达; miR-186-5p参与酒精诱导的AC16心肌细胞凋亡过程,XIAP抑制酒精诱导的AC16心肌细胞凋亡; miR-186-5p以XIAP为靶基因调控酒精诱导的心肌细胞凋亡。结论:AC16心肌细胞经过酒精处理后,细胞的凋亡水平升高,并且随着酒精作用浓度和作用时间的延长,凋亡水平进一步升高;酒精处理后心肌细胞中miR-186-5p表达量上调,XIAP表达量下调,miR-186-5p以XIAP为靶基因,调控酒精处理后心肌细胞的凋亡。  相似文献   

4.
线粒体丝氨酸蛋白酶Omi/HtrA2与细胞凋亡   总被引:4,自引:0,他引:4  
Wang XL  Wang J  Lv XP 《生理科学进展》2006,37(3):285-288
Omi/HtrA2是一种线粒体丝氨酸蛋白酶,具有修复、降解线粒体中折叠错误的蛋白质的作用,并可以通过破坏caspase与X染色体连锁凋亡抑制蛋白(XIAP)之间的相互作用和直接利用其自身具有的蛋白酶活性引起细胞凋亡。本文介绍了Omi/HtrA2的结构、生物学作用、参与细胞凋亡的机制及其在某些疾病中的作用。  相似文献   

5.
目的:探讨运用慢病毒载体介导的RNA干扰技术对X-连锁凋亡抑制蛋白(XIAP)的抑制效率及对胰腺癌细胞增殖、凋亡的影响,建立XIAP表达稳定抑制的胰腺癌细胞株.方法:应用pGJCSIL-PUR慢病毒载体构建针对XIAP的ShRNA载体,转染包装细胞293T,收集病毒上清转染胰腺癌细胞系SW1990,经嘌呤霉素(puromycin)筛选并扩大培养得到稳定克隆;实时荧光定量PCR和western-blot免疫印迹检测癌细胞内XIAP的表达:四甲基偶氮唑盐(MTT)比色法检测细胞增殖;caspase3/7活性测定和DAPI染色检测细胞凋亡.结果:成功构建3个XIAP-ShRNA慢病毒栽体(X1、X2、X3)及XIAP表达稳定抑制的胰腺癌细胞株,对XIAP的抑制效率均达70%以上;MTT检测显示X1、X3稳定抑制XIAP后胰腺癌细胞增殖明显减慢,但caspase3/7活性及细胞凋亡并没有明显增加.结论:慢病毒栽体介导的靶向XIAP的RNAi可有效抑制XIAP表达,降低胰腺癌细胞的增殖能力;成功建立的XIAP表达稳定抑制的胰腺癌细胞株为进一步研究打下基础.  相似文献   

6.
蒽贝素(Embelin)是一种X连锁凋亡抑制蛋白(X-linked inhibitor of apoptosis protein, XIAP)的小分子抑制剂,可以抑制XIAP的生成和活性,从而解除XIAP的抗凋亡作用,使凋亡顺利进行.研究了Embelin抑制肝癌细胞Bel-7404增殖的机制.采用不同浓度梯度,通过荧光显微镜、Hochest33342染色、MTT检测、AnnexinⅤ/PI流式细胞术和Western blot分别检测Embelin对Bel-7404细胞的形态学变化、凋亡小体形成、细胞存活率、细胞凋亡水平、凋亡信号转导相关蛋白表达的影响.结果显示,Embelin能明显抑制Bel-7404细胞增殖,并通过激活caspase通路以及阻断NF-κB信号通路诱导Bel-7404细胞凋亡,为进一步利用Embelin进行肝癌治疗的研究打下一定的基础.  相似文献   

7.
目的:探讨三七总皂苷(PNS)对大鼠脑缺血再灌注损伤后大脑皮层细胞的凋亡抑制作用.方法:采用大脑中动脉栓塞再通法建立脑缺血再灌注模型,将大鼠随机分为假手术组、缺血再灌注组和三七总皂苷治疗组;根据再灌注时间不同分为再灌注10h、12 h、24h组,缺血时间为90 min.大鼠脑缺血再灌注10h、12h和24h不同时间点进行神经功能评分,采用原位末端标记法检测神经细胞凋亡情况,同时用免疫组化法检测抑制凋亡蛋白XIAP和促凋亡蛋白Smac阳性细胞数.结果:缺血再灌注组神经细胞凋亡数明显增加,XIAP蛋白的表达呈先高后低的变化(P<0.05),Smac蛋白的表达明显上升(P<0.05);PNS治疗组能明显减少脑皮层组织神经细胞凋亡数(P<0.05),增加XIAP蛋白表达(P<0.05),减少Smac蛋白表达(P<0.05).结论:PNS可能通过促进抑制凋亡蛋白XIAP的表达和抑制促凋亡蛋白Smac的表达,减少脑组织缺血再灌注损伤后的神经细胞凋亡,进而对再灌注后脑组织具有抑制脑细胞凋亡的作用.  相似文献   

8.
用星形孢菌素(STS)诱导NG108-15细胞和HeLa细胞凋亡,观察他克林和双他克林是否具有抗凋亡作用.相差显微镜和Hoechst 33342染色观察细胞及胞核形态;噻唑蓝(MTT)测定分析细胞损伤状况;DNA提取及琼脂糖凝胶电泳观察凋亡特征性梯带;蛋白质印迹分析Bcl-2和Bax的表达水平.结果表明,经0.1 mmol/L他克林预处理后,由STS诱导的NG108-15细胞凋亡受到明显抑制.双他克林预处理无保护作用.蛋白质印迹分析表明他克林可显著抑制Bax的表达,同时还可促进Bcl-2的表达.他克林和双他克林预处理对STS诱导的HeLa细胞损伤无明显的保护作用.结论为:a.他克林对STS诱导的神经细胞损伤有显著的保护作用,但这种保护作用与其AChE抑制作用似乎没有明显关联.b.他克林对STS损伤的保护作用有细胞选择性.  相似文献   

9.
p53上调凋亡调制物的促凋亡作用   总被引:1,自引:0,他引:1  
p53上调凋亡调制物(p53up-regulated modulator of apoptosis,PUMA)是Bcl-2家族中BH3-only(Bcl-2 homology 3-only)蛋白质家族成员,通过其BH3结构域与所有的Bcl-2抗凋亡蛋白质结合,引发线粒体功能障碍和胱天蛋白酶(caspase)级联反应,诱导细胞凋亡。PUMA被证实在多种病理性应激介导的细胞凋亡中发挥着至关重要的作用,因而成为近年研究的热点。  相似文献   

10.
含甲基化CpG结合域蛋白质4(methyl-CpG-binding domain protein 4,MBD4)是MBD核蛋白家族中的一员,它包含一个能特异结合甲基化CpG的MBD结构域和一个具有糖苷酶活性的DNA糖苷酶结构域。该蛋白质能特异地结合甲基化CpG岛,并且在DNA错配修复、抑制转录和调节凋亡等过程中发挥重要功能,并与微卫星不稳定性密切相关。MBD4是一个重要的DNA损伤修复蛋白,多方面的报道表明其许多功能都牵涉到细胞衰老。本文就其结构与功能的研究进展作一综述。  相似文献   

11.
The inhibitors of apoptosis proteins (IAPs) are a family of highly conserved proteins involved in apoptosis. Recent studies indicate that IAPs with RING domains act as ubiquitin E3 ligases and play an important role in the occurrence and development of malignant tumors through inhibiting the caspases and regulating MAPKs (mitogen-activated protein kinases) and NF-κB (nuclear factor kappa-B) signaling. The mechanisms of IAPs in malignant tumors are complex and diverse, including resistance to cell death, inflammatory response, invasion and metastasis. IAPs inhibit apoptosis through both intrinsic and extrinsic pathways. They promote inflammatory response and regulate immune response. Besides, they both promote and inhibit tumor cell migration. Recent studies indicated that IAPs are positively correlated with poor prognosis in most malignant tumors, and negatively correlated with poor prognosis in some other few malignant tumors. The conclusions above show that it will be particularly necessary to further explore the relationship among IAPs, the occurrence and development of malignant tumors and the prognosis of patients. This review summarizes the latest research of IAPs that serve as E3s, in particular XIAP (X-chromosome linked IAP), c-IAP1 (cellular IAP1), c-IAP2 (cellular IAP2) and ML-IAP (melanoma IAP), covering the structures, functions in the malignant tumors, the signaling pathways and their correlation with the development and prognosis of malignant tumors, as well as the progress of anti-tumor drugs and therapies for IAPs. Furthermore, this review explores the problems and challenges in the current studies, which may provide new directions and strategies for future research.  相似文献   

12.
We have previously described a new aspect of the Inhibitor of Apoptosis (IAP) family of proteins anti-apoptotic activity that involves the TAK1/JNK1 signal transduction pathway (1,2). Our findings suggest the existence of a novel mechanism that regulates the anti-apoptotic activity of IAPs that is separate from caspase inhibition but instead involves TAK1-mediated activation of JNK1. In a search for proteins involved in the XIAP/TAK1/JNK1 signaling pathway we isolated by yeast two-hybrid screening a novel X chromosome-linked IAP (XIAP)-interacting protein that we called ILPIP (hILP-Interacting Protein). Whereas ILPIP moderately activates JNK family members when expressed alone, it strongly enhances XIAP-mediated activation of JNK1, JNK2, and JNK3. The expression of a catalytically inactive mutant of TAK1 blocked XIAP/ILPIP synergistic activation of JNK1 thereby implicating TAK1 in this signaling pathway. ILPIP moderately protects against interleukin-1beta converting enzyme- or Fas-induced apoptosis and significantly potentiates the anti-apoptotic activity of XIAP. In vivo co-precipitation experiments show that both ILPIP and XIAP interact with TAK1 and tumor necrosis factor receptor-associated factor 6. Finally, expression of ILPIP did not affect the ability of XIAP to inhibit caspase activation, further supporting the idea that XIAP protection against apoptosis is achieved by two separate mechanisms: one requiring JNK1 activation and a second involving caspase inhibition.  相似文献   

13.
张娴文  白洁 《生命科学》2013,(11):1100-1104
前列腺凋亡反应基因-4(prostate apoptosis responsegene.4,par-4)是从凋亡的前列腺癌细胞中分离出来的一种基因,该基因编码的产物是前列腺凋亡反应蛋白4(Par-4)。Par-4可通过细胞内、外途径调节各种分子表达,诱导癌细胞凋亡,选择性抑制肿瘤细胞生长,因此,Par-4的表达与肿瘤的发生、发展及预后有密切的联系。Par-4在治疗恶性肿瘤中表现出良好的肿瘤细胞靶向杀伤效应,对正常组织细胞无明显影响,故具有极其重要的应用价值。就Par-4特异性诱导肿瘤细胞凋亡及其潜在抗肿瘤作用的进展进行综述。  相似文献   

14.
Apoptosis is a complex pathway regulated by the concerted action of multiple pro- and anti-apoptotic molecules. The intrinsic (mitochondrial) pathway of apoptosis is governed up-stream of mitochondria, by the family of Bcl-2 proteins, and down-stream of mitochondria, by low-probability events, such as apoptosome formation, and by feedback circuits involving caspases and inhibitor of apoptosis proteins (IAPs), such as XIAP. All these regulatory mechanisms ensure that cells only commit to death once a threshold of damage has been reached and the anti-apoptotic reserve of the cell is overcome. As cancer cells are invariably exposed to strong intracellular and extracellular stress stimuli, they are particularly reliant on the expression of anti-apoptotic proteins. Hence, many cancer cells undergo apoptosis when exposed to agents that inhibit anti-apoptotic Bcl-2 molecules, such as BH3 mimetics, while normal cells remain relatively insensitive to single agent treatments with the same class of molecules. Targeting different proteins within the apoptotic network with combinatorial treatment approaches often achieves even greater specificity. This led us to investigate the sensitivity of leukemia and lymphoma cells to a pro-apoptotic action of a BH3 mimetic combined with a small molecule inhibitor of XIAP. Using the computational probabilistic model of the apoptotic pathway, verified by experimental results from human leukemia and lymphoma cell lines, we show that inhibition of XIAP has a non-linear effect on sensitization towards apoptosis induced by the BH3 mimetic HA14-1. This study justifies further ex vivo and animal studies on the potential of the treatment of leukemia and lymphoma with a combination of BH3 mimetics and XIAP inhibitors.  相似文献   

15.
BACKGROUND: Tumors develop mechanisms to escape recognition by the immune system. It has recently been demonstrated that tumors cause apoptotic death of key immune cells, including the major antigen-presenting cells, dendritic cells (DC). Elimination of DC from the tumor environment significantly diminishes development of specific immunologic responses. We have recently demonstrated that tumor-induced DC apoptosis could be prevented by overexpression of the anti-apoptotic molecule Bcl-x(L). The aim of this study was to identify extrinsic and intrinsic tumor-induced apoptotic pathways in DC by targeting different anti-apoptotic molecules, including FLIP, XIAP/hILP, dominant-negative procaspase-9 and HSP70. METHODS: Murine bone marrow derived DC were transduced with adenoviral vectors carrying different anti-apoptotic molecules and co-incubated with tumor cells in a Transwell system. Apoptosis of DC was assessed by Annexin V and PI staining. RESULTS: We have demonstrated that adenoviral infection of DC with genes encoding different anti-apoptotic molecules exhibits different degrees of resistance to melanoma-induced apoptosis. Furthermore, we have shown that anti-apoptotic molecules other than the Bcl-2 family of proteins are able to protect DC and prevent tumor-induced apoptosis in DC. CONCLUSIONS: The results show that tumor-induced apoptosis of DC is not limited to the mitochondrial pathway of cell death and open additional possibilities for targeted molecular protection of DC longevity in cancer. Therefore, effective protection of DC from tumor-induced apoptosis may significantly improve the efficacy of DC-based therapies for cancer.  相似文献   

16.
In addition to its well described function as an enzymatic inhibitor of specific caspases, X-linked inhibitor of apoptosis (X-linked IAP or XIAP) can function as a cofactor in Smad, NF-kappaB, and JNK signaling pathways. However, caspases themselves have been shown to regulate the activity of a number of signaling cascades, raising the possibility that the effect of XIAP in these pathways is indirect. Here we examine this question by introducing point mutations in XIAP predicted to disrupt the ability of the molecule to bind to and inhibit caspases. We show that whereas these mutant variants of XIAP lost caspase-inhibitory activity, they maintained their ability to activate Smad, NF-kappaB, and JNK signaling pathways. Indeed, the signaling properties of the molecule were mapped to domains not directly involved in caspase binding and inhibition. The activation of NF-kappaB by XIAP was dependent on the E3 ubiquitin ligase activity of the RING domain. On the other hand, the ability of XIAP to activate Smad-dependent signaling was mapped to the third baculoviral IAP repeat (BIR) and loop regions of the molecule. Thus, the anti-apoptotic and signaling properties of XIAP can be uncoupled.  相似文献   

17.
Many apoptotic pathways culminate in the activation of caspase cascades usually triggered by the apical caspases-8 or -9. We describe a paradigm where apoptosis is initiated by the effector caspase-3. Diethylmaleate (DEM)-induced apoptotic damage in Jurkat cells was blocked by the anti-apoptotic protein Bcl-2, whereas, a peptide inhibitor of caspase-3 but not caspase-9 blocked DEM-induced mitochondrial damage. Isogenic Jurkat cell lines deficient for caspase-8 or the adaptor FADD (Fas associated death domain) were not protected from DEM-induced apoptosis. Caspase-3 activation preceded that of caspase-9 and initial processing of caspase-3 was regulated independent of caspase-9 and Bcl-2. However, inhibitors of caspase-9 or caspase-6 regulated caspase-3 later in the pathway. We explored the mechanism by which caspase-3 processing is regulated in this system. DEM triggered a loss of Erk-1/2 phosphorylation and XIAP (X-linked inhibitor of apoptosis protein) expression. The phorbol ester PMA activated a MEK-dependent pathway to block caspase-3 processing and cell death. Constitutively active MEK-1 (CA-MEK) upregulated XIAP expression and exogenous XIAP inhibited DEM-induced apoptotic damage. Thus, we describe a pathway where caspase-3 functions to initiate apoptotic damage and caspase-9 and caspase-6 amplify the apoptotic cascade. Further, we show that MEK may regulate caspase-3 activation via the regulation of XIAP expression in these cells.  相似文献   

18.
Efficient apoptosis requires Bax/Bak-mediated mitochondrial outer membrane permeabilization (MOMP), which releases death-promoting proteins cytochrome c and Smac to the cytosol, which activate apoptosis and inhibit X-linked inhibitor of apoptosis protein (XIAP) suppression of executioner caspases, respectively. We recently identified that in response to Bcl-2 homology domain 3 (BH3)-only proteins and mitochondrial depolarization, XIAP can permeabilize and enter mitochondria. Consequently, XIAP E3 ligase activity recruits endolysosomes into mitochondria, resulting in Smac degradation. Here, we explored mitochondrial XIAP action within the intrinsic apoptosis signaling pathway. Mechanistically, we demonstrate that mitochondrial XIAP entry requires Bax or Bak and is antagonized by pro-survival Bcl-2 proteins. Moreover, intramitochondrial Smac degradation by XIAP occurs independently of Drp1-regulated cytochrome c release. Importantly, mitochondrial XIAP actions are activated cell-intrinsically by typical apoptosis inducers TNF and staurosporine, and XIAP overexpression reduces the lag time between the administration of an apoptotic stimuli and the onset of mitochondrial permeabilization. To elucidate the role of mitochondrial XIAP action during apoptosis, we integrated our findings within a mathematical model of intrinsic apoptosis signaling. Simulations suggest that moderate increases of XIAP, combined with mitochondrial XIAP preconditioning, would reduce MOMP signaling. To test this scenario, we pre-activated XIAP at mitochondria via mitochondrial depolarization or by artificially targeting XIAP to the intermembrane space. Both approaches resulted in suppression of TNF-mediated caspase activation. Taken together, we propose that XIAP enters mitochondria through a novel mode of mitochondrial permeabilization and through Smac degradation can compete with canonical MOMP to act as an anti-apoptotic tuning mechanism, reducing the mitochondrial contribution to the cellular apoptosis capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号