首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 703 毫秒
1.
运动改善骨代谢,促进骨骼生长发育,缓解骨量流失的作用已被广泛证实。在骨代谢中,微小RNA(microRNAs,miRNAs)广泛参与骨髓间充质干细胞、成骨细胞及破骨细胞等骨组织细胞的增殖及分化,通过靶向作用于相关成骨因子或骨吸收因子调控骨形成与骨吸收之间的平衡,在骨代谢的调控中发挥重要作用。近年的研究表明,调控miRNAs是运动或机械应力促进骨代谢正平衡的途径之一,运动能够诱导骨骼中miRNAs差异表达,进而调控相关成骨因子或骨吸收因子的表达,进一步加强运动的促成骨效应。本综述总结了运动介导miRNAs调控骨代谢的相关研究进展,为骨质疏松的运动防治提供理论基础。  相似文献   

2.
骨作为一种特殊的结缔组织,是组成骨骼系统的主要部分。成骨细胞的骨形成和破骨细胞的骨吸收作用受到内分泌、神经和免疫系统的调节。其中,骨骼和免疫系统密切相关且共享许多调节分子,如细胞因子和转录因子。骨组织细胞与免疫细胞间的相互调控在骨骼系统和免疫系统中均发挥了重要作用,并产生了一个新兴的交叉学科—骨免疫学。该文综述了近年来骨组织细胞与免疫细胞间的相互调控及作用机制的研究进展并展望了未来该学科的发展方向。  相似文献   

3.
破骨细胞的骨吸收活动与成骨细胞的骨形成活动相互作用调节,形成一种特殊的耦联机制,影响骨骼生长、发育及正常骨组织结构的维持.最近几年提出的Eph/ephrin双向信号转导在骨吸收与骨形成耦联中的研究越来越受到关注.从Eph/ephrin分子结构、信号转导机制及生物学意义等几方面对该理论作一阐述.  相似文献   

4.
影响骨髓间质干细胞向成骨细胞分化的调控因素   总被引:3,自引:0,他引:3  
长期的骨骼废用引起的骨质减少主要归因于骨形成的减少,成骨细胞由具有多向分化潜能的间充质细胞经骨原细胞、前成骨细胞分化而来,骨髓间质干细胞是骨髓来源的具有多向分化潜能的干细胞,本文综述了骨髓间质干细胞向成骨细胞分化的调控因素,有助于增加对骨丢失的理解,并进行预防和治疗,为航天员和骨骼废用病人创造更健康的生活。  相似文献   

5.
越来越多的研究表明microRNA广泛参与骨代谢的调控,调节骨髓间充质干细胞、成骨及破骨细胞的增殖及分化,调控骨形成与骨吸收之间的平衡,在维持骨代谢平衡中发挥重要作用。近年来有研究报道老年性骨质疏松、绝经后骨质疏松均与miR-214的高表达有关。miR-214通过靶向作用于Osterix、ATF-4、FGFR1、Pten以及LZTS1等基因调控骨髓间充质干细胞、成骨细胞以及破骨细胞等骨组织细胞的增殖及分化,进而抑制骨形成,促进骨吸收。本文主要综述了miR-214对骨髓间充质干细胞、成骨细胞以及破骨细胞分化的调控作用,旨在探讨miR-214对骨形成的抑制作用,为骨质疏松等骨疾病的诊断及治疗提供理论依据。  相似文献   

6.
骨疾病是指机体因先天或后天性因素破坏正常骨代谢,导致骨代谢障碍而发生的一类疾病。骨主要由负责骨吸收的破骨细胞和负责骨重建的成骨细胞以及骨细胞构成。正常成人的骨形成量基本等于骨吸收量,两者处于动态平衡状态,保证了骨结构和功能的完整性。自噬是一种重要的细胞内清除机制,通过形成自噬溶酶体降解其所包裹的受损细胞器或蛋白质,实现细胞代谢和细胞器的更新。自噬相关基因的缺失能够抑制破骨细胞的骨吸收和成骨细胞的骨重建,而药物、肿瘤坏死因子等能够使自噬相关基因过表达导致骨吸收异常增加,造成骨吸收和骨形成之间的动态平衡失调,从而引起骨代谢障碍,形成骨疾病。该文分别就自噬与破骨细胞、成骨细胞以及骨疾病之间的研究进展进行综述,希望可以为骨疾病的靶向治疗提供新的思路。  相似文献   

7.
不管是在胚胎骨骼形成还是出生后骨骼发育过程中,FGF/FGFR信号都发挥着重要的作用,成骨细胞在骨骼形成过程中起主导作用,成骨细胞不断地分化是骨骼形成的必要条件,FGF/FGFR信号可调控成骨细胞分化过程中不同标志性基因的表达。该信号不仅可以通过自身作用于成骨细胞分化,而且也可与其他信号通路(BMP,Wnt和PTH)相互作用,共同协调控制成骨细胞分化。FGFR突变会引起成骨细胞分化异常从而出现各种骨疾病,如颅缝早闭,骨质疏松,异位骨化等。现对FGF及FGFR家族,成骨细胞分化过程中标志性基因及相应的标志物,FGF/FGFR信号调控成骨细胞分化作用等方面进行综述。  相似文献   

8.
近来研究表明,铁过载与骨质疏松有密切的关系。遗传性血色素沉着症和地中海贫血症等铁代谢紊乱的疾病患者中都伴随有不同程度的骨质疏松现象。另外,长期在轨飞行环境下,航天员出现机体铁沉积现象,同时,骨丢失情况十分严重,每月的骨丢失量约与地面上绝经后妇女每年的骨丢失量相当。铁水平升高能够抑制成骨细胞的分化,降低成骨细胞功能,成骨能力下降,骨形成受到抑制。铁沉积的同时,能够促进破骨细胞活性,增强骨吸收的能力,造成机体骨量减少,导致骨质疏松。铁调素能够作用于成骨细胞,随着铁调素剂量的增加,成骨细胞中与骨形成相关的基因表达量明显升高。铁调素还能作用于破骨细胞,促进破骨细胞的分化。在预防和治疗骨质疏松方面,有实验证明,铁螯合剂和铁调素都有治疗骨质疏松的作用。利用铁调素调节机体铁代谢平衡,降低铁过载程度,为日后临床治疗骨质疏松提供了理论支持。  相似文献   

9.
核基质蛋白4(nuclear matrix protein,Nmp4),亦称p130cas结合锌指蛋白(cas-interacting zinc finger protein,CIZ),是一种位于细胞核及粘附斑且具有核质穿梭功能的转录调控因子.体内实验证明,Nmp4/CIZ抑制骨形成活性进而抑制骨密度和骨量增加,而对骨吸收参数无显著影响.Nmp4/CIZ通过特异性结合成骨细胞Ⅰ型胶原α1链和基质金属蛋白酶启动子上游调控序列,调节其转录表达,促进骨转换.此外,Nmp4/CIZ抑制骨形态蛋白和甲状旁腺激素诱导的成骨细胞分化,抑制成骨细胞增殖并促进凋亡发生.Nmp4/CIZ参与调节成骨细胞力学-化学信号转导,其表达沉默可抑制尾悬吊诱导的小鼠骨量减少,并促进流体剪切力诱导的成骨细胞β-catenin信号途径.这些体内外实验证据表明,Nmp4/CIZ主要通过负调控机制发挥作用,提示这是一个潜在的骨丢失治疗药物靶点.  相似文献   

10.
骨质疏松症的根本病因是由于多种因素导致成骨细胞介导的骨形成与破骨细胞介导的骨吸收过程之间的负平衡,引起骨质进行性丢失,骨密度降低,骨脆性增加,进而导致骨折风险增加。越来越多的研究表明,DNA甲基化可通过调控相关基因表达调节成骨细胞/破骨细胞的分化与功能,进而影响骨形成/骨吸收平衡,介导骨质疏松症的发生、发展。现主要阐述DNA甲基化与骨代谢调节和骨质疏松症之间的关系,并对相关研究进展进行综述。  相似文献   

11.
骨髓间充质干细胞是一类具有自我复制和多向分化潜能的成体干细胞,可以通过定向诱导分化为成骨细胞、软骨细胞、脂肪细胞等,是目前骨再生医学和细胞治疗研究最多的理想种子细胞。在骨缺损的修复过程中,骨髓间充质干细胞内成软骨相关基因表达升高进而分化为软骨细胞,后期随着成骨细胞和破骨细胞的形成及血管长入,软骨基质逐步降解并被骨基质所替换。软骨细胞参与了骨缺损前期的修复过程,调控软骨形成的信号通路及相关因子不仅调控骨髓间充质干细胞成软骨细胞分化,同时在成骨细胞分化过程中也发挥着重要的作用。对调控软骨形成的信号通路及相关因子在骨髓间充质干细胞骨向分化中的调控作用和研究现状进行了总结,以期为临床寻找更好的治疗骨缺损的方法提供理论依据和研究方向。  相似文献   

12.
13.
Skeletal tissue and transforming growth factor beta   总被引:8,自引:0,他引:8  
Normal skeletal growth results from a balance between the processes of bone matrix synthesis and resorption. These activities are regulated by both systemic and local factors. Bone turnover is dynamic, and skeletal growth must be maintained throughout life. Although many growth promoters are associated with bone matrix, it is enriched particularly with transforming growth factor beta (TGF-beta) activity. Experimental evidence indicates that TGF-beta regulates replication and differentiation of mesenchymal precursor cells, chondrocytes, osteoblasts, and osteoclasts. Recent studies further suggest that TGF-beta activity in skeletal tissue may be controlled at multiple levels by other local and systemic agents. Consequently, the intricate mechanisms by which TGF-beta regulates bone formation are likely to be fundamental to understanding the processes of skeletal growth during development, maintenance of bone mass in adult life, and healing subsequent to bone fracture.  相似文献   

14.
15.
The formation of cranial bone requires the differentiation of osteoblasts from undifferentiated mesenchymal cells. The balance between osteoblast recruitment, proliferation, differentiation and apoptosis in sutures between cranial bones is essential for calvarial bone formation. The mechanisms that control human osteoblasts during normal calvarial bone formation and premature suture ossification (craniosynostosis) begin to be understood. Our studies of the human calvaria osteoblast phenotype and calvarial bone formation showed that premature fusion of the sutures in non-syndromic and syndromic (Apert syndrome) craniosynostoses results from precocious osteoblast differentiation. We showed that Fibroblast Growth Factor-2 (FGF-2), FGF receptor-2 (FGFR-2) and Bone Morphogenetic Protein-2 (BMP-2), three essential factors involved in skeletal development, regulate the proliferation, differentiation and apoptosis in human calvaria osteoblasts. Mechanisms that induce the differentiated osteoblast phenotype have also been identified in human calvaria osteoblasts. We demonstrated the implication of molecules (N-cadherin, Il-1) and signaling pathways (src, PKC) by which these local factors modulate human calvaria osteoblast differentiation and apoptosis. The identification of these essential signaling molecules provides new insights into the pathways controlling the differentiated osteoblast phenotype, and leads to a more comprehensive view in the mechanisms that control normal and premature cranial ossification in humans.  相似文献   

16.
Bone remodelling is a continuous process by which bone resorption by osteoclasts is followed by bone formation by osteoblasts to maintain skeletal homeostasis. These two forces must be tightly coordinated not only quantitatively, but also in time and space, and its malfunction leads to diseases such as osteoporosis. Recent research focusing on the cross‐talk and coupling mechanisms associated with the sequential recruitment of osteoblasts to areas where osteoclasts have removed bone matrix have identified a number of osteogenic factors produced by the osteoclasts themselves. Osteoclast‐derived factors and exosomal‐containing microRNA (miRNA) can either enhance or inhibit osteoblast differentiation through paracrine and juxtacrine mechanisms, and therefore may have a central coupling role in bone formation. Entwined with angiocrine factors released by vessel‐specific endothelial cells and perivascular cells or pericytes, these factors play a critical role in angiogenesis–osteogenesis coupling essential in bone remodelling.  相似文献   

17.
The endocytic and exocytic/secretory pathways are two major intracellular membrane trafficking routes that regulate numerous cellular functions in a variety of cell types. Osteoblasts and osteoclasts, two major bone cells responsible for bone remodeling and homeostasis, are no exceptions. During the past few years, emerging evidence has pinpointed a critical role for endocytic and secretory pathways in osteoblast and osteoclast differentiation and function. The endosomal membrane provides a platform to integrate bone tropic signals of hormones and growth factors in osteoblasts. In osteoclasts, endocytosis, followed by transcytosis, of degraded bone matrix promotes bone resorption. Secretory pathways, especially lysosome secretion, not only participate in bone matrix deposition by osteoblasts and degradation of mineralized bone matrix by osteoclasts; they may also be involved in the coupling of bone resorption and bone formation during bone remodeling. More importantly, mutations in genes encoding regulatory factors within the endocytic and secretory pathways have been identified as causes for bone diseases. Identification of the molecular mechanisms of these genes in bone cells may provide new therapeutic targets for skeletal disorders.  相似文献   

18.
19.
Osteoporosis with bone loss is widely recognized as a major health problem. Bone homeostasis is maintained by balancing bone formation and bone resorption. The imbalance caused by increased bone resorption over bone formation can lead to various bone-related diseases such as osteoporosis and rheumatoid arthritis. Osteoclasts are the principal cells responsible for bone resorption and the main targets of anti-resorptive therapies. However, excessive inhibition of osteoclast differentiation may lead to inhibition of osteoblast differentiation. Therefore, it is important to screen for new compounds capable of inhibiting bone resorption and enhancing bone formation. Toddalia asiatica (L.) Lam. has been utilized traditionally for medicinal purposes such as the treatment of rheumatism. Currently, the extract is considered to be a good source of pharmacological agents for the treatment of bone-related diseases, but the active compounds have yet to be identified. We investigated whether toddaculin, derived from Toddalia asiatica (L.) Lam., affects both processes by inhibiting bone resorption and enhancing bone formation. Towards this end, we used pre-osteoclastic RAW 264 cells and pre-osteoblastic MC3T3-E1 cells. We found that toddaculin not only inhibited the differentiation of osteoclasts via activation of the NF-κB, ERK 1/2, and p38 MAPK signaling pathways, but it also induced differentiation and mineralization of osteoblasts by regulating differentiation factors. Thus, toddaculin might be beneficial for the prevention and treatment of osteoporosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号