首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
粘虫中肠α-淀粉酶活性测定方法的参数优化   总被引:1,自引:0,他引:1  
孔玉萍  黄青春  刘曼慧  丰俊  刘扬 《昆虫学报》2007,50(10):981-988
针对粘虫Mythimna separata中肠α-淀粉酶筛选了11种不同参数组合的3,5-二硝基水杨酸活性测定方法,并对其中最适组合的各个参数进行了优化。结果表明:在离体测定条件下,粘虫中肠α-淀粉酶活性的最优化测定参数为0.03 mol/L 磷酸盐缓冲液(pH 8.0,含有55 mmol/L NaCl)、温度45℃、吸收波长480 nm。Ca2+对α-淀粉酶活性具有抑制作用。该优化法能够显著降低粘虫、德国小蠊Blattella germanica、黄粉虫Tenebrio molitor、淡色库蚊Culex pipiens pallens和家蝇Musca domestica等昆虫α-淀粉酶的米氏常数Km值,且粘虫和德国小蠊α-淀粉酶的Vmax值增大,但黄粉虫、淡色库蚊和家蝇α-淀粉酶的Vmax值均明显减小。结果说明,在该优化体系下,粘虫α-淀粉酶与底物的亲和力增强,最大反应速度增大,测定酶活性的准确性和灵敏度显著提高;同时该优化体系也可作为测定德国小蠊α-淀粉酶活性的优化方法,但不适合作为黄粉虫、淡色库蚊和家蝇α-淀粉酶的最优化测定方法。  相似文献   

2.
抗病品种猕猴桃的枝条和叶片中蔗糖酶活性始终低于感病品种.自然发病后,感、抗病品种枝条与叶片中蔗糖酶活性都呈上升趋势,但感病品种比抗病品种酶活性上升得更快,增幅较大,抗病品种蔗糖酶活性增幅不明显.α-淀粉酶活性的变化规律基本上与蔗糖酶一致.抗感病品种均有3条α-淀粉酶同工酶谱带.自然感病后,抗病品种枝条及叶片的酶带增加不明显,仅多1条极弱的酶带;感病品种没有明显变化.  相似文献   

3.
淀粉降解代谢与种子萌发、叶片光合作用、块根贮藏及肉质果实的发育密切相关.α-淀粉酶是催化淀粉水解的重要酶之一,然而由于它在生活细胞中经常定位于叶绿体或质体之外,与淀粉基质在亚细胞水平上相互隔离,所以该酶在植物活体内的生理功能至今不完全清楚.研究表明,在苹果(Malus domestica Borkh cv. Starkrimson)果实发育过程中,α-淀粉酶活性由低到高,与淀粉含量大致呈现互为消长的变化.Western blotting实验证明,在果实发育过程中,α-淀粉酶的表观数量也是由少到多,与活性的变化一致.利用胶体金免疫电镜定位技术证明,果实内α-淀粉酶主要定位于质体内,其他亚细胞区域内α-淀粉酶分布很少;尤其在果实发育中后期,围绕质体内淀粉粒有高密度的α-淀粉酶分布,说明该酶主要分布于细胞内功能区域.α-淀粉酶优先定位于质体内的亚细胞分布特点在果实整个生长发育期没有变化.随着果实发育的推进,质体内胶体金分布密度显著增加,此结果与Western blotting实验相互印证.推测α-淀粉酶参与了果实细胞内质体中淀粉的水解过程.  相似文献   

4.
为开发适用于工业生产的新型酶制剂,以实验室自主构建的基因工程菌所产的新型海洋耐高温酸性α-淀粉酶为液化酶,以玉米淀粉液化后的DE值为指标,研究影响玉米淀粉的液化的因素,确定该酶水解玉米淀粉的最佳工艺条件。新型海洋耐高温酸性α-淀粉酶最佳的工艺条件为温度85℃、时间90 min、粉浆浓度250 g/L、酶用量32 U/g淀粉。  相似文献   

5.
张伟健 《生物学通报》2020,(7):52-53+63
采用包埋法对"α-淀粉酶的固定化及淀粉水解作用的检测"实验中固定化方法进行优化,缩短实验所需时间、简化学生操作步骤,使实验现象更加明显。  相似文献   

6.
齐西珍  任丽梅  郑芳  张奇  白芳  白钢 《微生物学报》2011,51(8):1106-1112
【目的】针对人胰腺α-淀粉酶这个糖代谢途径中重要的靶蛋白,建立α-淀粉酶抑制剂高通量筛选模型。【方法】采用毕赤酵母表达系统克隆和表达人胰腺α-淀粉酶;利用酶的催化特性建立α-淀粉酶抑制剂筛选模型;应用该模型对放线菌发酵液冻干物进行高通量筛选;通过构建16S rRNA系统发育树分析阳性菌株的分类地位。【结果】成功克隆、表达了具催化活性的人胰腺α-淀粉酶;建立了α-淀粉酶抑制剂的筛选模型;对近2000株放线菌的发酵液冻干物进行高通量筛选,最终得到14株α-淀粉酶抑制剂产生菌株,且在分类学上具有丰富的菌种多样性。【结论】本研究建立的α-淀粉酶抑制剂高通量筛选模型具有很强的实用价值,可用于新型淀粉酶抑制剂类降糖药物的开发。  相似文献   

7.
对“α-淀粉酶的固定化及淀粉水解作用的检测”实验装置、实验方法及步骤等进行了创新和改进,大大提高了实验成功率,同时增加了检测游离α-淀粉酶的实验步骤。作对照实验,排除了干扰因素,使实验过程更加严谨可行;用点样板代替试管,使实验结果更加明显直观,为广大师生提供了新课标下的实验设计、实践操作的新思路和新方法。  相似文献   

8.
盾叶薯蓣淀粉对枯草芽孢杆菌α-淀粉酶活性的影响   总被引:2,自引:0,他引:2  
以盾叶薯蓣淀粉为惟一碳源 ,探讨不同淀粉浓度对 1株污染地分离菌 (BacillussubtilisHY 0 2 )α 淀粉酶活性的影响。 3 2℃恒温摇床发酵实验表明 :淀粉浓度在 1 .75 %时枯草芽孢杆菌α 淀粉酶活性、细菌数及淀粉消耗量均较 0 .5 % ,1 %实验组明显增加。 3 2℃温度下 ,淀粉浓度与枯草芽孢杆菌α 淀粉酶活性成正相关 ,为选择微生物法解决淀粉导致的水源污染提供了依据。  相似文献   

9.
AmyP是一个来自海洋宏基因组文库的α-淀粉酶。AmyP不仅对log Pow值从4.5到-0.24的各种有机溶剂均具有良好的耐受性,而且能被正辛醇、正辛烷和甲苯提高活性为139%、118%和119%。正辛醇影响AmyP的淀粉水解产物、葡萄糖的含量增加、麦芽三糖的含量降低。非离子型的表面活性剂Tween-20、Tween-80和Triton X-100存在条件下,AmyP的活性反而有不同程度的提高。但是,AmyP对阴离子型的SDS和阳离子型CTAB的耐受性稍差。结果表明AmyP是一个同时具有有机溶剂和表面活性剂耐受性的新型α-淀粉酶。  相似文献   

10.
 利用紫外差光谱,荧光光谱和圆二色谱法对比地研究了淀粉液化茅孢杆菌α-淀粉酶在盐酸胍和碳酸胍变性过程的构象变化与活性关系以及在变性早期钙离子对酶构象的稳定作用。  相似文献   

11.
米曲霉6—193α-淀粉酶的纯化和性质的研究   总被引:2,自引:0,他引:2  
米陆霉(Aspergillus oryzae)突变株6—193的麦麸固体培养物,经水浸泡其中α-淀粉酶活力为每克干曲600单位。用硫酸铵分段沉淀.Sephadex G_75凝胶过滤和制备垂直平板电泳纯化,经PAGE鉴定为一条带,SDS凝胶电泳测定分子量为52,000。酶作用最适PH为5.0-6.0,最适温立为60℃。在60℃处理30分钟酶活力保留90%.加Ca2+后,酶的热急定性有提高。Ca2+、Li+和Mg2+对酶有一定的激活作用,而Ag+、Al3+、Fe2+、Cu2+、cr3+、Hg2+、Zn2+和Mn2+等对酶均有抑制作用。酶作用产物经薄层色谱分析,扫描,所产生的二糖和三糖之和为69 4%。  相似文献   

12.
为探讨α-人心房钠尿因子(α-human atrial natriuretic factor,α-hANF)对心脏的直接作用,本工作在离体豚鼠心室肌标本上观察了。a-hANF 对乳头肌收缩力和动作电位时程(APD)的影响。结果表明,20 nmol/L 和40 nmol/L a-hANF 均可明显抑制乳头肌收缩幅度(CA)和收缩相上升速率)(dA/dt),在40 nmol/L a-hANF 作用20min 后,APD 缩短明显。提示α-hANF 对心肌收缩力和 APD 具有直接抑制作用。  相似文献   

13.
研究了聚乙烯醇( PVA)和聚丙烯酸( PAA)对α-淀粉酶活性的影响,并采用荧光光谱法和圆二色谱法分析了PVA和PAA对α-淀粉酶内源性荧光和二级结构的影响。结果表明,PVA和PAA均能使α-淀粉酶的活性降低,并能改变α-淀粉酶的内源性荧光和二级结构,且PVA和PAA的浓度越高,α-淀粉酶活性降低越大,酶的内源性荧光和二级结构的变化也越大。  相似文献   

14.
以中温α-淀粉酶生产菌株Bacillus amyloliquefaciens M23基因组DNA为模板。PCR扩增得到了2.0kb α-淀粉酶基因全长序列。该基因由上游启动子220bp,结构基因1544bp和终止序列320bp构成。将无信号肽的α-淀粉酶结构基因amyQ,克隆入表达载体pET28a,转化E.coli BL21(DE3),经诱导,测定α-淀粉酶活性。结果表明:α-淀粉酶基因amyQ获得了活性表达,酶活力为2.297U/mL,SDS-PAGE电泳结果显示出分子量约为58kDa特异性蛋白质条带。酶学性质分析表明,重组α-淀粉酶的最适反应温度为60℃,最适反应pH为6.5,在60℃保温15min保持85%以上活性,超过15min,酶迅速失活,在pH5.5~10.0环境下稳定。水解产物分析表明:淀粉水解终产物主要为麦芽寡糖和糊精和少量葡萄糖。  相似文献   

15.
无机离子和有机溶质对α-淀粉酶热稳定性的影响   总被引:2,自引:2,他引:2  
长期以来,如何提高酶蛋白的热稳定性是分子生物学、生物工程学、化学工业等所关注的重要研究课题之一。分析了多种无机离子、糖和氨基酸对枯草杆菌液化型α-淀粉酶热稳定性的影响以及它们的共存效应,获取了一些对相关研究领域具有理论参考和实际应用价值的实验结果。在无机盐中,1mmol/L的钙离子或50mmol/L的钠离子能显著地提高该酶的热稳定性;酸性氨基酸和碱性氨基酸表现出相反的结果:酸性氨基酸具有明显的增强作用,碱性氨基酸却使之降低;随着糖浓度的增加(0~1000mmol/L),该淀粉酶的热稳定性呈线性增高;当钠离子或钾离子与某些氨基酸或糖类共同存在时,对该淀粉酶的热稳定性表现出了明显的协同作用。试图通过检测酶蛋白分子荧光强度改变来反映该酶的热稳定性变化,其结果是:随着温度的改变,酶蛋白的荧光强度的衰减与残余酶活性之间显示了良好的相关性。从而说明热环境使酶蛋白分子的螺旋结构发生变化而失活,某些溶质的存在可能是通过作用于蛋白质分子的立体结构而影响该酶的热稳定性。  相似文献   

16.
汪颖  刘源涛  郑昀昀  彭惠 《微生物学通报》2013,40(12):2254-2258
【目的】检测具有生淀粉降解活性的新型α-淀粉酶AmyP是否具有淀粉结合结构域(SBD)。【方法】通过结构域预测和序列分析, 推测AmyP的C端是一个SBD。将这段序列克隆、表达和重组蛋白纯化后, 采用亲和电泳和生淀粉吸附两种方法对重组表达的蛋白进行研究。【结果】AmyP的C端序列是一个新型的SBD, 根据序列特征可以将其划分在碳水化合物结合结构域(CBM) 20家族。该SBD与生大米淀粉的吸附能力最强, 生玉米淀粉次之, 不能与生小麦淀粉、生马铃薯淀粉和生绿豆淀粉吸附。【结论】α-淀粉酶AmyP在蛋白C端具有一个SBD, 有助于理解AmyP快速偏好性降解生淀粉的能力。  相似文献   

17.
利用紫外差谱、荧光光谱和园二色谱法对比地研究了α-淀粉酶盐酸胍和碳酸胍变性,分析了两种胍变性明显差异的原因。通过等同的胍基浓度下,α-淀粉酶两种胍变性的构象变化与活性关系的实验,表明同等摩尔浓度的两种胍盐变性能力上的明显差异并不主要是由于它们胍基含量上的不同。将盐酸胍从中性pH(6.5)调至碱性pH(10.4),其变性能力大增,紫外差谱与碳酸胍变性相似,出现了290nm的正肩和296nm的正峰,与此同时,酶的荧光强度大大降低,大部分酶活性丧失。由此推论,两种胍变性能力的明显差异的重要原因之一是在碱性介质中胍基的变性能力明显增强,并分析了其增强的原因。  相似文献   

18.
以B.subtilis XL-15基因组为模板,运用PCR法成功克隆了α-淀粉酶基因,其开放式阅读框(ORF)为1980bp,编码659个氨基酸残基。分别将该基因转入大肠杆菌BL21(DE3)和毕赤酵母GS115中,进行诱导表达。结果表明,大肠杆菌破碎上清液中未检出酶活,SDS-PAGE电泳分析显示表达产物均以无活性包涵体存在;而毕赤酵母在α-Factor及AOX1基因启动子和终止信号的调控下,经高密度培养,表达产物分泌至胞外,发酵液酶活力为4.3U/ml,实现了B.subtilis α-淀粉酶基因的分泌表达。  相似文献   

19.
阿拉伯糖是果实软化过程中变化最明显的细胞壁糖残基之一,α-L-阿拉伯呋喃糖苷酶是导致细胞壁多糖中阿拉伯糖残基降解的主要糖苷酶。为阐明该酶在香蕉果实成熟软化中的作用,实验对香蕉贮藏过程中果皮和果肉中该酶活性以及果实硬度、呼吸强度和乙烯释放量的变化进行了研究。结果表明:α-L-阿拉伯呋喃糖苷酶在果实初期的变化很小,到果实硬度开始急剧下降时达到最大,增加量达10倍以上,且果肉中的酶活性大于果皮中;乙烯吸收剂处理延缓了香蕉果实呼吸和乙烯高峰的出现时间,降低了果实硬度、果皮和果肉中α-L-阿拉伯呋喃糖苷酶活性变化的速度和幅度。以上结果表明α-L-阿拉伯呋喃糖苷酶起诱导香蕉果实成熟的作用,在果实的软化中起着十分重要的作用,且其活性受乙烯的调节。  相似文献   

20.
粘虫中肠α-淀粉酶活性的敏感性研究   总被引:2,自引:1,他引:1  
黄青春  卓军  曹松  钱旭红 《昆虫学报》2006,49(2):189-193
研究了不同酶反应缓冲体系、pH值、氯离子浓度以及噁唑哒嗪对5龄2日粘虫 Pseudaletia separata Walker 中肠α-淀粉酶活性的影响。结果表明,乙酸-乙酸钠缓冲体系(pH 5.8)和磷酸氢二钠-磷酸二氢钠缓冲体系(pH 8.0)有利于增强α-淀粉酶活性,比活力最高分别达到4.49和4.97。在乙酸-乙酸钠缓冲体系(pH 5.8)中,5、10、20、40和80 mmol/L氯离子浓度引起α-淀粉酶活性呈现先减弱后增强的变化规律,而在磷酸氢二钠-磷酸二氢钠缓冲体系(pH 8.0)中仅呈现减弱的趋势。1.4 mmol/L噁唑哒嗪对α-淀粉酶活性的抑制率可达70%,但抑制程度随着反应体系中蛋白含量的增加而逐渐降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号