首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study aims to determine how the interaction of Ly49 receptors with MHC class I molecules shapes the development of the Ly49 repertoire. We have examined the percentage of NK cells that expressed Ly49A, Ly49G2, and Ly49D in single and double Ly49A/C-transgenic mice on four different MHC backgrounds, H-2(b), H-2(d), H-2(b/d), and beta(2)-microglobulin(-/-). The results show that the total numbers of NK cells were not different among the strains. The prior expression of a Ly49 receptor capable of binding to self MHC class I altered the percentage of NK cells expressing endogenous Ly49A, Ly49G2, and Ly49D even in mice in which no MHC ligand was present for the latter receptors. The NK cells in the Ly49-transgenic mice expressed the same level of endogenous Ly49 receptors as wild-type mice of a similar MHC background. In contrast, the number of NK T cells was reduced in mice in which the Ly49 transgene could bind to a MHC class I molecule. The onset of Ly49 receptor expression on NK cells during ontogeny was not altered in the presence of transgenic Ly49 receptors. These data support a sequential model and argue against a selection model for Ly49 repertoire development on NK cells.  相似文献   

2.
Mature NK cells comprise a highly diverse population of lymphocytes that express different permutations of receptors to facilitate recognition of diseased cells and perhaps pathogens themselves. Many of these receptors, such as those belonging to the NKRP1, NKG2, and Ly49 families are encoded in the NK gene complex (NKC). It is generally thought that these NKC-encoded receptors are acquired by a poorly understood stochastic mechanism, which operates exclusively during NK cell development, and that following maturation the repertoire is fixed. However, we report a series of observations that demonstrates that the mature NK cell repertoire in mice can in fact be radically remodeled by multiple cytokines. Thus, both IL-2 and IL-15 selectively induce the de novo expression of Ly49E on the majority of mature NK cells. By contrast, IL-4 not only blocks this IL-2-induced acquisition of Ly49E, but reduces the proportion of mature NK cells that expresses pre-existing Ly49 receptors and abrogates the expression of NKG2 receptors while leaving the expression of several NKRP1 receptors unaltered. IL-21 also abrogates NKG2 expression on mature NK cells and selectively down-regulates Ly49F. IL-4 and IL-21 additionally cause dramatic and selective alterations in the NKC-encoded receptor repertoire of IL-2-activated T cells but these are quite different to the changes induced on NK cells. Collectively these findings reveal an unexpected aspect of NKC receptor expression that has important implications for our understanding of the function of these receptors and of the genetic mechanisms that control their expression.  相似文献   

3.
The Ly49 family of lectin-like receptors in rodents includes both stimulatory and inhibitory members. Although NK alloreactivity in mice is regulated primarily by inhibitory Ly49 receptors, in rats activating Ly49 receptors are equally important. Previous studies have suggested that activating rat Ly49 receptors are triggered by polymorphic ligands encoded within the nonclassical class Ib region of the rat MHC, RT1-CE/N/M, while inhibitory Ly49 receptors bind to widely expressed classical class Ia molecules encoded from the RT1-A region. To further investigate rat Ly49-mediated regulation of NK alloreactivity, we report in this study the identification and characterization of two novel paired Ly49 receptors that we have termed Ly49 inhibitory receptor 5 (Ly49i5) and Ly49 stimulatory receptor 5 (Ly49s5). Using a new mAb (mAb Fly5), we showed that Ly49i5 is an inhibitory receptor that recognizes ligands encoded within the class Ib region of the u and l haplotypes, while the structurally related Ly49s5 is an activating receptor that recognizes class Ib ligands of the u haplotype. Ly49s5 is functionally expressed in the high NK-alloresponder PVG strain, but not in the low alloresponder BN strain, in which it is a pseudogene. Ly49s5 is hence not responsible for the striking anti-u NK alloresponse previously described in BN rats (haplotype n), which results from repeated alloimmunizations with u haplotype cells. The present studies support the notion of a complex regulation of rat NK alloreactivity by activating and inhibitory Ly49 members, which may be highly homologous in the extracellular region and bind similar class Ib-encoded target ligands.  相似文献   

4.
Previous studies of the rapid rejection of MHC-disparate lymphocytes in rats, named allogeneic lymphocyte cytotoxicity, have indicated that rat NK cells express activating receptors for nonclassical MHC class I allodeterminants from the RT1-C/E/M region. Using an expression cloning system that identifies activating receptors associated with the transmembrane adapter molecule DAP12, we have cloned a novel rat Ly-49 receptor that we have termed Ly-49 stimulatory receptor 3 (Ly-49s3). A newly generated anti-Ly-49s3 Ab, mAb DAR13, identified subpopulations of resting and IL-2-activated NK cells, but not T or B lymphocytes. Depletion of Ly-49s3-expressing NK cells drastically reduced alloreactivity in vitro, indicating that this subpopulation is responsible for a major part of the observed NK alloreactivity. DAR13-mediated blockade of Ly-49s3 inhibited killing of MHC-congenic target cells from the av1, n, lv1, and c haplotypes, but not from the u or b haplotypes. A putative ligand was mapped to the nonclassical MHC class I region (RT1-C/E/M) using intra-MHC recombinant strains. Relative numbers of Ly-49s3(+) NK cells were reduced, and surface levels of Ly-49s3 were lower, in MHC congenic strains expressing the putative Ly-49s3 ligand(s). In conclusion, we have identified a novel Ly-49 receptor that triggers rat NK cell-mediated responses.  相似文献   

5.
Host NK cells can reject MHC-incompatible (allogeneic) bone marrow cells (BMCs), suggesting their effective role for graft-vs leukemia effects in the clinical setting of bone marrow transplantation. NK cell-mediated rejection of allogeneic BMCs is dependent on donor and recipient MHC alleles and other factors that are not yet fully characterized. Whereas the molecular mechanisms of allogeneic MHC recognition by NK receptors have been well studied in vitro, guidelines to understand NK cell allogeneic reactivity under the control of multiple genetic components in vivo remain less well understood. In this study, we use congenic mice to show that BMC rejection is regulated by haplotypes of the NK gene complex (NKC) that encodes multiple NK cell receptors. Most importantly, host MHC differences modulated the NKC effect. Moreover, the NKC allelic differences also affected the outcome of hybrid resistance whereby F1 hybrid mice reject parental BMCs. Therefore, these data indicate that NK cell alloreactivity in vivo is dependent on the combination of the host NKC and MHC haplotypes. These data suggest that the NK cell self-tolerance process dynamically modulates the NK cell alloreactivity in vivo.  相似文献   

6.
7.
NK cells are protective against certain bacterial and viral infections, and their production of IFN-γ is important for the early innate immune defence against L. monocytogenes. We have previously shown that depletion of NK cells in rats leads to increased bacterial burden upon L. monocytogenes infection, and that a subset of NK cells encompassing the majority of Ly49 receptors (Ly49s3+ NK cells) contributed to this effect. In this study, we have further investigated how the Ly49s3+ NK cell subset is affected by L. monocytogenes infection. We observed an increased percentage of Ly49s3+ NK cells in the spleen and a reduction in the bone marrow within the first 48 hrs of L. monocytogenes infection. Concomitantly, we observed increased expression levels of the inflammatory chemokine receptors CCR5 and CXCR3 by Ly49s3+ bone marrow NK cells, as compared to Ly49s3- NK cells, suggesting involvement of Ly49s3+ NK cells in the early phase of infection. However, NK cell production of IFN-γ was independent of Ly49 receptor expression. Furthermore, we observed increased expression levels of MHC class I molecules on both macrophages and NK cells during the first 48 hrs of infection, paralleled by a reduction in the surface expression of Ly49s3 on NK cells. In conclusion, L. monocytogenes infection modulates the tissue distribution of Ly49s3+ NK cells, and induces increased MHC class I expression and hence reduced surface expression of Ly49 receptors on NK cells. These changes indicate that L. monocytogenes infection may have multiple effects on NK cells in vivo, and suggests the involvement of Ly49-expressing NK cells in the immune responses towards L. monocytogenes.  相似文献   

8.
Diversity of NK cell receptor repertoire in adult and neonatal mice.   总被引:4,自引:0,他引:4  
Murine NK cytotoxicity is regulated by two families of MHC class I-specific receptors, namely Ly49 and CD94/NKG2. We developed a single-cell RT-PCR method to analyze expression of all known Ly49 and NKG2A genes in individual NK cells and determined the receptor repertoires of NK cells from adult and neonatal (1-wk-old) C57BL/6 mice. In adult mouse NK cells, up to six different receptors were coexpressed in random combinations. Of 62 NK cells examined, 42 different patterns of receptor expression were observed. Most of them expressed at least one Ly49, whereas NKG2A was detected in 32% of the cells. Over 75% of them expressed Ly49C, I, or NKG2A, which are thought to recognize self-class I MHC (H-2b). Coexpression of multiple Ly49 receptors and NKG2A was stochastic. In contrast, very few neonatal NK cells expressed any Ly49, but almost 60% of them expressed NKG2A. These results demonstrate that adult NK cells are quite heterogeneous and have diverse receptor repertoires. They also suggest that the expression of NKG2A precedes Ly49 expression in NK cell ontogeny, and NKG2A is a major inhibitory receptor in neonatal NK cells.  相似文献   

9.

Background

A major group of murine inhibitory receptors on Natural Killer (NK) cells belong to the Ly49 receptor family and recognize MHC class I molecules. Infected or transformed target cells frequently downmodulate MHC class I molecules and can thus avoid CD8+ T cell attack, but may at the same time develop NK cell sensitivity, due to failure to express inhibitory ligands for Ly49 receptors. The extent of MHC class I downregulation needed on normal cells to trigger NK cell effector functions is not known.

Methodology/Principal Findings

In this study, we show that cells expressing MHC class I to levels well below half of the host level are tolerated in an in vivo assay in mice. Hemizygous expression (expression from only one allele) of MHC class I was sufficient to induce Ly49 receptor downmodulation on NK cells to a similar degree as homozygous expression, despite a strongly reduced cell surface level of MHC class I. Co-expression of weaker MHC class I ligands in the host did not have any further effect on the degree of Ly49 downmodulation. Furthermore, a single MHC class I allele could downmodulate up to three Ly49 receptors on individual NK cells. Only when NK cells simultaneously expressed several Ly49 receptors and hemizygous MHC class I levels, a putative threshold for Ly49 downmodulation was reached.

Conclusion

Collectively, our findings suggest that in interactions between NK cells and normal untransformed cells, MHC class I molecules are in most cases expressed in excess compared to what is functionally needed to ensure self tolerance and to induce maximal Ly49 downmodulation. We speculate that the reason for this is to maintain a safety margin for otherwise normal, autologous cells over a range of MHC class I expression levels, in order to ensure robustness in NK cell tolerance.  相似文献   

10.
Inhibitory receptors expressed on NK cells recognize MHC class I molecules and transduce negative signals to prevent the lysis of healthy autologous cells. The lectin-like CD94/NKG2 heterodimer has been studied extensively as a human inhibitory receptor. In contrast, in mice, another lectin-like receptor, Ly-49, was the only known inhibitory receptor until the recent discovery of CD94/NKG2 homologues in mice. Here we describe the expression and function of mouse CD94 analyzed by a newly established mAb. CD94 was detected on essentially all NK and NK T cells as well as small fractions of T cells in all mouse strains tested. Two distinct populations were identified among NK and NK T cells, CD94(bright) and CD94(dull) cells, independent of Ly-49 expression. The anti-CD94 mAb completely abrogated the inhibition of target killing mediated by NK recognition of Qa-1/Qdm peptide on target cells. Importantly, CD94(bright) but not CD94(dull) cells were found to be functional in the Qa-1/Qdm-mediated inhibition. In the presence of the mAb, activated NK cells showed substantial cytotoxicity against autologous target cells as well as enhanced cytotoxicity against allogeneic and "missing self" target cells. These results suggest that mouse CD94 participates in the protection of self cells from NK cytotoxicity through the Qa-1 recognition, independent of inhibitory receptors for classical MHC class I such as Ly-49.  相似文献   

11.
Natural Killer (NK) cells are crucial in early resistance to murine cytomegalovirus (MCMV) infection. In B6 mice, the activating Ly49H receptor recognizes the viral m157 glycoprotein on infected cells. We previously identified a mutant strain (MCMVG1F) whose variant m157 also binds the inhibitory Ly49C receptor. Here we show that simultaneous binding of m157 to the two receptors hampers Ly49H-dependent NK cell activation as Ly49C-mediated inhibition destabilizes NK cell conjugation with their targets and prevents the cytoskeleton reorganization that precedes killing. In B6 mice, as most Ly49H+ NK cells do not co-express Ly49C, the overall NK cell response remains able to control MCMVm157G1F infection. However, in B6 Ly49C transgenic mice where all NK cells express the inhibitory receptor, MCMV infection results in altered NK cell activation associated with increased viral replication. Ly49C-mediated inhibition also regulates Ly49H-independent NK cell activation. Most interestingly, MHC class I regulates Ly49C function through cis-interactions that mask the receptor and restricts m157 binding. B6 Ly49C Tg, β2m ko mice, whose Ly49C receptors are unmasked due to MHC class I deficient expression, are highly susceptible to MCMVm157G1F and are unable to control a low-dose infection. Our study provides novel insights into the mechanisms that regulate NK cell activation during viral infection.  相似文献   

12.
NK cells can kill MHC-different or MHC-deficient but not syngeneic MHC-expressing target cells. This MHC class I-specific tolerance is acquired during NK cell development. MHC recognition by murine NK cells largely depends on clonally distributed Ly49 family receptors, which inhibit NK cell function upon ligand engagement. We investigated whether these receptors play a role for the development of NK cells and provide evidence that the expression of a Ly49 receptor transgene on developing NK cells endowed these cells with a significant developmental advantage over NK cells lacking such a receptor, but only if the relevant MHC ligand was present in the environment. The data suggest that the transgenic Ly49 receptor accelerates and/or rescues the development of NK cells which would otherwise fail to acquire sufficient numbers of self-MHC-specific receptors. Interestingly, the positive effect on NK cell development is most prominent when the MHC ligand is simultaneously present on both hemopoietic and nonhemopoietic cells. These findings correlate with functional data showing that MHC class I ligand on all cells is required to generate functionally mature NK cells capable of reacting to cells lacking the respective MHC ligand. We conclude that the engagement of inhibitory MHC receptors during NK cell development provides signals that are important for further NK cell differentiation and/or maturation.  相似文献   

13.
NK cells can migrate into sites of inflammatory responses or malignancies in response to chemokines. Target killing by rodent NK cells is restricted by opposing signals from inhibitory and activating Ly49 receptors. The rat NK leukemic cell line RNK16 constitutively expresses functional receptors for the inflammatory chemokine CXC chemokine ligand (CXCL)10 (CXCR3) and the homeostatic chemokine CXCL12 (CXCR4). RNK-16 cells transfected with either the activating Ly49D receptor or the inhibitory Ly49A receptor were used to examine the effects of NK receptor ligation on CXCL10- and CXCL12-mediated chemotaxis. Ligation of Ly49A, either with Abs or its MHC class I ligand H2-D(d), led to a decrease in chemotactic responses to either CXCL10 or CXCL12. In contrast, Ly49D ligation with Abs or H2-D(d) led to an increase in migration toward CXCL10, but a decrease in chemotaxis toward CXCL12. Ly49-dependent effects on RNK-16 chemotaxis were not the result of surface modulation of CXCR3 or CXCR4 as demonstrated by flow cytometry. A mutation of the Src homology phosphatase-1 binding motif in Ly49A completely abrogated Ly49-dependent effects on both CXCL10 and CXCL12 chemotaxis, suggesting a role for Src homology phosphatase-1 in Ly49A/chemokine receptor cross-talk. Ly49D-transfected cells were pretreated with the Syk kinase inhibitor Piceatannol before ligation, which abrogated the previously observed changes in migration toward CXCL10 and CXCL12. Piceatannol also abrogated Ly49A-dependent inhibition of chemotaxis toward CXCL10, but not CXCL12. Collectively, these data suggest that Ly49 receptors can influence NK cell chemotaxis within sites of inflammation or tumor growth upon interaction with target cells.  相似文献   

14.
Ly49D is a natural killer (NK) cell activation receptor that is responsible for differential mouse inbred strain-determined lysis of Chinese hamster ovary (CHO) cells. Whereas C57BL/6 NK cells kill CHO, BALB/c-derived NK cells cannot kill because they lack expression of Ly49D. Furthermore, the expression of Ly49D, as detected by monoclonal antibody 4E4, correlates well with CHO lysis by NK cells from different inbred strains. However, one discordant mouse strain was identified; C57L NK cells express the mAb 4E4 epitope but fail to lyse CHO cells. Herein we describe a Ly49 molecule isolated from C57L mice that is recognized by mAb 4E4 (anti-Ly49D). Interestingly, this molecule shares extensive similarity to Ly49D(B6) in its extracellular domain, but its cytoplasmic and transmembrane domains are identical to the inhibitory receptor Ly49A(B6), including a cytoplasmic ITIM. This molecule bears substantial overall homology to the previously cloned Ly49O molecule from 129 mice the serologic reactivity and function of which were undefined. Cytotoxicity experiments revealed that 4E4(+) LAK cells from C57L mice failed to lyse CHO cells and inhibited NK cell function in redirected inhibition assays. MHC class I tetramer staining revealed that the Ly49O(C57L)-bound H-2D(d) and lysis by 4E4(+) C57L LAK cells is inhibited by target H-2D(d). The structural basis for ligand binding was also examined in the context of the recent crystallization of a Ly49A-H-2D(d) complex. Therefore, this apparently "chimeric" Ly49 molecule serologically resembles an NK cell activation receptor but functions as an inhibitory receptor.  相似文献   

15.
NK cells become functionally competent to be triggered by their activation receptors through the interaction of NK cell inhibitory receptors with their cognate self-MHC ligands, an MHC-dependent educational process termed "licensing." For example, Ly49A(+) NK cells become licensed by the interaction of the Ly49A inhibitory receptor with its MHC class I ligand, H2D(d), whereas Ly49C(+) NK cells are licensed by H2K(b). Structural studies indicate that the Ly49A inhibitory receptor may interact with two sites, termed site 1 and site 2, on its H2D(d) ligand. Site 2 encompasses the α1/α2/α3 domains of the H2D(d) H chain and β(2)-microglobulin (β2m) and is the functional binding site for Ly49A in effector inhibition. Ly49C functionally interacts with a similar site in H2K(b). However, it is currently unknown whether this same site is involved in Ly49A- or Ly49C-dependent licensing. In this study, we produced transgenic C57BL/6 mice expressing wild-type or site 2 mutant H2D(d) molecules and studied whether Ly49A(+) NK cells are licensed. We also investigated Ly49A- and Ly49C-dependent NK licensing in murine β2m-deficient mice that are transgenic for human β2m, which has species-specific amino acid substitutions in β2m. Our data from these transgenic mice indicate that site 2 on self-MHC is critical for Ly49A- and Ly49C-dependent NK cell licensing. Thus, NK cell licensing through Ly49 involves specific interactions with its MHC ligand that are similar to those involved in effector inhibition.  相似文献   

16.
The Ly49 receptor family plays an important role in the regulation of murine natural killer (NK) cell effector function. They recognize cell surface-expressed class I MHC (MHC-I) and are functionally equivalent to the killer Ig-related receptors (KIRs) in human NK cells. Ly49s exist in activating and inhibitory forms with highly homologous extracellular domains, displaying greater variability in the stalk regions. Inhibitory Ly49s can recognize self-MHC-I and therefore mediate tolerance to self. The role of activating Ly49 receptors is less clear. Some activating Ly49 receptors have been shown to recognize MHC-I molecules. The binding affinity of activating Ly49 receptors with MHC-I is currently unknown, and we sought to examine the affinities of two highly related receptors, an activating and an inhibitory Ly49 receptor, for their shared MHC-I ligands. The ectodomain of inhibitory Ly49G of the BALB/c mouse strain is highly similar to the Ly49W activating receptor in the nonobese diabetic (NOD) mouse. Recombinant soluble Ly49G and W were expressed, refolded, and analyzed for binding affinity with MHC-I by surface plasmon resonance. We found that Ly49G and Ly49W bound with similar affinity to the same MHC-I molecules. These results are a first determination of an activating Ly49 receptor affinity for MHC-I and show that, unlike prior results obtained with activating and inhibitory KIR receptors, functional homologues to Ly49 receptors, activating and inhibitory Ly49, can recognize common MHC-I ligands, with similar affinities.  相似文献   

17.
A novel murine NK cell-reactive mAb, AT8, was generated. AT8 recognizes Ly49G from 129/J, BALB/c, and related mouse strains, but does not bind to Ly49G(B6). Costaining with AT8 and a Ly49G(B6)-restricted Ab (Cwy-3) provides the first direct evidence that Ly49G protein is expressed from both alleles on a significant proportion of NK cells from four different types of F(1) hybrid mice. The observed level of biallelic Ly49G expression reproducibly followed the product rule in both freshly isolated and cultured NK cells. Surprisingly, the percentage of NK cells expressing both Ly49G alleles could be dramatically increased in vitro and in vivo through IL-2R- and IFN receptor-dependent signaling pathways, respectively. Unexpectedly, Ly49G(B6+) NK cells in an H-2(d), but not H-2(b), background were more likely to lyse D(d+) and Chinese hamster ovary tumor cells than Ly49G(BALB/129+) NK cells. Furthermore, Ly49G(B6+) NK cells also proliferated to a higher degree in response to poly(I:C) than NK cells expressing a non-Ly49G(B6) allele in an H-2(d), but not H-2(b), background. These results suggest that Ly49G(B6) has a lower affinity for H-2D(d) than Ly49G(BALB/129), and the genetic background calibrates the responsiveness of NK cells bearing self-specific Ly49. Other H-2D(d) receptors on the different Ly49G(+) NK cell subsets were unequally coexpressed, possibly explaining the disparate responses of Ly49G(B6+) NK cells in different hybrid mice. These data indicate that the stochastic mono- and biallelic expression of divergent Ly49G alleles increases the range of MHC affinities and the functional potential in the total NK cell population of heterozygous mice.  相似文献   

18.
19.
Mapping the ligand of the NK inhibitory receptor Ly49A on living cells   总被引:1,自引:0,他引:1  
We have used a recombinant, biotinylated form of the mouse NK cell inhibitory receptor, Ly49A, to visualize the expression of MHC class I (MHC-I) ligands on living lymphoid cells. A panel of murine strains, including MHC congenic lines, was examined. We detected binding of Ly49A to cells expressing H-2D(d), H-2D(k), and H-2D(p) but not to those expressing other MHC molecules. Cells of the MHC-recombinant strain B10.PL (H-2(u)) not only bound Ly49A but also inhibited cytolysis by Ly49A(+) effector cells, consistent with the correlation of in vitro binding and NK cell function. Binding of Ly49A to H-2D(d)-bearing cells of different lymphoid tissues was proportional to the level of H-2D(d) expression and was not related to the lineage of the cells examined. These binding results, interpreted in the context of amino acid sequence comparisons and the recently determined three-dimensional structure of the Ly49A/H-2D(d) complex, suggest a role for amino acid residues at the amino-terminal end of the alpha1 helix of the MHC-I molecule for Ly49A interaction. This view is supported by a marked decrease in affinity of an H-2D(d) mutant, I52 M, for Ly49A. Thus, allelic variation of MHC-I molecules controls measurable affinity for the NK inhibitory receptor Ly49A and explains differences in functional recognition in different mouse strains.  相似文献   

20.
Murine natural killer (NK) cells express inhibitory Ly49 receptors for MHC class I molecules, which allows for “missing self” recognition of cells that downregulate MHC class I expression. During murine NK cell development, host MHC class I molecules impose an “educating impact” on the NK cell pool. As a result, mice with different MHC class I expression display different frequency distributions of Ly49 receptor combinations on NK cells. Two models have been put forward to explain this impact. The two-step selection model proposes a stochastic Ly49 receptor expression followed by selection for NK cells expressing appropriate receptor combinations. The sequential model, on the other hand, proposes that each NK cell sequentially expresses Ly49 receptors until an interaction of sufficient magnitude with self-class I MHC is reached for the NK cell to mature. With the aim to clarify which one of these models is most likely to reflect the actual biological process, we simulated the two educational schemes by mathematical modelling, and fitted the results to Ly49 expression patterns, which were analyzed in mice expressing single MHC class I molecules. Our results favour the two-step selection model over the sequential model. Furthermore, the MHC class I environment favoured maturation of NK cells expressing one or a few self receptors, suggesting a possible step of positive selection in NK cell education. Based on the predicted Ly49 binding preferences revealed by the model, we also propose, that Ly49 receptors are more promiscuous than previously thought in their interactions with MHC class I molecules, which was supported by functional studies of NK cell subsets expressing individual Ly49 receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号